
Parallel Modelling Paradigm in Multimedia Applications: Mapping and
Scheduling onto a Multi-Processor System-on-Chip Platform

Nuria Pazos, Paolo Ienne and Yusuf Leblebici
Swiss Federal Institute of Technology Lausanne

Processor Architecture and Microelectronic Systems Laboratories

IN-F and EL-D Ecublens, 1015 Lausanne, Switzerland

Email:nuria.pazos/paolo.ienne/yusuf.leblebici@epfl.ch

Alexander Maxiaguine
Swiss Federal Institute of Technology Zurich

Computer Engineering and Networks Laboratory

Gloriastrasse 35, 8092 Zurich, Switzerland

Email:maxiagui@tik.ee.ethz.ch

Abstract

Multi-processor systems have appeared as a promising
alternative to face the difficulties of creating even faster
uni-processor systems using latest technologies. Emerg-
ing design paradigms such as Multiprocessor System-on-
a-Chip (MpSoC) offer high levels of performance and flex-
ibility and at the same time promise low-cost, reliable and
power-efficient implementations. However, the design com-
plexity of such systems have increased tremendously. One
source of the complexity stems from highly parallel het-
erogeneous nature of the underlying hardware architecture,
which poses many challenges for mapping of an applica-
tion to the architecture. This motivates the development of
a unified programming paradigm that facilitates the map-
ping by hiding the architectural complexity and exposing
the parallel resources of the architecture. To enable de-
sign reuse, such a programming paradigm has to support
a smooth translation of sequentially-coded software algo-
rithms into their parallel implementations. In this paper we
address the parallelization of sequential multimedia appli-
cations written in C/C++ for their mapping and schedul-
ing onto a flexible MpSoC platform. We show that using
our approach an architecture-independent multi-threaded
model of a MPEG–2 video decoder algorithm can be ob-
tained with only few modifications to an existing sequential
implementation of the algorithm.

1. Introduction

Technological advances have made multiprocessor im-
plementations of embedded systems a viable alternative to
traditional uni-processor and pure-hardware designs. Such
multiprocessor designs offer high levels of performance
and flexibility and at the same time promise low-cost
and power-efficient implementations. Nowadays, one of

the most promising approaches to design of such systems
is a so-called Multiprocessor System-on-a-Chip (MpSoC)
paradigm. A canonical view of a MpSoC system consists
of a number of processing elements (PEs), which can be
programmable processors or fixed application-specific co-
processors, and storage elements (SEs) connected to PEs
via an on-chip communication architecture. As a result,
MpSoC architectures represent heterogeneous systems that
offer flexible parallel processing resources for implementa-
tion of bandwidth-demanding multimedia applications.

However, new capabilities of MpSoC platforms intro-
duce several design challenges associated with their parallel
heterogeneous architecture. A mapping of an application to
the architecture starts from a complex system specification,
goes through the vast design space exploration and ends
with a challenging implementation. In this context the reuse
of large base of existing software to perform the explo-
ration of different possible implementations constitutes an
important concern. The existing software commonly writ-
ten in C/C++ language with a uni-processor architecture in
mind cannot be directly reused in amultiprocessor environ-
mentespecially in that consisting of a heterogeneous mix
of different software and hardware components. The exist-
ing software needs to be adapted to the parallel capabilities
of the architecture. Furthermore, to enable fast and flex-
ible exploration of the possible application-to-architecture
mappings the software cannot be parallelized in an ad-hoc
manner, because generation of each new mapping may in-
volve a huge coding effort. Therefore, there is a need for a
disciplined approach based on aunified parallel modelling
paradigmthat would enable a smooth translation of existing
sequentially-coded software algorithms into their parallel
models suitable for the design space exploration of MpSoC
platforms.

This paper addresses the problem of creation of such a
parallel modelling paradigm. We present a framework and
a set of guidelines for transforming existing uni-processor



software for multimedia applications into parallel models
that can be then used in the design space exploration cy-
cle of MpSoC platforms. The framework allows to build
an architecture-independent multi-threaded model of the se-
lected application, which then can be easily mapped to any
homogeneous or heterogeneous multi-processor target ar-
chitecture. Rather than developing a new domain-specific
modelling language, we propose to use SystemC, an exist-
ing system-level modelling language. SystemC characteris-
tics, such as its support for different models of computation,
its capabilities regarding multi-threading and transaction-
level modelling and the fact that it is based on the C/C++
language, make it very suitable for establishing a frame-
work for transformation of the existing sequential software
coded in C/C++ into the parallel models for system-level
design of MpSoC platforms.

