Area 4: GENES and GENOMES

19:30-20:00, September 29 (Thursday), 2005 ECCB `05 - Madrid, Spain

Prediction of Regulatory Modules Comprising MicroRNAs and Target Genes

Sungroh Yoon, Stanford University, USA Giovanni De Micheli, EPF Lausanne, Switzerland

- MicroRNA (miRNA)
- Representation of miRNA-target interactions
- Finding miRNA regulatory modules
- Experiments and validation

MicroRNAs

Gene regulation

- By protein (conventional view)
- By protein and RNA (recent view)
- MicroRNAs (miRNAs)
 - ~22 nucleotides long
 - Mediate post-transcriptional gene regulation
 - Bind target mRNAs for cleavage/translational repression
 - Nearly 1% of the genes in human genome
 - Add a new dimension to our understanding of complex gene regulatory networks

miRNA-mediated Posttranscriptional Regulation

miRNA-mediated Posttranscriptional Regulation

- ★ Primary miRNA
- ★ Precursor miRNA

He et al. 2004, Nature Reviews Genetics, 5:522

miRNA Functions in Flies

- Bantam: Brennecke et al., *Cell*, 2003, 113:25
 - Prevents apoptosis by targeting Hid
 - Regulate fly growth during development
- miR-14: Xu et al., Current Biology, 2003, 1:790
 - Suppresses cell death
 - Regulates fat metabolism

miRNA Functions in Vertebrate

- miR-181 (Mouse): Chen et al., Science, 2004, 303:83
 - Isolated from mouse bone marrow
 - Increased B cell development in vitro and in vivo
- miR-375 (Mouse): Poy et al., Nature, 2004, 432:226
 - Pancreatic islet-specific microRNA
 - Suppressed glucose-induced insulin secretion
- miR-15, miR-16 (Human): Calin et al., PNAS, 2002, 99:15524
 - Cloned from Hela cells
 - Deleted or down-regulated in B-CLL, and prostate cancer
 - Tumor suppressor gene?

- MicroRNA (miRNA)
- Representation of miRNA-target interactions
- Finding miRNA regulatory modules
- Experiments and validation

miRNA-target Duplex Configurations

(Lai, 2004)

Modeling miRNA-target Interactions

- Weighted bipartite graph $G = (M \cup T, E, W)$
 - M-vertex: miRNA
 - T-vertex: target mRNA
 - Edge weight: binding strength
 - "Interaction graph"

miRNA Target Identification

- Guided by sequence complementarity
- Lewis et al., 2003; John et al. 2004
 - Local alignment score
 - Free energy
 - Conserved sequences

miRNA Target Identification

- Lewis *et al.*, 2005
 - Focus on the nucleotides 2-7 of miRNA
 - Targets: conserved complementarity to this region
 - ✓ Overrepresentation of conserved adenosines (flanking target sites that are complementary to the nt 2-7 of miRNA) indicates that primary sequence determinants can supplement base pairing to specify miRNA target condition

Alternative Representation

- Matrix of real numbers
 - Row: miRNA
 - Column: target mRNA
 - Values: binding strength
 - "Interaction matrix"

M

14

miRNA Regulatory Modules

- miRNA regulatory module (MRM)
 - (Maximal) biclique in G
 - Similar weights for edges incident on $t \in T$

- MicroRNA (miRNA)
- Representation of miRNA-target interactions
- Finding miRNA regulatory modules
- Experiments and validation

Algorithm Overview

Input

• Weighted bipartite graph representing miRNAtarget interactions

Output

• MRM: maximal biclique with similar edge weight for each target vertex

Algorithm

- Step 1: finding "seeds"
- Step 2: merging seeds

- Seed: S(t)
 - Maximal set of miRNAs that bind target t with similar strength
- Algorithm ($\delta = 0.5$)

1.5

m2

2.6

m7

```
Sort
     t1
    0.4
m1
           m3 0.0
                       S(t_1) = \{m_3, m_6, m_5, m_1\}
    2.6
           m6
m2
               0.1
                0.3
    0.0
m3
           m5
                       S(t_1) = \{m_1, m_4\}
    0.9
               0.4
           m1
m4
    0.3
                0.9
m5
           m4
    0.1
m6
                1.5
           m7
```


Collect seeds in a trie

Merging Seeds

```
S(t_0): \{m_0, m_2, m_3\}, \{m_1, m_3\}
```

$$S(t_1): \{m_0, m_1, m_3\}, \{m_0, m_2\}$$

$$S(t_2): \{m_0, m_1\}$$

$$S(t_3): \{m_0, m_1\}, \{m_1, m_3\}$$

• Expand the trie $(min_M = 2)$

• Prune the trie $(min_T = 3)$

2 MRMs found

Assessment of Statistical Significance

 $X_{m \times t}$: # of $(m \times t)$ MRMs

 $P_{m \times t}$: Prob{a random $(m \times t)$ biclique is MRM}

$$P(X_{m \times t} = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \ k = 0, 1, 2, \dots$$

$$\lambda = {|M| \choose m} {|T| \choose t} P_{m \times t}$$

$$P_{m imes t} \simeq \zeta^t [1-\zeta]^{|T|-t} [1-(1+m^{-1})^t \delta^t]^{|M|-m}$$
 (Califano *et al.*, 2000)

$$\zeta = m\delta^{m-1} - (m-1)\delta^m$$

p-Value =
$$P(X_{m \times t} \ge 1) = 1 - P(X_{m \times t} = 0) = 1 - e^{-\lambda}$$

Experimental Results

- Input
 - Human genes and miRNA sequences
- Procedure
 - Estimate binding strength
 - Build weighted bipartite graph (|T|, |M|, |E|) = (2888, 156, 7886)
 - Find MRMs
- Output
 - 431 miRNA regulatory modules (P < 0.01)

An Example Module

Clustered within 0.5 kb on chromosome 13q14. This region is deleted in B cell chronic lymphocytic leukemia (B-CLL), mantle cell lymphoma, multiple myeloma, and prostate cancer cases. (Stilgenbauer et al., 1998; Migliazza et al., 2000; Calin et al., 2002)

Breast; Renal;
Prostate cancer
(Struckman et al.,
2004; Kawakubo
et al., 2004;
Ficazzola et al.,
2001)

BTG

PPM11

WT1

	tion	mir15a	mir16	mir195
) 2)	vated kinase 7	1.609	-0.789	0.676
	ociated oncogenic protein 9b	1.303	-0.746	-0.956
-cell translocation gene 2		-0.162	-0.816	-1.259
Protein phosphatase 1D		-0.487	-0.817	-1.143
Wilms' tumor		0.275	1.019	-0.514

An Example Module

MicroRNAs

- Mediate post-transcriptional gene regulation
- MicroRNA regulatory modules
 - Group of miRNAs and target genes
 - Can contribute to reconstruction of gene regulatory networks
- Computational method to find MRMs
 - 2-step data mining algorithm
 - Identify 431 human miRNA regulatory modules

Thank you!

