An Application-Specific Design Methodology for STbus Crossbar Generation

Srinivasan Murali, Giovanni De Micheli
Stanford University
{smurali, nanni}@stanford.edu
Introduction

- Systems On Chips have multiple components, cores
- Communication between cores rapidly increasing
- Wire scaling not on par with transistor scaling
- Communication architecture becomes major bottleneck
 - Scalability
 - Delay
 - Power and
 - Reliability

Motorola’s MSC8126 SoC platform (3G base stations)
Communication Architecture

- Several standard bus architectures:
 - Large semiconductor firms (e.g. IBM Coreconnect, STMicro STbus)
 - Core vendors (e.g. ARM AMBA)
 - Interconnect IP vendors (e.g. SiliconBackplane)

- Evolution of communication architectures:
 - Single bus
 - Bridged buses
 - Crossbars (multiple parallel buses)
 - AMBA Multi-layer
 - STbus crossbar …
 - Networks on Chips
Crossbar Architecture

- Low-latency, high bandwidth infrastructure
Crossbar & Partial CB cost

Key issue: Full crossbar is expensive!
Partial crossbar is a compromise solution

<table>
<thead>
<tr>
<th>Type</th>
<th>Avg. Lat (cycles)</th>
<th>Max. Lat (cycles)</th>
<th>Bus Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS</td>
<td>35.1</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>FC</td>
<td>6</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>PC</td>
<td>9.9</td>
<td>20</td>
<td>6</td>
</tr>
</tbody>
</table>
Motivation

- Full STbus crossbar:
 - lot of wires & gates
 - e.g. Area_cell_4x4/Area_cell_bus \(\sim 2\)
- Optimum Partial crossbar:
 - Latency close to Full crossbar
 - Fewer components, area, power
- How to design best partial crossbar for applications?
- General design methodology
 - Fine-tuned to particular architecture (in this work: STbus)
Application Traffic Analysis

- Example traffic trace from 3 initiators

- Overlap increases average and peak latency

- Local variations in traffic rates
Crossbar Design Constraints

- Match the application characteristics
- Minimize average & peak packet latency
 - Support the bandwidth requirements of communication
 - Consider local variations in traffic rates as well
- Consider criticality of streams (partial QoS support)
- Objective: Minimum components /power consumption
Previous Work

- Bus and Networks on Chip synthesis
 - Average bandwidth analysis
 - Pinto et al. (DAC ‘02, ICCD ‘03)
 - Hu et al. (ASPDAC ‘03, DATE ‘03)
 - Our earlier works (DATE ‘04, DAC ‘04)
 - Peak bandwidth based
 - Ho et al. (HPCA ‘03)
 - Statistical traffic generators
 - Bolotin, et al. (JSA ‘04)
 - Regulating traffic injection
 - Lahiri et al. (TCAD ’04), our earlier work (ASPDAC ‘05)
Previous Work

- Bus mapping & protocol design (Lahiri et al. (TCAD ‘04))
- Automatic bus and network generation
 - T. Yen et al. (ICCAD ‘95)
 - Gasteier et al. (ACM TODAES ‘99)
 - K. Ryu et al. (DATE ‘03)
 - Xpipescompiler (DATE ‘04)
Crossbar Design Approach

- Functional traffic of application for design
- Simulation time window for analysis:
 - Split to Fixed sized windows

![Diagram showing functional traffic and simulation windows]

- I1
- I2
- I3

window 1 overlaps window 2
Crossbar Design Approach

- In each simulation window
 - Satisfy bandwidth requirements
 - Minimize overlaps among streams
 - Consider criticality of streams
- Merge channels with non-overlapping traffic
- Time windows tighten worst-case
- Methodology spans an entire design space spectrum
 - Average and peak bandwidth based analysis are the two extreme points
 - Design point varied by varying window size
Design Flow For PC Design

Application

Fullcrossbar SystemC simulation

Data Rate
Overlap
Criticality

Pre-Processing

traffic collection in each window

Phase 1

PC design

SystemC simulation

Phase 3
Phase 1: Initial Simulation

MPARM Simulation Environment

ARM ARM ARM ARM

INTERRUPT CONTROLLER

Full STBus crossbar

PRI MEM 1 PRI MEM 2 PRI MEM 3 PRI MEM 4 SHARED MEM SEMAPHORES
Phase 1

- Full crossbar results in perfect communication
- Data collection hardware added to arbiters

- Traffic collection on each window
 - Data rate for each core
 - Overlap among streams
 - Criticality of streams
Phase 2: Pre-processing

Identify

- cores that should be on different buses
 - Cores with large overlap (above threshold)
 - Cores with overlapping critical streams
- Maximum number of cores on bus
 - To bound maximum latency

one packet (burst)
Phase 3: Crossbar Design

1. Start with a single bus
2. Check for feasible solution
 - Satisfy window bandwidth constraints
 - Place forbidden core pairs on different buses
 - Fewer than maximum number of cores on each bus
3. Repeat step 2, incrementing the number of buses by 1
4. Optimal Binding
 - Minimize overlap on each bus
 - Satisfying the above constraints
Phase 3: Crossbar Design

- Feasibility check & optimal bindings modeled as small Integer Linear Programs (ILPs).
 - Size of ILPs small (maximum cores is 32 in STbus)
 - ILPs solved using CPLEX package
 - Less than few hours for all simulations (1 Ghz SUN workstation)
- Simulate resulting crossbar in MPARM
Simulation Results
Analysis of PC Design

Matrix Multiplication Benchmark (21 cores)

- Traffic to shared targets smaller
- ARM – Private Memory flows have substantial overlap
Analysis of PC Design

- Designed PC: 3 buses (initiator-target)
- Each bus: 3 private and 1 shared target
- Targets with highly overlapping streams on different buses
- Result: Acceptable performance (latency)
- $3.5 \times$ reduction in the number of buses used
Experiments on Benchmarks

Component savings compared to Full Crossbar

<table>
<thead>
<tr>
<th>App.</th>
<th>FC bus count</th>
<th>PC bus count</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat1</td>
<td>25</td>
<td>8</td>
<td>3.13</td>
</tr>
<tr>
<td>Mat2</td>
<td>21</td>
<td>6</td>
<td>3.5</td>
</tr>
<tr>
<td>FFT</td>
<td>29</td>
<td>15</td>
<td>1.93</td>
</tr>
<tr>
<td>Qsort</td>
<td>15</td>
<td>6</td>
<td>2.5</td>
</tr>
<tr>
<td>DES</td>
<td>19</td>
<td>6</td>
<td>3.12</td>
</tr>
</tbody>
</table>

- Avg. & Peak latencies within few cycles of Full Crossbar
Use of Simulation Windows

Relative Average Latency

Relative Peak Latency
Sensitivity to constraints

- Window size & overlap constraints-parameters
- Trade off conflicts against HW complexity
Overlap Threshold Setting

- Controls peak and average latencies
- From experiments, threshold value can be set:
 - 10% of window size for conservative designs
 - 30%-40% of the window size for aggressive designs
Conclusions

- Communication architecture should match application characteristics
- Presented methodology for STbus crossbar design
 - Local variations in traffic,
 - Overlap of streams
 - Actual application traffic
- Large savings in components, good performance
- Approach can be extended to other bus designs
- In future: protocol design, power issues