The rest of the paper is organized as follows. Section 2
presents a survey of related work. In Section 3 the proposed
parallel modelling paradigm is introduced. Its two main
parts, the architecture-independent multi-threaded model
and the mapping and scheduling of the application model
onto a MpSoC platform, are further explained in detail in
Section 4 and 5, respectively. Later on, Section 6 applies
the presented modelling method in a case study of a MPEG-
2 video decoder multimedia application. Finally, Section 7
concludes the paper.

2. State of the Art

The architectural changes introduced in the emerging
MpSoCs have a directly consequence in how software engi-
neers programm. This fact has already been acknowledged
by several researchers, who have proposed preliminary so-
lutions. Most of them agree on the importance of new high-
level programmer views of SoC. In [10], the author makes
the analogy between a programmers’ view to a heteroge-
neous multi-processor SoC and an instruction set architec-
ture to a single processing element.

A number of programming models focused on multi-
processor SoCs have been presented, such as the MESCAL
approach [6], which has served as base for further differ-
ent programming models. Nevertheless, most of them are
application or domain specific, as the one proposed in [7],
which only addresses communication modelling. Our ap-
proach, instead, is not attached to any specific area of appli-
cation.

A more general approach composed of two SoC paral-
lel programming models has been introduced in [4]. The
Distributed System Object Component(DSOC) model and
theSymmetric Multi-Processing(SMP) model are inspired
by leading-edge approaches for large system development,
but adapted and constrained for the SoC domain. The au-
thors believe that programming model development will be

evolutionary, rather than revolutionary (i.e, rather than the
development of entirely new programming paradigms, es-
tablished software languages and technologies will be sup-
ported). The efficacy of these two SoC parallel program-
ming models has only been proven in the area of networking
applications yet. Furthermore, they heavily rely on specific
hardware for efficient implementation of communication
between objects. Rather than that, we do not rely on a self-
defined programming model, but we apply an established
programming model based on the system-level language
SystemC to build the proposed programming paradigm.

Finally, it is also worth to cite the so-called Double-
Y methodology developed by IMEC [1], which facilitates
the implementation of multi-functional devices supporting
a complete application domain. On top of the standard Y-
chart approach, they propose an inverted-Y beginning with
the definition of the system functionality. This is split in
two branches. The first one deals with the design of a flex-
ible architecture, whereas the second branch is supposed
to optimise the application code so that it can run on the
previously defined architecture (i.e., it transforms a high-
level application description into a cleaned multi-threaded
description prepared for implementation on embedded sys-
tems). But, to date, there is no evidences of applications of
such methodology.

3. Parallel Modelling Paradigm for MpSoC

Many emerging applications for embedded systems ex-
hibit a high degree of parallelism in their processing. Ex-
ample of such systems are embedded devices connected to
wireless or fixed network and performing some processing
of multimedia flows, e.g. with audio and video content.
Such systems involve network packet processing functions
(e.g. routing, firewalling and encryption) as well as multi-
media functions (e.g. compression and decompression of
audio and video streams). Both types of functions lend
themselves well for a parallel implementation.

In the network packet processing domain, streams of
packets only have dependencies among packets of the same
flow, but none across different flows. This ensures that
the processing of different flows can easily be distributed
over several processors. That is, there is an inherent paral-
lelism associated with the processing of separate indepen-
dent packet flows. Therefore, the performance of the packet
processing functions can be increased considerably by split-
ting large sequential tasks into several smaller tasks and ex-
ecuting them concurrently on several processing units of the
architecture.

In the domain of multimedia processing, the parallelism
can be found on several levels. Many approaches have ex-
ploited parallelism at fine levels of granularity – at the in-
struction level (in Very Long Instruction Word (VLIW) ar-

2



chitectures) and at data level (in Single Instruction Mul-
tiple Data (SIMD) architectures). However, exploitation
of coarse-grain Thread Level Parallelism (TLP) inherent to
many multimedia algorithms has not received adequate at-
tention in software-based solutions. This can be explained
by the fact that to date single-processor solutions for mul-
timedia embedded systems were prevalent in the develop-
ment community, and the software was written with a uni-
processor model in mind. However, to fully utilize coarse-
grain computational resources of a MpSoC platform TLP in
the multimedia applications needs to be identified and ef-
fectively exploited as well as the other types of parallelism.

There are some domain-specific languages (e.g. [12])
that support parallel programming concepts, however, most
embedded system programmers are not comfortable with
them. The programmers are more familiar with C/C++ lan-
guage and real-time operating systems that provide primi-
tives to build multitasking software. Thus, it is beneficial
that the new parallel programming environment is based on
the same programming language and programming models
as those widely used in the embedded systems’ develop-
ment community. In addition, there is a great potential to
reuse a large base of existing sequential software written in
C/C++ language.

A further advantage of our approach is that on initial de-
sign phases, when it is not clear yet which tasks will be
implemented in software and which in hardware, using a
single language it allows to build a full system model (or
a system specification). Later on, during the design explo-
ration phase, some tasks will migrate into hardware while
others will remain in a software implementation. Thus, for
those tasks that are remained in software no (or almost no)
changes to the code will be required.

The procedure followed during the present work can be
divided into two phases. The first stage deals with the
description of an architecture-independent multi-threaded
model of the original reference software. At this point, a
study of the parallelism inherent to the reference software
is required. The multi-threaded system specification is de-
scribed using SystemC language [11] at the selected level of
granularity. Later on, the generation of the embedded soft-
ware for the target multi-processor platform is derived from
the previous SystemC multi-threaded model by redefining
and overloading the SystemC class library construction ele-
ments by typical operating systems functions and C++ sup-
porting structures [5] (e.g. replacing them by POSIX-thread
’pthread’ [8] library functions). After this, the second phase
comprises the exploration of suitable NoC communication
architectures for the MpSoC platform and the mapping of
the pthread model onto the target platform. The assessment
and evaluation of the results is performed using available
benchmarks.

4. Architecture-independent Multi-threaded
Model

The optimal SoC designs will most likely lie between
that of a central controller residing on a single PE and pure
data-flow designs with no central controller to dynamically
direct resource cooperation [10]. Following this idea, the
architecture-independent multi-threaded model proposed in
the current work introduces a control flow coordinated
across multiple PEs, where multiple data paths are set up
by a scope of control flow.

4.1. SystemC Modelling

As already introduced before, the characteristics intro-
duced by the system-level language SystemC make it a
good candidate for the modelling and simulation of the
architecture-independent multi-threaded model. The goal
is to take a C/C++ program and transform it into a parallel
SystemC executable model. To reach this goal, the follow-
ing guidelines have to be followed during this phase:

• A decision concerning the granularity of the tasks, into
which the system functionality is partitioned, has to be
taken. A compromise between coarse and fine granu-
larity has to be reached and be used further on in the
modelling.

• Each parallel task is modelled as a SystemC module
(SCMODULE), which includes an unique thread pro-
cess (SCTHREAD). The different methods and func-
tions called by a thread are processed sequentially.

• The communication between parallel tasks (or threads)
is implemented using four types of channels in the pro-
gramming model:

1. Asynchronous channels with FIFO semantics
(non-destructive write, destructive read). Writing
or reading into/from a FIFO (sc fifo) is blocking
if it is full/empty.

2. Register-type channels (destructive write, non-
destructive read).

3. Synchronisation channels (e.g.,sc semaphore).

4. Control signals acting as events (sc event) within
the respective modules, notifying (notify()) its ar-
rival to intermediatewait statements and, conse-
quently, waking them up.

• For each of the different data transfer between threads
a user-defined data-type (struct) is defined, which in-
cludes the single data-elements to be transferred.

3



• The configuration parameters are defined at the top-
level of the system hierarchy and passed to the differ-
ent sub-modules as constructor arguments.

• Memory allocation cannot be performed explicitly in
the code, but is done using requests via specific com-
munication channels. A carefully exploration of data
transfers and storage instructions in the original code
has to be performed, specially in case of data manage-
ment through pointers. This is often encountered in
multimedia applications which have to deal with huge
amounts of data transfers.

The above guidelines form a general framework that is,
in principle, applicable to any existing application software.
At this point, it is important to remark that neither the
language nor the programming model are self-defined, but
the novelty of the framework resides on their appliance to
develop the architecture-independent multi-threaded model
for design space exploration and its subsequent refinement
for implementation on a MpSoC platform.

4.2. SystemC to Operating System

As introduced in [5], the embedded software to be ex-
ecuted by the processors integrated on a MpSoC can be
systematically generated by simply replacing some Sys-
temC library elements by behaviorally equivalent proce-
dures based on operating system (OS) functions. This
method is independent of the selected OS (any of them can
be supported by writing the corresponding library for that
replacement).

The SystemC code for the application is not modified
during the software generation flow. All the required mod-
ifications are performed at library level and are therefore
hidden from the designer. Such a conversion library (Sys-
temC to OS) supports the hierarchy, concurrency, execution
control, timed specification, and data types included in Sys-
temC descriptions. For example, the library uses OS API
(Application Programming Interface) calls for the concur-
rency support, so the SystemC threads have to be mapped
to the underlying OS threads.

5. Mapping and Scheduling onto a MpSoC

Once the architecture-independent multi-threaded model
for the application is built, the second stage consist of map-
ping and scheduling it onto the selected MpSoC. In order
to perform a functional validation as well as a system per-
formance estimation, a multi-processor simulation platform
is required. At this point we mainly have to distinguish be-
tween modelling of task execution on PEs of the architec-
ture and the data exchange between tasks via communica-
tion channels mapped to SEs.

For the simulation of task execution on PEs, two dif-
ferent ways can be followed. On one hand, detailed Sys-
temC models of processor microarchitecture executing OS
together with the previously generated embedded applica-
tion software can be used. On the other hand, the Sys-
temC modules representing tasks can be annotated with
wait statements, which emulate the run time of the corre-
sponding task parts on a PE. The run times are previously
estimated using, for example, an instruction set simulator or
micro-architecture simulator, such as SimpleScalar [2]. In
the current work we have followed the second approach to
obtain a rough estimation of system performance.

The modelling of communication channels totally de-
pends on the underlying hardware/OS platform and the
mapping of tasks on processing resources. The program-
ming model is not restricted to any particular type of archi-
tecture. Some primitives (or communication channels) will
be implemented purely in software, whereas some of them
will require hardware support. For example, some commu-
nication channels will need to be mapped on hardware com-
munication infrastructure such as busses. In this work, we
study an emerging paradigm of communication across SoC
platforms, the so-called networks on chip (NoC). For build-
ing the simulation model, on top of SystemC, the On-Chip
Communication Network (OCCN [3]) library has been ap-
plied, which facilitates the developing of new models for
on-chip communication architectures. It provides an open-
source framework for the specification, modelling, simula-
tion and design exploration of NoC. At this point, the struc-
ture of the PDU (Packet Data Unit) and bandwidth for each
link have to be defined. Furthermore, for interfacing to the
packet switched network, the PEs require a wrapper, usually
called a network interface (NI), which separates computa-
tion from communication.

PE/SE PE/SE PE/SE PE/SE

PE/SE PE/SE PE/SE PE/SE

PE/SE PE/SE PE/SE PE/SE

PE/SE PE/SE PE/SE PE/SE

R RRR

RRRR

RRRR

R R R R

NI NI NI

NININI

NI

NI

NI NI NI NI

NI NI NI NI

Figure 1. MpSoC Internal Architecture

Figure 1 shows an overview of the selected scalable
MpSoC architecture, composed of a number of process-
ing (PEs) or storage (SEs) elements connected through a

4



Network-on-Chip (NoC). This NoC is made up of homo-
geneous routers organized following a 2D-mesh topology.
A processing (PE) or a storage (SE) element is attached to
each router (R), which acts as a host sending or receiving
packets. A pair of links binds two routers or one router with
its respective host, one for each direction.

6. Case Study: MPEG-2 Video Decoder

MPEG-2 video decoder has been chosen as a first case
study for demonstrating the feasibility of the multi-core so-
lution. Multimedia applications, such as MPEG-2 video de-
coding, have several interesting properties and pose some
challenges for their modelling: They represent a complex
streaming application; they can be partitioned onto several
concurrent tasks that have variable consumption/production
rates and variable execution time; they are known to be
resource demanding; finally, the performance of the al-
gorithm, in particular, distribution of load among tasks
changes depending on the parameters of a video sequence
and the encoded video content.

As a starting point, we took the reference implementa-
tion of the MPEG-2 video decoder algorithm provided by
the MPEG group [9]. Then, we decomposed the sequential
software into a set of parallel independent tasks communi-
cating over a number of channels. The granularity of the
decomposition corresponds to the processing on the mac-
roblock level. Thus, the main data exchange between tasks
occurs via streams of macroblocks. The motivation behind
the chosen granularity of parallelization is twofold. On one
hand, there are not so many data dependencies between
macroblocks of the same picture. The only restriction that
constraints the parallel processing of macroblocks within a
single picture is caused by the fact that the VLD task has to
access incoming (compressed) bitstream in strict sequential
order. There are data dependencies between pictures in the
decoded sequence, but these dependencies can be resolved
by providing synchronization mechanisms on picture level,
which has much coarser granularity. Hence, a large portion
of processing that is performed within a picture can be eas-
ily parallelized.

Figure 2 shows the selected parallelization of the func-
tions involved in the case study into four main concur-
rent modules: VLD, IDCT, MC and ADD. The data- and
control-flow of the application as well as some SystemC
primitives used in the modelling are depicted.

6.1. Data Flow

The input of the compressed video bitstream into the sys-
tem is stored in an input-FIFO. The Variable Length coeffi-
cient Decoding (VLD) module starts then extracting and de-
coding the variable-length coded words from the bitstream

VLD IDCT

MC

ADD
In Out

Bitstream

MCB

MCF

sc_thread sc_thread sc_thread

sc_thread

sc_fifo sc_fifo

sc_fifo sc_fifo

I

P
B

VLD: Variable Length Decoding
IDCT: Inverse Discrete Cosine Transformation
MC: Motion Compensation
ADD: IDCT+ MC

I: Intra-coded picture
P: Predictive coded picture
B: Bidirectionally-predictive coded picture

sc_fifo

Figure 2. MPEG2 Video Decoder Data- and Control-Flow

to obtain motion vectors and quantized values of the DCT
(Discrete Cosine Transform) coefficients for each block.
This information is then passed to the Inverse Discrete Co-
sine Transformation (IDCT) module, which reconstructs the
pixel values of the actual video sample for I-macroblocks
and of the prediction error in case of macroblocks of P and
B types. Concurrently, for inter-coded frames (P- or B-
macroblocks only), the associated motion vectors and the
motion prediction mode are sent to the Motion Compensa-
tion (MC) module. MC has an access to a memory where
reference frames are stored. It can directly access them,
without need to synchronize with other tasks unless the ref-
erence frames are updated with newly decoded data. The
MC module performs the reconstruction of the frame using
the motion vectors. For P-frames, a Motion Compensation
Backward (MCB) is performed, and for the B frames, both,
a MCB and a Motion Compensation Forward (MCF) are
executed. Lately, the predicted data is added to the predic-
tion error within the ADD module to recover the particular
macroblock of the frame. The decoded frames can then un-
dergo a video postprocessing (not shown in the example)
and, finally, they can be displayed on the output device.

6.2. Control Flow

The coordination of application execution on the plat-
form is implemented via two different event types: (i)
events on boolean signals and (ii) events on the FIFOs
whenever a data element is written in.

In the case study a boolean signal from VLD triggers the
initialization of IDCT; another signal controls the loop be-
tween VLD and IDCT for the luminance and chrominance
values of one macroblock (it allows a pipeline in the top
data-path). Finally, the signal originating from ADD noti-
fies VLD about the end of a macroblock processing.

Data transmission between modules is triggered by
events associated to the corresponding FIFOs, which sig-

5



nalize the writing of new data-elements into the FIFOs
(data written event()).

