Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance
 
research article

Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance

Do, Minh N.  
•
Vetterli, Martin  
2002
IEEE Transactions on Image Processing

We present a statistical view of the texture retrieval problem by combining the two related tasks, namely feature extraction (FE) and similarity measurement (SM), into a joint modeling and classification scheme. We show that using a con- sistent estimator of texture model parameters for the FE step followed by computing the Kullback–Leibler distance (KLD) between estimated models for the SM step is asymptotically optimal in term of retrieval error probability. The statistical scheme leads to a new wavelet-based texture retrieval method that is based on the accurate modeling of the marginal distribution of wavelet coefficients using generalized Gaussian density (GGD) and on the existence a closed form for the KLD between GGDs. The proposed method provides greater accuracy and flexibility in capturing texture information, while its simplified form has a close resemblance with the existing methods which uses energy distribution in the frequency domain to identify textures. Ex- perimental results on a database of 640 texture images indicate that the new method significantly improves retrieval rates, e.g., from 65% to 77%, compared with traditional approaches, while it retains comparable levels of computational complexity.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

DoV02.pdf

Access type

openaccess

Size

404.45 KB

Format

Adobe PDF

Checksum (MD5)

b4ec6a7791b573092c48c0fe34f0012e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés