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ABSTRACT 

In this paper, we propose a new rotation-invariant image retrieval 
system based on steerable pyramids and the concept of angular 
alignment across scales. First, we define energy-based texture fea- 
tures which are steerable under rotation, i.e., such that features 
corresponding to the rotated version of an image can be easily ob- 
tained from the features of the original (non-rotated) image. We 
also propose an approach to measure similarity between images 
that is robust to rotation; images are compared after being aligned 
in angle. The retrieval process is performed by means of a Deci- 
sion Tree Classifier where the angular alignment is performed at 
each node in the tree. To demonstrate the effectiveness of our sys- 
tem we consider a distributed image classification system, where 
the feature encoder and the classifier are physically apart and thus 
features are compressed before being transmitted. Our results of 
retrieval performance versus rate show a clear gain with respect to 
a wavelet transform (as an example, for the same rate, the retrieval 
precision is increased from 40% to 65%). 

1. INTRODUCTION AND MOTIVATION 

Feature extraction and matching are very important components 
in searching multimedia databases. Texture information is useful 
for this purpose and several approaches have been proposed to ex- 
tract texture-related features based on various linear transforms, 
such as the wavelet transform. Basically, most of the well-known 
texture feature extraction methods measure the energies of the sub- 
bands obtained from a wavelet transform as texture discriminating 
features. One drawback of using critically sampled transforms for 
this purpose is that the features are not rotation or shift invariant. In 
this paper we address the problem of  designing efficient rotation- 
invariant texture features and demonstrate their use in the context 
of decision tree classifier. Our goal here is to enable locating sim- 
ilar images in the database, even if the image captured is rotated 
with respect to those most similar to it in the database. 

Two main previous approaches have been proposed for TO- 
tation invariant texture matching. In the first one (i.e. [I]), an 
stochastic model (i.e. Hidden Markov model) is assumed for fea- 
tures derived from wavelet transforms and the training is performed 
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using samples with different orientations and identified as belong- 
ing to the same class. In the second one (i.e. [2]), given the out- 
puts of  a transform, some specific rotation-invariant quantities are 
defined. In our work, instead, we achieve rotation-invariance by 
using the concept of angular alignment, i.e., the features obtained 
from two images are aligned before being compared. the two im- 
ages being compared. To achieve this, we define a set of features 
which are sleeroble in the sense that given the features of  an im- 
age sample, it is possible to obtain the features corresponding to 
any rotated version of it. These features are obtained from the sub- 
bands of a steerable pyramid [3,4]. We also propose a new similar- 
ity measurement which measures the distance between two feature 
vectors only after they have been aligned. This angular alignment 
can be performed efficiently using simple constrained steepest de- 
scent algorithms. Although several features obtained from a steer- 
able pyramid have been proposed in previous work [5], the prop- 
erty of achieving angular alignment by using steerability in the 
feature space, has not been considered. On the other hand, approx- 
imate rotation invariance has been med to be achieved through 
features based on oriented Gabor filters [6] ,  but real rotation in- 
variance is not achieved because Gabor filters do not provide the 
steerability property. 

One drawback of steerable transforms in many image repre- 
sentation applications comes from the fact that they are oversam- 
pled and thus result in a significant storage penalty with respect 
to critically sampled transforms. For this reason, in this paper we 
choose a distributed image classification application, where fea- 
tures have to be compressed before transmission, to demonstrate 
that no rate penalty exists and features based on steerable represen- 
tations outperform wavelet-based features even when operating at 
the same rate. In our comparisions we use three different quanti- 
zation algorithms: a) simple uniform quantization, b) quantization 
with optimal bit allocation and c) a classified vector quantization 
scheme optimized from a rate-distortion-complexity point of view 
proposed by Xie and Ortega [7]. In order to decrease the com- 
plexity of the retrieval, a Decision Tree Structure Classifier (DTC) 
is often used in practical applications; images having similar fea- 
tures are clustered together in the nodes of the classifier. In this 
paper, we show how the rotation-invariance can be incorporated in 
the DTC based retrieval by performing angular alignment at each 
node in the tree and defining an appropiate distance between an im- 
age and a tree node, which ensures that a best-first-search method 
works correctly. Our experimental results show a substantial gain 
in retrieval performance versus rate of our method with respect to 
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a retrieval system based on a wavelet transform. 
This paper is organized as follows: Section 2 cnncentrates on 

the feature extraction process and Section 3 describes the basic 
similarity measurement which is the main novelty of our work. In 
Section 4, we describe briefly the quantization schemes that are 
considered and also the DTC based retrieval system incorporating 
the angular alignment. Finally, Section 5 shows the experimental 
results of our method. 

2. FEATURE EXTRACTION 

Since we are interested in achieving rotation invariance, the feature 
extraction we consider is based on the subhands obtained from a 
steerable pyramid [3]. We then should choose features that are 
as "steerable" as possible, that is, given the features of an image 
oriented at an angle 4, it should he possible to obtain the features 
corresponding to the same image but oriented at an angle d', by 
direct manipulation of the features at angle 4, i.e., without actually 
having to recalculate the features atier rotating the image. In OUT 

work, we try to achieve good retrieval performance using energy- 
based features which are simple to manipulate. 

Let c(x,, $) represent the value of a transform coefficient cor- 
responding to the output of a rotated steerable filter with onenta- 
tion 4 for a certain spatial location xo. In a steerable pyramid 
with J basic orientations and L levels, at each level 1 ,  given the 
J basiccoefficients (C'(O~,~I),C'(O~,$~),. . . , C ' ( O ~ , $ J ) } ,  the 
transform coefficient c'(x,, 4) for any angle (orientation) $ ofthat 
same spatial location will be given by: 

J 

c'(x0,d)=Caz(4)cl(r , ,di)  v4, 1 = 1  , . . . ,  L (1 )  
i= I 

where {a , (~ ) ,a . ($ ) ,  ..., n.(4)} is the se tof  Jsteeringfunc- 
tions which allow to perform the (exact) interpolation at any level 

Let E'($) represent the average energy of a subband oriented 
at an arbitrary angle 4 in a level 1 ,  that is, E'(4) is given by 

E'(4)  = (+) ~ ~ ~ , ( c ' ( ~ a , $ ) ) ~ .  where NI is the number of 
pixels of each of the subbands in level 1 and the subscript k goes 
through all the spatial locations of the subband. It is very sim- 
ple to show that E'(4)  can be calculated from the energies (sam- 
pled autocorrelations) of the basic J subbands and all the sampled 
cross-corelations between each pair of basic subbands: 

1 = 1:. . . , L. 

E'($) = a T ( W ' a ( 4 ) ,  4 4 )  = ( a 1 ( 4 ) P . m J ( @ ) ) ~  (2) 

where C' is the (symmetric) sampled corelation matrix with el- 
ements c:, = (+) ~ ~ ~ , c l ( x k , 4 ~ ) c ' ( x l c , $ j )  = c;~, 1 = 

1,. . . , L. Each diagonal element of C1 corresponds to 6,". = 
E'($i), that is, the average energy at the basic angle $i, while the 
off-diagonal elements correspond to sampled cross-correlations be- 
tween the subbands corresponding to each pair of basic angles. 

Notice that since c(xo, $ + n) = -c(e , ,  $), clearly, E'(4 + 
n) = E'($),thatis, EL($) isapericdicfunction withperiodequal 
to r. Given a perfectly homogeneous image I with energy profile 
E:($) at level 1, if this image is rotated counter-clockwise by an 
angle 8. obtaining an image l o ,  then, we will have that E:,,($) = 
E:($ - e), that is, a rotation of an image corresponds to a shifted 
version of the energy profile. 

Based on this we choose the correlation matrices {C'])L1 as 
the energy-based texture features in our system. Notice that since 
each matrix C' is symmetric, the total number of features will be 
J(.J + 1)L/2. Therefore, the interdependencies between different 
orientations in terms of cross-correlations are necessary in order to  
characterize the energy profile of an arbitrary rotation of a given 
image. We do not consider the use of the energy of the low-pass 
residual subhand as a feature in our proposed system. Obviously, 
as the number J of basic orientations increases, the resolution in 
angle (angular bandwidth of basic filters) increases and the energy 
profile E'(4) will he therefore more accurate, but on the other 
hand, the number of raw features may become substantially larger 
than in the case of a wavelet-based texture representation. 

3. SIMILARITY MEASUREMENT 

In  the similarity measurement, we are interested in making use of 
the steerability propelty present in the features in order to identify 
equivalent features, where equivalency will correspond to having 
different rotated versions of a unique image. The next proposition 
shows that the sampled correlation matrix C: for an image at a 
given level 1 and the sampled correlation matrix Cia for the same 
image hut rotated counter-clockwise by an angle 8, are related in a 
simple way. 

Proposition 1 Given a steerable representation with J basic an- 
gles, the correlation matrices C:, and C:, both evaluated with 
re.ipect to the some set ofbasic angles 141,. . . , C ~ J } .  are relared 
as.follow~s: 

c:, = R ( ~ ) C : R ~ ( O ) ,  

(3) 
In the particular case where the J basic angles are taken to be 
equiespaced. then R(8) becomes an orthogonal matrix for any 0, 
and therefore, C:,, and C: become orthogonofly equivalent. 

Proof: The proof is given in [a]. 
This property holds for every level independently. However, 

notice that when a image is rotated, all the decomposition levels 
will be equally rotated. This means that given an image I and a 
rotated version Io of it, the Frobenius norms: 

(same rotation angle for all the levels), will tend to be small. 
Taking all this into account, the similarity measurement 

D(11,Iz) between 2 different images /I and l z  that we propose is 
the following: 

(4) 
) llC:l - R(-8)C:,RT(--B)II~ 

Clearly, those levels containing more energy will influence 
more in the minimization of (4) and those levels with small en- 
ergy will have little influence in it. 
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Fig. 2. Block diagram of a classified vector quantization system. 
Separate encoders {ai} are designed for the classes i = 1, . . , M .  
The input feature vector X is first classified and then encoded with 
an encoder specifically designed for the corresponding class. ANGLE 

z o  :Mm 
(b) 

Fig. 1. (a) "bark" physically rotated at 60 and 120 degrees; @) 
D(B) for J = 2,4 ,6 .  Notice how in all three cases, the minimum 
is achieved for 8 = 60 degrees. which is the exact relative angle 
between the two texture image samples. 

Notice that when 11 and I 2  are two rotated versions of the 
same image, the angle 6" for which the minimum is achieved in 
(4) should be close to the relative angle between I1 and I z ,  that 
is, the angle one needs to rotate (clock-wise) I, in order to get I z .  
Thus, one way to see the goodness of ow similarity measurement 
(4) is to check whether the estimated angle 6" is actually close to 
the real relative angle between 2 physically rotated versions of the 
same image. Moreover, it might also he useful in some practical 
applications to find out approximately this relative angle. Fig. I 
illustrates this by showing the function D(0)  = llCil - 
R(-B)Ci,RT(-O)I/p, for the case where 11 and Iz are rotated 
versions of'bark" texture from the Brodatz set [ I  I]. 

As explained in Section 4, this angular alignment has to be 
performed many times in the retrieval process and thus it is im- 
portant to devise fast algorithms to find the minimizing angle 0' 
in (4). In [8], it is shown that for .I = 2, 8' can be found ana- 
lytically, and for J > 2, it is possible to design low complexity 
constrained steepest descent algorithms. This is because it can be 
proved that the number of stationary points of the function being 
minimized in (4) is upper bounded and at the same time, the angu- 
lar distance between any two contiguous stationary points is lower 
bounded [8] making it simple to search for these points in a few 
non-overlapping angular intervals. 

4. QUANTIZATION AND RETRIEVAL PROCESS 

optimized using the G-BFOS algorithm (IO] so that the MSE is 
minimized under both rate and complexity constraints. For more . .  
details, see [7]. 

The retrieval process is always performed with the DTC 7 us- 
ine. the best-first-search and branch-and-bound'. Let D(&, t )  de- . 
note the distance of the query Q with node t in the tree. In order to 
ensure that this search algorithm finds the correct closest matches, 
we need to define a distance D(Q, t) satisfying the property that 
- D(Q, t )  is a lower bound of the distances of Q to all the images 
in ncde t, and we need to take into account the angular alignment 
process. Notice that: 

D ( Q , I )  = m p d ( Q e , I )  ( 5 )  

2 

2 mpd(&e, I,) - R(t) (upperhound) 

mind(Qe,  I,) - d(Ic, I) (triang. inequality) 

where I, is the centroid in node t, R(t) the radius of node t given 
by R(t )  = ma.xiEe d(Ic, I )  and d(Qs,  I) is given by the ex- 
pression inside the parenthesis in (4). Thus, defining D ( Q ,  t) as 
D ( Q ,  t) = mine d ( Q s ,  I,) - R(t) ,  then, it is guaranteed that the 
est-first-search method will find the correct closest match. Thus, 
we see that a crucial differential point in our work is that in the re- 
trieval process using the DTC, at each node of the tree, alignments 
between the query (quantized) feature vector and each of the two 
representing vectors (corresponding to the two branches) have to 
be performed using (4). After these two alignments, two distance 
measurements are performed and a branch is chosen. 

5. EXPERIMENTAL RESULTS 

We have evaluated the performance of our proposed method ap- 
plied to the Brodatz texture images [ I  I ]  and have also compared In this work, we have tested our proposed scheme when the feature 

with a standard wavelet transform. The features we have consid- vectors are quantized using a set of scalar quantizers with three 
different quantization algorithms: (i) Simple uniform quantization ered in the are also matrices obtained from 

the corresponding four wavelet subbands. We use 2 collections of (same stepsize); (ii) Non-unifomi quantization with optimal bit al- 
location in a rate-distortion sense [9]; (iii) Classified quantization samples of Size 128 128, The first collection, which 

forms the non-rotated image database, is obtained by partitioning optimized in a rate-distartion-complexity sense, proposed by Xie 

into 16 non-overlapping texture subimages of size 128 x 128 with in Fig. 2. First, a complete K-means binary DTC tree 7 is de- 

tree ** ' which as a pre-classifier and whose leaves DTC for retrieval. The second collection, which forms the rotated 
correspond to different classes. Each class is associated with a 
different encoder containing a set of stepsizes selected from a pre- 'This algorithm has a complexity of O(log M) ( M  is the number of 
viously predefined set. The optimal subtree s' and encoders are 

and Ortega t7i' The Of this system is i'lustrated each ofthe 13 BrodaQ(512x512) non-rotatedtexture images [ I  I] 

signed and then this tree is pruned in order to get an Optimal sub- a total of 208 This set is used i,, training of the 

feature vecton in the database) as compared to O ( M )  in a linear search. 
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set, is obtained by partitioning (for each of the 13 texture classes) 
4 large texture images oriented at 30, 60, 90 and 120 degrees also 
into non-overlapping subimages of size 128 x 128 and taking the 
4 central subimages. In this way, in the second database, there 
are also 16  textures for each class and therefore, also the same to- 
tal number of 208 textures. A query texture sample is taken from 
the mtnted set and the feature vector is extracted and quantized 
using the three quantization schemes described in Section 4. We 
assume that each quantized component of the feature vector is in- 
dependently entropy coded. The M = 16 closest textures from 
the non-rotated set are obtained and the average retrieval precision 
over all the rotated texture samples is measured. 

Without compressing the features, the average retrieval perfor- 
mance for the steerable case is of  67.03% and 66.55% for J = 2 
and J = 4 respectively, while in the wavelet case, the performance 
is of 41.85%. an improvement of about 25% is obtained. Fig. 3 
shows the retrieval performance of compressed steerable feature 
vectors for J = 2 and J = 4. We can clearly see that the classified 
quantizer achieves the best performance among the three quantiza- 
tion schemes. By using the classified quantizer with expected tree 
length 1 = 2 (complexity constraint), the retrieval performance de- 
grades very gracefully. Even with the bit rate reduced to around l 
bitielement, we can still achieve about the same precision as us- 
ing uncompressed feature. Fig. 4 shows the comparison of the 
retrieval performance with compressed features between steerable 
transform with J = 4 and a standard wavelet transform. The rea- 
son why we compare these two cases is that the dimension of the 
feature vector under both cases is the same ( N  = 48), so that they 

.will result in a comparable bit rate. Again, we see that steerable 
achieves much better retrieval precision than wavelet over all bit 
rates. With respect to the retrieval complexity reduction by em- 
ploying a DTC instead of a linear search, we have computed the 
number of distance computations that have to be performed to find 
the M = 16 closest matches, Instead of 208 distance computa- 
tions as in the case of linear search, the DTC requires on average 
121.97forJ=2and39.82forJ=4.  

a 
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Fig. 3. Average Retrieval Performance using a 3 level steerable 
pyramid for the three different quantization algorithms: (a) J = 2 
and (b) J = 4. 

Fig. 4. Comparison behueen a standard 3 level wavelet pyramid 
('daubl6' filter bank) and a 3 level steerable pyramid with J = 4 
for the three different quantization algorithms. 
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