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Abstract— We consider a multi-user impulse radio UWB phys-
ical layer in a multipath environment. We propose a fast and
efficient method to compute the conditional bit error rate (BER),
given some realizations of the channels from source/interferer
to destination, and of delay differences. Our motivation is
packet level simulation of large scale or dense impulse radio
UWB networks. The conditional BER is used in a packet
level simulator with block fading channel assumption to sample
packet transmission error events. However, due to the timescale
difference between physical layer events and network events,
a pulse-level simulation of the BER in a realistic multipath
channel environment is infeasible. Our solution is based on a
novel combination of large deviation and importance sampling.

I. INTRODUCTION

Future UWB networks will range from a few dozen nodes

to large-scale networks composed of hundreds of nodes.

Development of new receiver structures at the physical layer

or of new MAC or routing protocols will necessitate extensive

simulations. In the case of MAC or routing protocols, large

scale simulations are conducted in packet-level simulators such

as ns-2 or Qualnet; in order to declare if a packet is properly

received, it is necessary to compute a packet error rate. This

packet error rate depends on the current level of interference

and background noise as well as physical layer parameters

such as the coding and modulation schemes that are used. To

be able to run large scale simulations it is therefore crucial to

have a fast algorithm to evaluate the probability of packet error.

In this paper, we assume it is based on the computation of the

Bit Error Rate (BER). The packet error rate can be derived

from it, either exactly or using upper and lower bounds [1].

Whereas physical layer events take place on a sub-

nanosecond timescale, higher layer events such as packet

reception and forwarding occur on a timescale of milliseconds.

Due to the sheer number of events, it is not possible to directly

derive this BER from a pulse-level simulation of the physical

layer.

An alternative is to compute the BER and use it to sample

packet level errors in the simulator. It is tempting to make

the Gaussian assumption, which consists in approximating

the interference stemming from concurrent transmitters as a
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Gaussian random variable. The Gaussian assumption was often

used to obtain closed form analytical expression for the BER

of a pulsed based UWB physical layer [2]. However, it was

shown that the Gaussian assumption is not valid in many sce-

narios [3], [4], especially when the pulse transmission period

is large or in the absence of power control. Heterogeneous

power levels occur, for example, in the presence of multiple

interfering piconets, or in purely ad-hoc networks operating at

very low power, where it is optimal to let all users use full

power [5]. Near-far situations are frequent in such cases.

Existing work on the computation of the BER assuming a

non-Gaussian model for the interference can be mainly divided

into two areas; in [6], [7] the interference stemming from a

single interferer at the matched filter output is modeled as

a mixture of a Dirac function and uniform random variable.

Assuming perfect power control, a combinatorial convolution

formula is developed to compute the BER. However, their ap-

proach quickly suffers from combinatorial explosion when the

number of interferers increases. In [8], [3], [9] a characteristic

function approach is taken. To obtain the BER, it requires

numerical integrations for the inverse transform, which do

not permit a fast implementation. A similar issue arises in

[10]. A different approach is [11] where the interference

is modeled as a Poisson distributed train of impulse. In

spite of the convenience offered when working analytically,

a hidden difficulty lies in easily and accurately identifying

the parameters of the Poisson shot noise with those of the

physical layer. Note that all the discussed work consider a

simple additive white Gaussian noise (AWGN) channel and

assume perfect power control. The performance of a UWB

Rake receiver in a multipath channel environment is addressed

in [12], [13], [14].

There are two major differences between the work previ-

ously discussed and our setting. First, existing work assume

perfect power control. Second, the computed BER is the

unconditional BER, i.e., the average BER over many channels

and transmitter-receiver delay realizations. In our case, the

setting is different. We do not assume power-control. Fur-

ther, we assume a block fading channel model: during the

transmission of a block of bits, all channels conditions and

delays between concurrent transmitters and the receiver are

fixed. Indeed the coherence time of a UWB channel can be

as large as 200 ms. Hence, we compute the conditional BER,

given some realizations of the channels from source/interferer

to a specific destination, and of delay differences. Our results



can be used with any method for drawing the different

channel realizations; in Section IV, we evaluate our method

on numerical cases where we draw the different channels from

source and interferers to a specific destination independently

and according to an IEEE 802.15.4a UWB multipath channel

model.

