Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Wavelets and Filter Banks: Theory and Design
 
research article

Wavelets and Filter Banks: Theory and Design

Vetterli, Martin  
•
Herley, Cormac
1992
IEEE Transactions on Signal Processing

The wavelet transform is compared with the more classical short-time Fourier transform approach to signal analysis. Then the relations between wavelets, filter banks, and multiresolution signal processing are explored. A brief review is given of perfect reconstruction filter banks, which can be used both for computing the discrete wavelet transform, and for deriving continuous wavelet bases, provided that the filters meet a constraint known as regularity. Given a low-pass filter, necessary and sufficient conditions for the existence of a complementary high-pass filter that will permit perfect reconstruction are derived. The perfect reconstruction condition is posed as a Bezout identity, and it is shown how it is possible to find all higher-degree complementary filters based on an analogy with the theory of Diophantine equations. An alternative approach based on the theory of continued fractions is also given. These results are used to design highly regular filter banks, which generate biorthogonal continuous wavelet bases with symmetries

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

VetterliH92.pdf

Access type

openaccess

Size

1.9 MB

Format

Adobe PDF

Checksum (MD5)

efa1c4159220cffd25d96b1cebe07c87

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés