
Consensus with Unknown Participants or
Fundamental Self-Organization?

David Cavin, Yoav Sasson, and André Schiper

École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Switzerland
{david.cavin, yoav.sasson, andre.schiper}@epfl.ch

Abstract. We consider the problem of bootstrapping self-organized mo-
bile ad hoc networks (MANET), i.e. reliably determining in a distributed
and self-organized manner the services to be offered by each node when
neither the identity nor the number of the nodes in the network is initially
available. To this means we define a variant of the traditional consensus
problem, by relaxing the requirement for the set of participating pro-
cesses to be known by all at the beginning of the computation. This
assumption captures the nature of self-organized networks, where there
is no central authority that initializes each process with some context
information. We consider asynchronous networks with reliable commu-
nication channels and no process crashes and provide necessary and suf-
ficient conditions under which the problem admits a solution. These con-
ditions are routing and mobility independent. Our results are relevant for
agreement-related problems in general within self-organized networks.

1 Introduction

The paper addresses the problem of bootstrapping a self-organized MANET.
More precisely, the paper addresses the following question. Consider some geo-
graphical region R that is initially empty. At some point, one or more mobile
nodes enter the region and want to deploy one or more services. However, to
deploy the service(s), it is necessary for the first nodes that enter R to agree on
an initial set of nodes, in order for these nodes to decide which node is going to
provide what service. Let us call these nodes I-nodes (Infrastructure nodes).

To decide which node is going to provide which service, we need to solve
an agreement problem that decides on a set I-nodes, and outputs I-nodes at
each node in I-nodes. Once this problem is solved, each node in I-nodes, based
on the knowledge of I-nodes, can locally determine which node is responsible
for providing what service(s). For example, assume that the agreement is on I-
nodes = {n1, n2, n3}, and consider that there are five services s1 to s5 to provide.
Based on the knowledge of I-nodes, n1 will provide the services s1 and s2, n2 will
provide the services s3 and s4, and n3 will provide the service s5. Or, if there is

? The work presented in this paper was supported by the National Competence Center
in Research on Mobile Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation under grant 5005-67322.



only one service to provide, n1 will provide it, and n2, n3 know that they have
no service to provide.

The problem is easily solved if there is some fixed node fn that is always
in R: fn can act as a centralized decision point. However, this solution is not
self-organized, since it relies on some preexisting infrastructure. This leads to the
following question: is it possible to solve the problem without any preexisting
centralized infrastructure, i.e., in a fully self-organized way?

Deciding on the set I-nodes can be modeled as a consensus problem [1]. In
the consensus problem, a set Π of processes have to agree on a common value
(called the decision value) that is the initial value of one of the processes. Con-
sensus has been extensively studied in traditional networks with process failures,
and algorithms based on various system models have been developed [2–4]. The
importance of consensus is due to the fact that it is a basic building block for
solving several other important fault-tolerant distributed problems. However,
there is a fundamental difference between the classical consensus problem, and
the problem addressed in the paper: in the paper the set Π is unknown (and
Π is precisely the information we want to obtain). This makes it a new prob-
lem that we call Consensus with Unknown Participants or simply CUP. Note
that the notion of consensus with uncertain participants appears in [5]. How-
ever, the specification is different, and the context is also different (it is used
as a building block for implementing a dynamic atomic broadcast service in a
wired synchronous network). Thus, the results in [5] are unrelated to the results
established in this paper.

The CUP problem is formally defined in Section 2, which also defines the
model in which the problem is solved. The classical consensus problem is hard
to solve because processes may crash. With CUP, the difficulty of the problem
is due to the unknown participants. So, for simplification, we assume in the
paper that processes (i.e., mobile nodes) do not crash. We also assume that the
nodes in R always form a connected network, and we assume the existence of an
underlying multihop routing protocol: if some node n knows the existence of a
node n′ in R, then n can reliably send a message to n′. Moreover, n can only send
reliably a message to nodes that it knows. Given these assumptions, the results
obtained in the paper are independent of the underlying routing algorithm or
mobility pattern of the nodes.

Clearly if all nodes in R do not know any other nodes, then no node can
send any message to any other node, and CUP cannot be solved. This leads us
to add to our model the notion of participant detectors, which are distributed
oracles attached to each node n. The participant detector of n provides to n a
(possibly small) subset of the nodes in R, e.g. by receiving messages or beacons.
In Section 3 we introduce various classes of participant detectors, and we compare
them based on the classical notion of reduction. In Section 4 we identify necessary
and sufficient conditions for solving CUP, and we solve CUP using the participant
detector named one sink reducibility. In Section 5 we illustrate how CUP can be
used for solving the bootstrapping problem described in this section. Finally, we
conclude and present future work in Section 6.



2 Consensus with Unknown Participants

We consider a finite set Π of processes drawn from a (finite or infinite) universe
U . The processes in Π have to solve the traditional consensus problem, but
contrary to the usual model for consensus, the processes in Π do not necessarily
know each other. This assumption captures the self-organization nature of the
type of system that we consider: there is no central authority that initializes
each process with some context information.

To solve consensus, processes in Π communicate by message passing. How-
ever, process p ∈ U can send a message to process q ∈ U iff p knows the existence
of q. Similarly, process q can send a message to p iff q knows the existence of p.
So if p knows q, but q does not know p, the communication is asymmetric. If q
does not know p and receives a message from p, from there on q knows p, i.e., q
can send a message to p. Communication channels are reliable and the system
is asynchronous: we do not assume any bound on the transmission delay of mes-
sages nor on the process relative speeds. We finally make the strong assumption
that processes never crash. Indeed, the necessary conditions established in the
paper are still true in models with process crashes.

The specification of consensus with unknown participants (CUP) is close to
the classical specification of consensus [6]: an instance of the CUP problem is
defined by the primitives propose(vi) by which each process pi ∈ Π proposes
its initial value vi, and decide(v), by which a process decides on a value v. The
decision must satisfy the following conditions:

Validity If a process decides v, then v is the initial value of some process.
Agreement Two processes cannot decide differently.
Termination Every process eventually decides.

In the classical consensus problem processes know each other, i.e., processes in Π
know Π. This is not the case here. Moreover, in the classical consensus problem
processes may crash. The crash of processes makes the problem difficult. Here
processes do not crash; what makes the problem difficult is the ignorance of the
set of other processes having to solve an instance of the consensus problem.

3 Participant Detectors

3.1 Presentation and Specification

If each process p ∈ Π knows only itself, then p cannot communicate with any
other process in Π, which clearly makes it impossible to solve consensus. We are
interested in identifying the minimal information that processes must have about
the other participants to make consensus solvable. We capture the information
that process p has about other processes by the notion of participant detectors.
Similarly to failure detectors [4], participant detectors are distributed oracles
associated with each process. In the setting of the classical consensus problem,
where the set of participants is known, the task of failure detectors is to maintain



a set of processes which are suspected to have crashed. In our context however,
the set of participants is unknown. By querying their local participant detector,
processes may obtain an approximation of Π, the set of processes participating
in consensus.

We denote by PDp the participant detector of process p. Process p can query
its participant detector PDp, which returns a set of processes. We denote by
PDp(t) the query of p at time t. The information returned by PDp can evolve
between queries, but verifies the following two properties.

Property 1 (Information Inclusion). The information returned by the partici-
pant detectors is non-decreasing over time:

∀p ∈ Π,∀t′ ≥ t : PDp(t) ⊆ PDp(t′)

Property 2 (Information Accuracy). The participant detectors do not make mis-
takes in the sense that they do not return a process that does not belong to Π:

∀p ∈ Π,∀t : PDp(t) ⊆ Π

PDp gives p an initial context, i.e., an approximation of Π. This context
will allow p to start sending messages to other processes. Moreover, messages
received by p will allow p to increase its knowledge of Π. We define below partic-
ipant detectors reflecting different levels of accuracy of participant estimation.
To define these detectors, we consider

1. The (undirected) graph G = (V, E), where the vertices V = Π and the
(undirected) edge (p, q) ∈ E iff q ∈ PDp or p ∈ PDq.

2. The directed graph Gdi = (V, E), where the vertices V = Π and the directed
edge (p, q) ∈ E iff q ∈ PDp.

Participant Detector 1 (Connectivity CO). A participant detector satisfies
the connectivity property iff the (undirected) graph G is connected.

Participant Detector 2 (Strong Connectivity SCO). A participant detec-
tor satisfies the strong connectivity property iff the directed graph Gdi is strongly
connected.

Participant Detector 3 (Full Connectivity FCO). A participant detector
satisfies the full connectivity property iff the directed graph Gdi = (Π, E) is such
that for all p, q ∈ Π, we have (p, q) ∈ E.

Finally, we introduce the last detector, satisfying the one sink reducibility prop-
erty. The motivation behind this particular participant detector will become
clear to the reader in Section 4.

Participant Detector 4 (One Sink Reducibility OSR). A participant de-
tector satisfies the one sink reducibility property iff the graph G is connected



and the directed acyclic graph obtained by reducing Gdi to its strongly connected
components has one and only one sink1.

Note that Properties 1 and 2 allow processes to query their participant de-
tectors at different times. It is easy to see that if some participant detector PD
satisfies the the property of CO, SCO, FCO or OSR if queried at some time
t, it also satisfies the property when queried at some time t′ > t. Consider for
example OSR and assume that PD satisfies OSR at time t. If the graph Gdi

reduced to its strongly connected components contains at most one sink, adding
edges to Gdi at time t′ cannot increase the number of sinks.

3.2 Comparing Participant Detectors

Given the system model of Section 2, we are interested in establishing rela-
tionships between participant detectors. To this means we use the notion of
reducibility, borrowed from the concepts introduced in [4] for comparing failure
detectors.

Definition 1 (Reducibility). A participant detector PD is reducible to a par-
ticipant detector PD′, noted PD � PD′, if there exists an algorithm APD→PD′

that transforms the participant detector PD into the participant detector PD′.

In other words, if a participant detector PD is reducible to PD′, it is possible
to use PD in order to emulate PD′. PD′ is said to be weaker than PD: any
problem that can be solved using PD′ can be solved using PD instead. Figure 1
illustrates the reduction.

Algorithms use PD’

PD’ emulated

PD

APD PD’

Fig. 1. Transforming Participant Detectors

Definition 2 (Equivalence). If PD is reducible to PD′ (PD � PD′) and PD′

is reducible to PD (PD′ � PD), then we say that PD and PD′ are equivalent,
noted by PD ∼= PD′.
1 A sink in a directed graph is a vertex with out-degree 0, i.e. there are no edges leaving

the vertex. An example graph representing PD ∈ OSR is provided in Figure 2, which
depicts a graph with four strongly connected components A, B, C, D and one sink,
namely C.



If two participant detectors are equivalent, they belong to the same equiv-
alence class. Any result that applies to one (e.g. problem that can be solved,
impossibility result), applies to the second as well.

4 Solving CUP

4.1 Preliminary Results

The goal of this section is to identify the necessary and sufficient requirements
for solving CUP by exploring the participant detectors presented in Section 3.
We begin with the following intuitive elementary result.

Proposition 1. The Connectivity participant detector is necessary but not suf-
ficient to solve CUP.

Proof.
i) Necessary: Assume that the resulting graph G returned by the participant
detectors is disconnected, i.e. there exists two components C1 and C2 of processes
that cannot communicate with each other and independently execute consensus.
Let v1 be the initial value of the processes in C1 and v2 of those in C2 (with v2 6=
v1). Consensus terminates in both components, with processes in C1 deciding on
v1 and processes in C2 on v2, leading to a violation of the agreement property.
ii) Not sufficient: Consider Π = {p1, p2, p3} such that PDp1 = {p1, p2, p3},
PDp2 = {p2} and PDp3 = {p3}. Let v2 be the initial value of p2, v3 the initial
value of p3, with v2 6= v3. Clearly, PD ∈ CO. Processes p2 and p3, unaware of
any other process besides themselves, execute consensus and decide on values v2

and v3 respectively, violating the agreement property. ut

The Full Connectivity Oracle is a trivial oracle in the sense that it fully
compensates for the uncertainty of the participating processes, leading to the
following proposition:

Proposition 2. The Full Connectivity participant detector is sufficient but not
necessary to solve CUP.

Proof.
Sufficient: It is easy to see that Algorithm 1 (on page 7) meets the consensus
specification given our model. Indeed, the Full Connectivity participant detector
provides the full set Π of participants to all processes. Therefore, each process
can deterministically choose a common leader, e.g. the process with the lowest
identifier. The leader process sends its initial value v to all processes in Π, which
decide on v upon reception.
Not necessary: Consider Π = {p1, p2, p3}, with PDp1 = {p1, p2, p3}, PDp2 =
{p1, p2} and PDp3 = {p2, p3}. We have that PD 6∈ FCO. Nevertheless, the fol-
lowing algorithm solves consensus. Let pmin

i denote the smallest process returned
by the participant detector of pi. If pi = pmin

i then pi decides on its own initial
value and sends the value to PDpi

. If pi 6= pmin
i , then pi waits for a value and

decides upon reception. ut



Algorithm 1 Solving consensus with PD ∈ FCO for a process pi ∈ Π

1: propose(vi):
2: participantsi ← PDi;
3: leaderi ← min(participantsi);
4: if pi = leaderi then
5: decisioni ← vi;
6: send decisioni to all pj ∈ participantsi;
7: end if
8:
9: {Upon receive(decision):}

10: decide(decision);

We now establish the equivalence between the Strong Connectivity and Full
Connectivity participant detectors.

Proposition 3. The Strong Connectivity and Full Connectivity participant de-
tectors are equivalent.

Proof. With a Full Connectivity participant detector, each process can com-
municate with every other process in Π, hence Gdi is strongly connected and
PD ∈ FCO trivially implies PD ∈ SCO, i.e., FCO � SCO.

We prove SCO � FCO with Algorithm 2, a token-based depth-search algo-
rithm that discovers all members of Π assuming PD ∈ SCO. Every process pi ∈
Π initiates the participant discovery by invoking discover participants() af-
ter having queried its participant detector PD ∈ SCO (l.4). Notice that pro-
cesses query their participant detector only once. Every token carries the follow-
ing information :

tokeni.issuer : The identity of the process having issued the token.
tokeni.visited : A set containing the processes visited by the token.
tokeni.tovisit : A set containing the known processes that have not yet been

visited by the token.

Prior to forwarding the token, pi adds in tokeni.tovisit the processes it can
communicate with, i.e. processes returned by its local strong connectivity par-
ticipant detector (l.8). The token is then forwarded to any process present in
tokeni.tovisit (l.9). Upon reception of tokeni by a process pj , pj checks whether
it is the issuer of tokeni. If yes, the algorithm terminates and returns the set of
visited processes (l.13). If not, it updates the data structures stored in tokeni as
follows. First, it adds to tokeni.tovisit all processes in PDpj that have not yet
been visited (l.15). pj then removes its own ID from tokeni.tovisit (l.16), adds
it in tokeni.visited (l.17). If there are no more processes to visit, pj sends the
token back to tokeni.issuer (l.18-19). Otherwise, it simply forwards tokeni to
any one of them (l.21).

In order to prove the correctness of the algorithm, we need to show that it
terminates and returns all processes. Consider the token issued by pi. To prove



that the algorithm terminates, we must show that pi eventually executes line 13.
This happens when tokeni (the token issued by pi) has returned to pi. Assume
that tokeni is located at some process pj . Either tokeni.tovisit contains some
process not visited by the token, in which case pj forwards the token to one of
them or pj sends back tokeni to tokeni.issuer. Since the number of processes is
finite, eventually all processes are visited, in which case line 19 is executed and
eventually pi executes line 13.

It remains to prove that when process pi executes line 13, tokeni.visited
contains all the processes. We prove the result by contradiction. Assume that
tokeni is located at some process pj , and pj sends back the token by executing
line 19 while tokeni.visited does not contain some processes X. This means that
for all processes pj ∈ tokeni.visited, PDpj

does not contain any of the processes
in the set X. A contradiction with SCO. ut

Algorithm 2 Participant discovery algorithm for process pi ∈ Π

1: tokeni.issuer ← pi;
2: tokeni.visited← ∅;
3: tokeni.tovisit← ∅;
4: neighborsi ← PDi; {Participant detector invocation}
5:
6: discover participants():
7: tokeni.visited← {pi};
8: tokeni.tovisit← neighborsi \ {pi};
9: send tokeni to any pj ∈ tokeni.tovisit;

10:
11: {Upon receive(tokenj) from pk :}
12: if tokenj .issuer = pi then
13: return tokenj .visited; {Algorithm terminates}
14: else
15: tokenj .tovisit← tokenj .tovisit ∪ (neighborsi \ tokenj .visited);
16: tokenj .tovisit← tokenj .tovisit \ {pi};
17: tokenj .visited← tokenj .visited ∪ {pi};
18: if tokenj .tovisit = ∅ then
19: send tokenj to tokenj .issuer;
20: else
21: send tokenj to any pl ∈ tokenj .tovisit;
22: end if
23: end if

Since the FCO and SCO participant detectors are equivalent, it is straight-
forward to obtain an algorithm that solves CUP with SCO: execute Algorithm 1
with FCO, where FCO is obtained from SCO using Algorithm 2.

It follows from Proposition 2 and Proposition 3 that the Strong Connectivity
detector is also sufficient but not necessary for solving CUP. Since by Proposi-
tion 1, CO is necessary but not sufficient, we must look for a participant detector



somewhere in between CO and SCO for it to be both necessary and sufficient
for solving CUP. The OSR participant detector, introduced in the next section,
is such a participant detector.

4.2 OSR is necessary and sufficient

The following proposition is the main result of the paper and serves as a basis
for designing algorithms that solve CUP.

Proposition 4. The One Sink Reducibility participant detector is necessary and
sufficient to solve CUP.

Proof.
i) Necessary: Suppose that PD 6∈ OSR, i.e. the directed acyclic graph obtained
by reduction of Gdi to its strongly connected components has at least two sinks S1

and S2. Since there is no outgoing path leaving components S1 and S2, processes
in S1 and S2 can be unaware of the existence of the other sink. We prove the
result by contradiction.

Assume there exists an algorithm A that solves CUP. Let all initial values
of processes in S1 be different from all initial values of processes in S2. By the
termination property of consensus, processes in S1 and processes in S2 must
eventually decide. Let us assume that the first process in S1 that decides, say p,
does so at t1, and the first process in S2 that decides, say q, does so at t2. Delay
all messages sent to S1 and S2 such that they are received after max(t1, t2). So
the decision of p is on the initial value of some process in S1, and the decision
of q is on the initial value of some process in S2. Since these initial values are
different, the agreement property of consensus is violated. A contradiction with
the assumption that A solves CUP.
ii) Sufficient: The proof is by giving Algorithm 3 (see page 14) that solves CUP
with PD ∈ OSR (see next section). ut

4.3 Solving CUP with OSR

Intuition of the algorithm

Algorithm 3 (on Page 14) solves CUP with PD ∈ OSR. We present the general
intuition with help of the example graph of Figure 2.

The key strategy is to ensure that the nodes belonging to the sink of the
graph obtained by reduction to its strongly connected components (component
C in the figure) decide before other strongly connected components. The decision
can then be appropriately propagated to the rest of the participants. Processes
query their PD ∈ OSR participant detector only once, at the beginning of
the consensus execution. Initially, processes have no other knowledge besides
that returned by the participant detector and are unable to discern whether
or not they belong to the sink. To augment their knowledge, processes execute



1

5

2

3

4

7

9

14

10

12

11

BA

C

D

8

13

6

Fig. 2. An example graph G representing PD ∈ OSR, along with its strongly connected
components (arrows represent the information provided by the participant detectors).

the token discovery algorithm presented in Algorithm 2. Although participant
detectors are queried only once, a process can still discover and communicate
with nodes discovered later in the course of the computation, e.g. by receiving
a message from a process not returned by its PD. In Figure 2, processes in the
strongly connected component A will, by executing the token discovery algorithm
of Figure 2, discover processes in A, B and C. Similarly, processes in B will
discover those in B and C; processes in D will discover those in D and C.
Processes in C however will only discover the processes in the same component
C. Let discovered(pi) denote the processes discovered by process pi.

After the execution of Algorithm 2, every process pi elects as a leader the
process in discovered(pi) with the lowest identifier (line 11). In our example,
process 1 will be the leader in components A and B, process 7 in C and process 6
in D. Non leader processes will send a decisionRequest message to their leader
to get the decision value (line 17). The message is received at line 44; upon
reception of this message the leader registers the decision request in the set
decisionRequestorsi (line 48).

The leaders then identify among themselves the leader of the sink compo-
nent. In order to do so, each leader sends at line 15 the am I the sink leader?
message to all the processes it has previously discovered (the set participantsi

in Algorithm 2), and waits for acknowledgments (acks) or negative acknowledg-
ments (nacks) from all these processes. Upon receiving am I the sink leader?
from a leader l, a process p either responds with ack if p’s leader is l (line 24),
or otherwise with (nack, leader), where leader is p’s leader (line 26).