Our solution is based on a novel combination of large devi-

ation [15], [16] and importance sampling [17]. It is completely

automated and is appropriate to be included in a packet level

simulator. In this first version, we do not consider repetition

coding and leave the mapping of raw BER to packet error rate

for further study.

II. PHYSICAL LAYER MODEL AND ASSUMPTIONS
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Fig. 1. Illustration of the definitions. φi is the delay between interferer i and
the source. The dashed curve following the pulses represents the multipath
propagation.

We consider an impulse radio physical layer with time-

hopping. We assume Binary Phase Shift Keying (TH-BPSK)

modulation, but our approach is also valid, with minor mod-

ifications, with binary pulse position modulation. The signal

produced by the ith transmitter is

s(i)(t) =

∞∑

j=−∞
d
(i)
j · p

(
t− c

(i)
j Tc − jTf

)
(1)

where
[
d
(i)
j

]
is the antipodal data sequence, p(t) the second

derivative of a Gaussian pulse, Tc is the chip width, Tf is the

frame length and c
(i)
j is the Time-Hopping Sequence (THS).

The THS is a sequence of integers uniformly distributed in

[0, PTP − 1] where PTP =
Tf

Tc
is the Pulse Transmission

Period. We assume that there is no intersymbol interference

(ISI). This can be enforced by having a guard time Tg at the

end of each frame, or by constraining the THS such that the

minimum spacing between two consecutive chips is larger than

Tg .

The channel impulse response between the ith transmitter

and the receiver is h(i)(t) =
∑L

l=1 αi,lδ(t− νi,l) where δ is a

dirac function, νi,l is the delay induced by the lth path and L

the maximum number of path. We denote by A(i) =
∑L

l=1 α2
i,l

the total energy of the channel. The channel is considered to

be static for the duration of a packet transmission.

At the receiver side, we consider a coherent Rake receiver.

The received signal is r(t) =
∑U

i=1 hi(t) ∗ si(t − φi) + n(t)
where U is the number of transmitters present in the system,

φi ∈ [0, Tf [ is the delay between the ith transmitter and the

receiver, and n(t) is zero mean white gaussian noise with two-

sided power spectral density N0

2 . We let i = 1 be the user of

interest and assume φ1 = 0. Following similar steps as in [3],

we can write the jth sampled output Yj of the match filter at

the receiver as

Yj = sj +
U∑

i=2

Ii,j + Nj (2)

where sj =
∑L

l=1 α2
1,ld

(1)
j , the filtered white noise

Nj ∼ N
(
0, σ2

N

)
with σ2

N = N0

2 and

Ii,j = d
(i)
j

L∑

l=1

α1,l

L∑

m=1

αi,mΘ
[
∆i,j + (νi,m − ν1,l)

]
(3)

where (see Figure 1)

∆i,j =





(
c
(i)
j − c

(1)
j

)
Tc + φi if c

(1)
j · Tc > φi(

c
(i)
j−1 − c

(1)
j

)
Tc + (φi − Tf ) otherwise

(4)

and Θ(τ) =

[
1− 4π

(
τ
τp

)2

+ 4π2

3

(
τ
τp

)4
]

exp

[
−π
(

τ
τp

)2
]

is

the autocorrelation of p(t) where τp is a time normalization

factor.

III. A FAST AND EFFICIENT METHOD TO COMPUTE THE

BER

As mentioned in the previous section, we develop a fast

method to sample the BER of a UWB link in the presence of

concurrent transmitters in a multipath channel environment.

We want to compute the conditional bit error probability

P
e|~φ,~h

, given that the vector of channel impulse responses is

~h = [h1, h2, . . . , hNu] and that the vector of delays is ~φ =
[φ1, φ2, . . . , φNu]. Since we condition on channel realizations

and delays, the only remaining randomness is in the sequence

of the transmitted bits and the time hopping sequences of every

user.

Note that P
e|~φ,~h

is different from the usual bit error proba-

bility, which can be expressed as E

[
P

e|~Φ, ~H

]
where ~Φ and ~H

are random.

A. Expression for the BER

We assume that decoding is bit by bit. We drop the index j.

Given that the source transmitted 1 [resp.−1], a decoding error

occurs when x+
∑U

i=2 Ii+N < 0 [resp. −x+
∑U

i=2 Ii+N >

0] where x =
∑

l α
2
1,l. By symmetry, both have the same

probability, thus we can write

P
e|~φ,~h

= P

(
N + I2 + . . . + IU > x|~φ,~h

)
(5)

As mentioned earlier, we cannot simply assume that the sum

of interference terms
∑U

i=2 Ii is Gaussian; also, we have to

assume that interferers have different channels and attenuation,

thus the Iis do not have the same distribution.



B. Distribution of the Interference Ii

We can easily compute the distribution of Ii, for every i.

Since we assume all users have a guard time Tg larger than

the maximum channel spread Tch, an interferer collides with

at most one pulse. Let ∆i be the time offset between the

reception of the beginning of the pulse of the source and of

the pulse of interferer i. It is given by (4), where we drop

index j. Now define τi ∈ [0, Tc[ as the remainder of φi

Tc
. We

can rewrite ∆i as ∆i = τi + kTc for some k ∈ Z. Let xi,k =

Θ̃
[
∆i

]
=
∑L

l=1 α1,l

∑L
m=1 αi,mΘ

[
∆i + (νi,m − ν1,l)

]
. The

distribution of Ii for fixed channel impulse responses h1, hi

and fixed delay τi is given by

for k ∈ K =

{
−Tch

Tc

, . . . ,−1, 0, 1, . . . ,
Tch

Tc

− 1

}

P (Ii = +xi,k) = P

(
∆i = τi + kTc|d(i) = 1

)
= q

P (Ii = −xi,k) = P

(
∆i = τi + kTc|d(i) = −1

)
= q

P (Ii = 0) = 1− 2nq

where n = |K| = 2Tch

Tc
and q = 1

2
Tc

Tf
. The distribution

of Ii has a discrete support, thus one can use a brute force

(enumeration) approach in order to evaluate (5). This would

work as follows. Let ϕi(x) be the right-hand side of (5), as a

function of x and i = U . We have ϕi(x) = E(ϕi−1(x− Ii))
and ϕ1(x) = 1

2erfc( x√
2σN

) , which can be used recursively

to compute P
e|~φ,~h

= ϕU (x) . The number of evaluations

of ϕU (x) is
(

Tch

Tc

)U

, which for even small values of U is

very large (for example with Tch

Tc
= 50 and U = 5 we have

3 · 108 evaluations). An alternative could be to use the fast

Fourier transform, but the supports of all Iis are all different,

so one would first need to find a regular grid that approximates

well the union of all the supports of the Iis. We use another

approach, that is easier to implement in an automatic way (as

is required by our desire to implement our computations in a

packet level simulator).

Our method is a combination of large deviation and impor-

tance sampling. We first present each of these two ingredients

separately, then we describe our combination.

C. BER Computation using Large Deviation

We expect this to work well when interference is significant

due to a large number of small interferers (remember that even

in this case the Gaussian approximation is not valid).

The Cumulant Generating Function (CGF) of a random

variable X is defined by Λ(a) = ln E
(
eaX ). The rate function

is Λ∗(x) = supa∈R+ (ax− Λ(x)), which can be computed by

Λ∗(x) = a∗x−Λ(a∗), where a∗ is the unique a that satisfies
d
da

(ax− Λ(a)) = 0 [16].

Definition 1 (Twisted distributions): For a fixed random

variable X , we define a new family of probabilities indexed

by a by

Pa (A) = KP
[
eaX 1A

]
(6)

for all event A. Similarly,

Ea (Y) = KE
[
eaXY

]
(7)

for any random variable variable Y . The normalizing constant

K is equal to e−Λ(a).

Lemma 1: For a random variable X

P (X > x) = e−Λ∗(x)
Ea∗

(
1{X>x}e

−a∗(X−x)
)

(8)

Proof: See [16]

The previous Lemma can be used to compute P
e|~φ,~h

. Let

us define the random variable

I =

U∑

i=2

Ii + N (9)

Then, applying (8) to I yields

P (I > x) = e−Λ∗
I(x)

Ea∗

(
1{I≥x}e

−a∗(I−x)
)

(10)

where Λ∗
I(·) is the rate function of I. The CGF of I is given

by

ΛI(a) =
U∑

i=2

ln E
{
eaIi

}
+ ln E

{
eaN

}

=

U∑

i=2

Λi (a) + ΛN (a) =

U∑

i=2

Λi (a) +
a2σ2

N

2
(11)

1) A modified Bahadur-Rao approximation of P
e|~φ,~h

: Our

approach is similar to [15] but differs in that we use the exact

expression instead of an upper bound for the Gaussian Q-

function.

In the large deviation setting, a good approximation of

P
e|~φ,~h

= P (I > x) is found if we replace the twisted

distribution of I in Ea∗
(
1{I>x}e

−a∗(I−x)
)

by its normal

approximation:

Ea∗

(
1{I>x}e

−a∗(I−x)
)
≈
∫ ∞

x

e−a∗(u−x)dµ(u) (12)

where

µ = N
(
Ea∗ (I) , σ∗2

)
= N (x,Λ′′ (a∗))

Note that this does not at all have the same effect as using a

normal approximation of the interference under the original,

non-twisted distribution.

Ea∗

(
1{I>x}e

−a∗(I−x)
)
≈ 1√

π
e

(a∗σ∗)2

2

∫ ∞

a∗σ∗
√

2

e−u2

du (13)

and we obtain

P
e|~φ,~h

≈ 1

2
ea∗2 Λ′′

I(a∗)
2 erfc

(
a∗
√

Λ′′
I (a∗)

2

)
e−Λ∗

I(x) (14)

where erfc (x) = 2√
π

∫∞
x

e−t2dt In order to apply (14), we

need to compute Λ′′
I and a∗, which is explained next.



2) Computing the CGF of Ii and its first and second

derivative: By definition and (11), the CGF Λi(a) of Ii is

given by

Λi(a) = ln

(
1− 2nq + q

n∑

k=1

[
eaxi,k + e−axi,k

]
)

(15)

Let us define Λ̃i(a) = eΛi(a), the first derivative Λ′
i(a) of

the CGF is

Λ′
i(a) =

d

da
Λi(a) =

Λ̃′
i(a)

Λ̃i(a)
(16)

where

Λ̃′
i(a) =

d

da
Λ̃i(a) = q

n∑

k=1

xi,k

[
eaxi,k − e−axi,k

]
(17)

The second derivative Λ′′
i (a) of the CGF is

Λ′′
i (a) =

Λ̃′′
i (a)

Λ̃i(a)
−
[

Λ̃′
i(a)

Λ̃i(a)

]2

(18)

where

Λ̃′′
i (a) =

d

da
Λ̃′

i(a) = q

n∑

k=1

x2
i,k

[
eaxi,k + e−axi,k

]
(19)

Note that Λi(a) satisfies the conditions Λi(0) = 0, Λ′
i(0) =

0 = µIi
and Λ′′

i (0) = 2q
∑n

k=1 x2
i,k = σ2

Ii

3) Computing a∗ and the rate function of I: As mentioned

above, a∗ is found by solving the equation

d

da

(
ax− ΛI(a)

)
= x− Λ′

I(a) = 0|a=a∗ (20)

Although (20) cannot be solved analytically, it is straightfor-

ward to solve numerically (for example by dichotomic search).

D. BER Computation Using Importance Sampling

Our second ingredient is importance sampling. It does

not make the assumption that interferers are small, and its

complexity is linear in the number of interferers. The idea is

to evaluate the probability in (5) by Monte Carlo simulation.

However, a straight application of Monte Carlo is grossly

inefficient: a large number of samples is required since the

BER is expected to be very small. This can be fixed by

using importance sampling, which consists in using a twisted

distribution.

1) Importance Sampling Estimate: We use the same twisted

distribution as in (6), with a = a∗ as in (20).

By inversion of (7), we have

P(I > x) = E(1{I>x}) = eΛI(a∗)
Ea∗

(
1{I>x}e

−a∗I
)

(21)

We evaluate (21) by Monte-Carlo under the twisted distribu-

tion, as follows. We compute a∗ by (20). We draw R replicate

samples I1, . . . , IR of I under the twisted distributions (see

below) and estimate P(I > x) by

P̄R = eΛI(a∗) 1

R

R∑

r=1

1{Ir>x}e
−a∗Ir

(22)

We compute R such that the 95% confidence interval gives a

relative accuracy of 10% (see Section III-D.3). Note that it can

be shown that, under the twisted distribution with parameter

a∗, the expectation of I is x, and thus I > x has a probability

close to 0.5 (in contrast, under the original distribution, I > x

is a rare event). This explains why a small value of R is needed

to obtain a good confidence interval.

2) Sampling under the Twisted Distribution: The twisted

distribution of Ii is as follows. By (7):

Pa∗ (Ii = xi,k) = e−ΛI(a∗)
E

(
ea∗I1{Ii=xi,k}

)

= e−ΛI(a∗)
E

(
ea∗(I−Ii)ea∗Ii1{Ii=xi,k}

)

= e−ΛI(a∗)
E

(
ea∗(I−Ii)

)
E

(
ea∗Ii1{Ii=xi,k}

)

= e−Λi(a
∗)

E

(
ea∗Ii1{Ii=xi,k}

)

= qe−Λi(a
∗)ea∗xi,k (23)

and similarly

Pa∗ (Ii = 0) = (1− 2nq)e−Λi(a
∗) (24)

Note how, under the twisted distributions, large values of Ii

are more likely to occur.

We use the inversion method to sample from the distribution

defined by (23) and (24), as follows. For a given i, let

{x̃i,−n, . . . , x̃i,−1, 0, x̃i,1, . . . , x̃i,n} bet the ordered set of all

possible interference values of interferer i (see Section III-B).

Then let Fi(j) =
∑j

−n Pa∗ (Ii = x̃i,j) for j = −n, . . . , n. A

sample value Ir
i is obtained by drawing a random number U

uniform in (0, 1), finding the index j such that Fi(j) ≤ U <

Fi(j + 1), and letting Ir
i = x̃i,j if j < n− 1.

Similarly, one finds that the twisted distribution of the noise

N is N (a∗σ2
N , σ2

N ) and sampling is done using a standard

method for sampling from the normal distribution.

3) A Stopping Criterion for the Number R of Replicate

Samples: We use standard confidence interval theory. Let

us define Xr = eΛI(a∗)1{Ir>x}e
−a∗Ir

. Then, a 95%
confidence interval for P̄R is P̄R ± 1.96 sR√

R
where s2

R =
1
R

∑R
r=1

(
Xr − P̄R

)2
. To obtain a 10% relative accuracy, we

choose R such that

1.96
sR√
R
≤ εP̄R (25)

with ε = 0.1.