6.3. Mapping onto the MpSoC

The mapping of the previous architecture-independent
model for the MPEG2 video decoder into the predefined
MpSoC. The MpSoC consists of four processing elements
connected by a complex on-chip communication architec-
ture (NoC), is depicted in Figure 3.

NI

ADD 
(3)

RR

RR

NI

NINI MC 
(2)

IDCT 
(1)

VLD 
(0)

Figure 3. Mapping of MPEG2 into MpSoC

The previously implemented SystemC modules for each
of the four main tasks are annotated with await statement,
which emulates the run time of the corresponding task on a
PE. In addition to it, a network interface (NI) is attached to
each module-output for interfacing with the packet switched
network (NoC). This NI comprises a host-dependent and a
host-independent part. While the first one depends on the
host type, the second part can be reused in every host at-
tached to the same NoC. It is responsible for packetization
and depacketization of data and data encoding for error de-
tection and correction.

All the elements that made up the communication infras-
tructure are also modelled in SystemC, using, on top of it,
the OCCN [3] library. This enables an homogeneous sim-
ulation environment where both, computation and commu-
nication, are decoupled but modelled using the same primi-
tives.

For verification purposes, the decompressed video
frames resulting from the simulation of the model are com-
pared to the output of the reference software provided by
the MPEG group. This is performed for several confor-
mance bitstreams to guarantee the compliance. At this
point, the architecture-independent multi-threaded model
and its mapping onto the MpSoC infrastructure have been
functionally verified. Moreover, the model can be easily
applied to explore different mapping alternatives of the re-
spective threads to the software or hardware components of
the target architecture.

7. Conclusions

This paper has presented a novel multi-threaded pro-
gramming paradigm that aims to cope with the new chal-

lenges introduced by emerging multi-processor system ar-
chitectures. The proposed framework takes an exist-
ing reference software written in C/C++ and, with lim-
ited modifications, thread it in SystemC. With the result-
ing architecture-independent multi-theaded model, one can
play out several scenarios and decide the best implemen-
tation. Further on, for the threads to be implemented in
software, the conversion of SystemC to pure C with pthread
library support could be made automatically. And for the
implementation of the hardware threads, a refinement of the
SystemC model is required, but not a complete translation
is necessary.

It has been shown that the system-level language Sys-
temC offers enough primitives for implementing new mod-
els of computation more suitable for multi-processing sys-
tems. Moreover, it enables the modelling of the architec-
ture, the functionality, and the environment using the same
language, which facilitates further simulations and verifica-
tions.

References

[1] Imec conceives ’double-y’ methodology for design of multi-
functional devices. Press Release, feb 2004.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infras-
tructure for computer system modelling.IEEE Computer,
35(2):59–67, 2002.

[3] M. Coppola, S. Curaba, M. Grammatikakis, G. Maruccia,
and F. Papariello.On-Chip Communication Network: User
Manual V1.0.1. 2003.

[4] P. Gaulin, C. Pilkington, M. Langevin, E. Bensoudane,
K. Szabo, D. Lyonnad, and G. Nicolescu. A multi-processor
soc platform and tools for communications applications.
Embedded Systems Handbook, CRC Press, 2004.

[5] F. Herrera, H. Posadas, P. Sanchez, and E. Villar. Systematic
Embedded Software Generation from SystemC. InProceed-
ings of International Conference on Design, Automation and
Test in Europe, 2003.

[6] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System level design: Orthog-
onalization of concerns and platform-based design.IEEE
Transactions on Computer-Aided Design, 19(12), 2000.

[7] S. Kiran, M. N. Jayram, P. Rao, and S. K. Nandy. A
Complexity Effective Communication Model for Behavioral
Modelling of Signal Processing Application. InProceedings

of 40th International Design Automation Conference, 2003.
[8] B. Lewis and J. B. Daniel.Multithreaded Programming with

Pthreads. Prentice Hall, 1998.
[9] MPEG homepage.http://www.mpeg.org/MPEG/index.html.

[10] J. M. Paul. Programmers’ Views of SoCs. InProceedings of
International Conference on Hardware/Software Codesign
and System Synthesis, 2003.

[11] SystemC homepage.http://www.systemc.org.
[12] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt:

A language for streaming applications. InComputational
Complexity, pages 179–196, 2002.

6