The sink leader (process 7 in our example) will be the only leader to receive
only acks. Other leaders will receive one or more (nack, leaderj) messages and
will send a decisionRequest message to leaderj to get the decision value (line 41).
The message is received at line 44; upon reception of this message the leader
either sends the decision if available (line 46) or registers the request using the
set decisionRequestorsi (line 48).



Finally, the sink leader sends its initial value to all the processes in the set
participantsi (line 33). The sink leader itself receives this message at line 51,
decides at line 54 and then, using the decisionRequestorsi set, sends the de-
cision to all non sink leaders. The non sink leaders propagate the decision to
the non leaders registered in their decisionRequestorsi set. In our example, the
sink leader (process 7) sends the decision to all processes in C, as well as to
local leaders 1 and 6. Process 1 will propagate the decision to the processes in
component A and process 6 to the processes in component D.

Note that the nodes in component C have been able to decide without in-
formation about participants outside of their component. The correctness of the
algorithm is discussed below.

Correctness of Algorithm 3 (sketch)

We only give a sketch of the proof. We start with three lemmas.

Lemma 1. If PD ∈ OSR, the set participantsi returned by Algorithm 2 at
line 10 contains (at least) every node of the sink component.

Proof. Algorithm 2 ensures that the token created at a process pi will visit every
process reachable from pi. Assuming PD ∈ OSR, there exists a path from pi to
every process in the sink, i.e., every process in the sink is reachable from pi. ut

Lemma 2. If PD ∈ OSR, for any process in the sink component, the set re-
turned by Algorithm 2 contains exactly every node of the sink component.

Proof. By definition a sink is a strongly connected component without any out-
going link. So the discovery Algorithm 2 executed by a process in the sink com-
ponent will return all processes in the sink component and no other. ut

Lemma 3. The leader of the sink component is the only process to impose its
initial value as the decision.

Proof. The leader of the sink component is the only leader that will receive only
acks, from every process of its participants set (l.30). So it will be the only
process to send its proposal (l.33). ut

With help of the above lemmas, we can show that Algorithm 3 meets the speci-
fications of CUP (see Section 2).

Validity. By line 32 the decision is the initial value of some process. So the
validity property is trivially satisfied. ut

Agreement. By Lemma 3 the leader of the sink component is the only process
to send its initial value as the decision. The agreement property trivially
follows from this. ut



Termination. To prove that Algorithm 3 terminates for every process, we
must show that every process executes line 55 (after reception of the message
(decisionj , leaderj), line 51). We distinguish three cases :
– Processes in the sink. By Lemma 2 the set participantsi of the sink

leader contains all processes in the sink. So, by line 33 (sending of the
decision by the sink leader to participantsi) all processes in the sink
component eventually receive the decision message.

– Local leaders. Since there is only one leader (the sink leader) that receives
only acks, all other leaders will receive nacks. Specifically, by Lemma 1
they will receive (nack, leader) from the processes in the sink component,
with leader = sink leader. So the local leaders will send decisionRequest
to the sink leader (l.41), and the sink leader will eventually send them
the decision (l.55).

– All other processes. Every non leader process registers itself with its
leader by sending the message decisionRequest (l.17). Since every local
leader eventually decides (previous case), every local leader will send the
decision to all these processes (l.55). ut

4.4 Necessary and Sufficient Participant Detectors for CUP

Figure 3 summarizes the relationships between the participant detectors and
CUP.

SCOCO OSR FCO

SufficientNecessary

Fig. 3. Relationships between participant detectors

5 Bootstrapping a Self-Organized MANET

We now illustrate how CUP can be applied to solve the problem presented in the
introduction, i.e. for bootstrapping a MANET in a self-organized manner. Let
R be some geographical region that is initially empty. The mobile nodes have no
prior knowledge of the identity nor of the number of peers in R (or in the entire
network). At some point, one or more mobile nodes enter the region and want
to deploy one or more services. However, to reliably deploy the service(s), it is
necessary for the first nodes that enter R to agree on an initial set of infrastruc-
ture nodes, I-nodes, in order to determine which node is going to provide what
service.