E. Our Proposed Method: a Combination of Large Deviation

and Importance Sampling

Large deviation is faster than importance sampling, but

works well only when all interferers are small. In contrast,

importance sampling always works, but its complexity grows

linearly with the number of interferers. We combine the two

methods as follows. We fix a power threshold θ. An interferer

i = 2, ..., U such that maxk xi,k > θ · A(1) is declared large

(or near-far), whereas other interferers are declared small (or

weak). Whether a given interferer i is declared large depends

on its power and distance to the destination, but also on its

channel realization and delay.



Therefore, we can write I = IL +IS where IL =
∑i0

i=2 Ii

denotes the large interferers and IS =
∑U

i=i0+1 Ii + N

denotes the small interferers plus noise. We apply the same

distribution twist as before, by computing a∗ as in (20),

where ΛI is the CGF for the total interference (large and

small) and noise, as before. Under the twisted distribution, we

approximate IS , the sum of all small interferers plus noise

by a Gaussian distribution, with mean Ea∗ (IS) and variance

Ea∗

(
IS

2 − Ea∗ (IS)
2
)

Now, by definition

Ea∗ (IS) = e−ΛI(a∗)
E

[
ea∗IIS

]

= e−ΛI(a∗)
E

[
ea∗ILea∗ISIS

]

= e−ΛI(a∗)
E

[
ea∗IL

]
E

[
ea∗ISIS

]

= e−ΛI(a∗)
E

[
ea∗IL

]
eΛIS

(a∗)Λ′
IS

(a)

= Λ′
IS

(a) (26)

since E
[
ea∗IL

]
= eΛIL

(a∗). By similar arguments, we can

show that

Ea∗

(
IS

2 − Ea∗ (IS)
2
)

= Λ′′
IS

(a) (27)

Hence

IS ∼ N
(
Λ′
IS

(a∗),Λ′′
IS

(a∗)
)

(28)

This is the main step performed by the large deviation method.

However, for the large interferers, we use importance sam-

pling, as in Section III-D, whereby we sample i0−1 interferers

from their twisted distributions, plus one value from a normal

distribution N
(
Λ′
IS

(a),Λ′′
IS

(a)
)
. The combined method is

described in detail in algorithm 1.

Algorithm 1: Fast BER computation.

Input: U , Tf , Tc,Tch
~h, ~τ , σ2

N and q

Output: P̄R

begin

for interferer i = 2 to U do

xi,k ← Θ̃[τi + kTc], ∀k = 1, . . . , 2Tch

Tc
;

end

Solve (20) to obtain a∗ ;

Classify the interferers between small and large;

Compute µS ← Λ′
IS

(a∗) and σ2
S ← Λ′′

IS
(a∗);

Create an array I to store the samples;

K ← 1000;

while confidence interval on P̄R > εP̄R do
R← R + K;

Draw K samples ~IS = [I1
S . . . IK

S ] ∼ N (µS , σ2
S);

for each large interferer i = 2 to i0 do

Draw K samples ~Ii = [I1
i . . . IK

i ] from the

twisted distribution given by (23) and (24);
end

Add the elements of ~IS +
∑i0

i=2
~Ii to the array I;

Use a∗ and I to obtain P̄R from (22);
end

end

TABLE I

AVERAGE COMPUTATION TIME FOR A SINGLE BER SAMPLE WITH U = 65

AND 95% CONFIDENCE INTERVAL (USING MATLAB).

Direct Simulation Importance Sampling Combined

5202.3 s 14.9 s 2.0 s

IV. PERFORMANCE EVALUATION

The parameters of our physical layer are the following: Tc =
1 ns, Tf = 1000 ns, Tch = 80 ns and τp = 0.2877. The

rate is 1Mbps. For the sake of simplicity, we have fixed Tch

in our simulation. But, since it depends on the delay spread,

Tch could be adapted for each channel. The channel model

is the modified Saleh-Valuenza (SV) model used by the IEEE

802.15.4a working group. We use the LOS channel model

parameters [18]. For a given topology, the channels ~h between

each transmitter and the receiver are drawn independently and

the delays ~φ chosen uniformly in [0, Tf [. The SNR is defined

as A(1)

N0
with h1 normalized impulse response such that A(1) =

1.

For completeness, we compute a purely normal approx-

imation of the interference. We will compare it with our

previously developed combined method. Let us denote by

IN the normal approximation of
∑U

i=2 Ii + N . Then

IN ∼ N
(
0, σ2

N + 2q
∑U

i=2

∑n
k=1 x2

i,k

)
and the BER under

this approximation is given by

PN

e|~φ,~h
=

1

2
erfc


 x
√

2
√

σ2
N + 2q

∑U
i=2

∑n
k=1 x2

i,k




All our simulations have been performed using Matlab.

In Figure 2 we validate our approach by comparing the

importance sampling method with direct simulation results

for U = {65, 8, 3} with one set of channels and delays

for each U . For U = 65, [A(2), . . . , A(60)] were uniformly

selected from [0, 2] and [A(61), . . . , A(65)] = [2, 10, 20, 200].
For U = 8, [A(2), . . . , A(8)] = [1, 1, 1, 4, 7, 20, 100] and for

U = 3, [A(2), A(3)] = [2, 10]. In addition, we show the

Gaussian approximation computed above which completely

underestimates the BER. Table I contains the average com-

putation time for a single BER sample for U = 65. The com-

putation time of the importance sampling method is two orders

of magnitude faster than direct simulation. The combined

method, although not shown on Figure 2 for clarity reasons,

reduces the computation time even more by an additional order

of magnitude. We show the accuracy of the combined method

with respect to pure importance sampling on Figure 3. We also

add the simpler large deviation method. The topology is the

same for all sets of BER curves (U = 21, [A(2) . . . A(19)] were

uniformly selected from [0, 2] and [A(20) A(21)] = [20 100]).
However, we draw three sets [hi, φi], i = 1, 2, 3 of channel

and delay samples. The results show a perfect agreement

between our combined method and the importance sampling

method. But the combined method provides an additional

computation time saving since sampling is required only for

the interferers that have a strong impact on the BER. Note

furthermore that the Bahadur-Rao approximation alone used
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Fig. 2. We validate our approach by comparing the importance sampling
method with direct simulation results. There are three different topologies
where U = {65, 8, 3}. In each case, there is a mixture of near-far and weak
interferers. Note how the Gaussian approximation underestimates the BER.
The channel is a UWB 802.15.4a LOS.
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Fig. 3. The large deviation method and the combined method are compared

with importance sampling. The parameters U and A(i), i = 2, . . . , U are

constant (fixed topology and received powers), but there are three sets [~h, ~φ],
[~h′, ~φ′] and [~h′′, ~φ′′] of channel and delay samples. Note how the BER
can be vastly different depending on the particular instances of delays and
channels (even though the topology and received powers remain the same).
The channels are chosen according to a UWB 802.15.4a LOS.

in the large deviation method becomes inaccurate when near-

far interference is present. Also, large A(i)’s do not always

imply a strong near-far case as can be observed with [~h′′, ~φ′′].
Indeed, even if a collision occurs, due to the multipath delays

and the additional asynchronism between the source and the

interferer, the received pulses might not completely overlap.

V. CONCLUSION

We have proposed a novel combination of large deviation

and importance sampling theory to efficiently and accurately

compute the conditional BER for a multi-user impulse radio

UWB physical layer in multipath channel environment. Our

method provides a high reduction in computation time. Al-

though we used BPSK modulation and a perfect Rake receiver,

our method is usable with minor modifications with sub-

optimal Rake receivers, other modulation formats and non

coherent receivers. Furthermore, with the appropriate modifi-

cation of the computation of the distribution of the interference

Ii, our approach can also be used to compute the average

BER, instead of the conditional BER given channel states.

This is of interest when the existing methods do not work,

such as multipath channel and many heterogeneous power

levels. Future work will consist in extending our approach

to a physical layer with channel coding and implement our

model in a network simulator such as ns-2 or Qualnet.
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