To obtain the set of I-nodes, each node in R executes the CUP algorithm
described in Section 4.3, with the participants set of Algorithm 3 as the initial
value. Since the decision is the initial value of the sink leader, the decision of
CUP is the sink component. Let the set I-nodes be the decision of the CUP
algorithm (i.e. the sink nodes). By the CUP specification (Section 2), this set
will be the same for each node in R. Based on the knowledge of I-nodes, nodes in
R can locally decide which node is responsible for providing what service(s). The
unequivocal determination of the I-nodes through CUP leads to a unequivocal
attribution of the services to be offered by each node.

6 Summary and Future Work

The paper has addressed the question of bootstrapping a self-organized MANET,
i.e. for nodes that have no prior knowledge about their peers in the network to
reliably agree on the set of services to be offered by each node. To this means
we have introduced CUP, a variant of the consensus problem where neither the
identity nor the number of participating processes is known. We have identified
(mobility and routing independent) necessary and sufficient conditions, based on
the notion of participant detectors, for which CUP admits a solution. We have
also presented an algorithm, using the participant detectors called OSR, that
enables nodes to reliably solve the aforementioned bootstrapping problem in a
self-organized manner. Since consensus is a basic building block for solving other
distributed algorithms, our results concerning CUP are in particular relevant for
other agreement related problems (e.g. total-ordered broadcast, leader election)
in self-organized settings such as MANET.

For future work, we intend to investigate the additional requirements neces-
sary for solving CUP when processes may crash.

References

1. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. JACM 32 (1985) 374–382

2. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco, CS (1996)
3. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-

chrony. J. ACM 35 (1988) 288–323
4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-

tems. Journal of the ACM 43 (1996) 225–267
5. Bar-Joseph, Z., Keidar, I., Lynch, N.: Early-delivery dynamic atomic broadcast.

In Malkhi, D., ed.: Proceedings of the 16th International Symposium on Dis-
tributed Computing (DISC’02). Volume 2508 of Lecture Notes in Computer Sci-
ence., Toulouse, France, Springer (2002) 1–16

6. Fischer, M.J.: The consensus problem in unreliable distributed systems (a brief
survey). In: Proceedings of the 1983 International FCT-Conference on Fundamentals
of Computation Theory, Springer-Verlag (1983) 127–140



Algorithm 3 Solving consensus with PD ∈ OSR for a process pi ∈ Π
1:
2: leaderi ←⊥; {leader estimate}
3: leadersi ← ∅; {set of leaders}
4: decisionRequestorsi ← ∅; {set of processes requiring a notification of the decision}
5: proposali ← false; {initial value}
6: decisioni ←⊥; {decision value}
7: participantsi ← ∅; {set of processes returned by Algorithm 2}
8:
9: propose(vi):

10: participantsi ← discover participants(); {execute and store result from Algo-
rithm 2 using PD ∈ OSR}

11: leaderi ← min(participantsi);
12: if pi = leaderi then
13: {the process may be the sink leader, send a message}
14: proposali ← vi;
15: send am I the sink leader? to all p ∈ participantsi;
16: else
17: send decisionRequest to leaderi;
18: end if
19: {the procedure exits and the process waits for a decision}
20:
21: Upon reception of am I the sink leader? from process pj:
22: if pj 6= leaderi then
23: {disagreement on leader identity}
24: send (nack, leaderi) to pj ;
25: else
26: send ack to pj ;
27: end if
28:
29: Upon reception of ack from process pj:
30: if ack received from ∀p ∈ participantsi then
31: {the process is indeed the sink leader; propagate proposali as the decision}
32: decisioni ← proposali;
33: send (decisioni, leaderi) to all p ∈ participantsi;
34: end if
35:
36: Upon reception of (nack, leaderj) from process pj:
37: {the process is a local leader}
38: if leaderj 6∈ leadersi then
39: {request a decision from leaderj}
40: leadersi ← leadersi ∪ {leaderj};
41: send decisionRequest to leaderj ;
42: end if
43:
44: Upon reception of decisionRequest from process pj:
45: if decisioni 6=⊥ then
46: send decisioni to pj ;
47: else
48: decisionRequestorsi ← decisionRequestorsi ∪ {pj};
49: end if
50:
51: Upon reception of (decisionj , leaderj) from process pj:
52: if decisioni =⊥ then
53: decisioni ← decisionj ;
54: decide(decisionj);
55: send (decisionj , leaderj) to all p ∈ decisionRequestorsi;
56: end if


