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Abstract. When maxillofacial surgery is proposed as a treatment for a
patient, the type of osteotomy and its influence on the facial contour is
of major interest. To design the optimal surgical plan, 3D image-based
planning can be used. However, prediction of soft tissue deformation due
to skeletal changes, is rather complex. The soft tissue model needs to
incorporate the characteristics of living tissues.
Since surgeon and patient are interested in the expected facial contour
some months after surgery when swelling has disappeared, features spe-
cific to living tissues need to be modelled. This paper focusses on mod-
elling of tissue growth using finite element methods. This growth is in-
duced by stress resulting from the surgical procedure. We explain why
modelling growth is needed and propose a model. We apply this model
to 4 patients treated with unilateral mandibular distraction and compare
these soft tissue predictions with the postoperative CT image data.
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1 Introduction

The soft tissue model explained in this paper fits into our framework of 3D
image-based planning systems. This planning environment adheres to a scene-
based approach in which image derived visualizations and additional 3D struc-
tures (external to the medical image volume) are co-presented and manipulated.
This environment includes tools for osteotomy simulation and distraction simu-
lation [1].

Because of the high impact of distraction therapy on the patient’s face, pre-
diction of the soft tissue deformation is highly desirable. Therefore, our planning
system also includes a soft tissue model of the skin (i.e. the dermis and the un-
derlying structures like fat and muscles).

Fung [2] reports on the biomechanical properties of living tissues. Skin tissues
are called quasi-linear viscoelastic materials, meaning that these tissues show
creep, relaxation and hysteresis when applying large oscillations around equilib-
rium, but the characteristics can be well approximated with linear viscoelasticity
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applying small oscillations. However, this modelling implies demanding compu-
tations which are in this application area unrealistic. Moreover, this model de-
scribes the biomechanical behavior of soft tissues during a short time interval
and not the deformations due to e.g. persistent stress over a longer time.

Different approaches have been investigated to model soft tissues. Teschner
et al. describe a multi-layer spring model [3], resulting in short simulation times.
However no extended validation study is published. The meshing step, based on
the approach of Waters [4], is rather tedious and error-prone. Koch et al. [5],
Chabanas et al. [6] and Gladilin et al. [7] use finite element methods to model skin
tissue. Koch describes skin tissue as an incompressible elastic tissue. Chabanas
adds a muscle activation model to animate the face. Gladilin applies a nonlinear
elastic model.

In this paper, we develop a finite element model incorporating growth. In
section 2, we explain why it is important to incorporate growth in the model
by validating a basic linear elastic model. In subsection 2.3 we explain how we
have extended this basic model with a growth component. Simulation results for
4 patients are shown in section 3. After a discussion of these results (section 4),
concluding remarks finish this paper (section 5).

2 Methods

2.1 Basic Model

Our research for an accurate model for maxillofacial surgery planning starts from
a linear elastic soft tissue model which is based on the mechanical equilibrium
equations
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with σxx, σyy, σzz, τxy, τxz, τyz the stress components and F(Fx, Fy, Fz) the vol-
ume forces.

The material properties are introduced into these equations through the con-
stitutive equations relating stresses and strains. The soft tissue is modeled as a
homogeneous, linear and elastic material, such that we can use Hooke’s law:
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with strain components εxx, εyy, εzz, γxy, γxz, γyz, Young’s modulus E and Pois-
son coefficient ν.

If we define {X} as the initial configuration at time t0 and x = x(X, t) as the
description of the point X at time t, the displacement vector u can be defined
as x = X + u. The Green-Lagrange strain tensor relates the strains ε to the
displacements u: ε = 1

2 (∇u + ∇uT + ∇uT ∇u). We linearize this equation to
ε = 1

2 (∇u + ∇uT ).
These equations are discretized using a 3D finite element method. The contin-

uum is modeled as a tetrahedron mesh. For the interpolation between the nodes
we use a basic linear, C0 continuous shape function using 4 nodes for each tetra-
hedron [8]. The partial differential equations are reduced to a set of linear equa-
tions for the vertices of the tetrahedron mesh: KU = R with K =

∫
V

BT DBdV ,
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for the 4 tetrahedron vertices (m = q, r, s, t) with shape functions Nm.
The stiffness submatrix Ki

mn is computed for each pair of 2 nodes m and n
of an element i. It can be computed from the shape function and the material
properties as Ki

mn = BT
mDiBnV i with V i the volume of tetrahedron i. The

global stiffness matrix K for the entire model can then easily be assembled from
all these element stiffness matrices Ki

mn.
The derived set of equilibrium equations is constrained by a set of Dirichlet

boundary conditions. They force certain displacements to a fixed value. In our
facial model there are 2 types of such boundary conditions. First there are the
displacements at the border between bone and soft tissue, prescribed by the
planned bone displacements. The other boundary conditions are obtained from
the assumption that the soft tissue above the eyes and behind the ears will not
be affected by the surgery and can thus be supposed to have a fixed position.
These Dirichlet boundary conditions can be easily introduced in the equations,
as they can all be formulated as tu = r.

In this first model there are no volume or body forces defined on the tetra-
hedron mesh. This means that R = 0, except for the values introduced by the
boundary conditions.

2.2 Validation

In the development of a soft tissue model for surgery planning it is very im-
portant to be able to see how closely an approximation matches the real post-
operative situation. This is the only way to make a good comparison between
two implementations and to see if the approximation goals are reached.
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Fig. 1. (a, b): Color-encoded differences between the real post-operative image
and the planned image with the basic model. The color scale covers the interval
[-10mm . . . 10mm]. (c): Histogram of the distances between the predicted and the real
post-operative image.

A procedure also has to be validated with data from different patients. This
is needed to make sure that the procedure works not only for one specific patient
record, but gives good results for any patient.

Procedure.

1. 4 months after surgery, the patient gets a CT scan. This post-operative CT
scan is rigidly registered to the pre-operative CT data, using maximization
of mutual information [9] on an unaltered subvolume as registration method.
From these co-registered post-operative data, a surface representation of the
skin is generated using the Marching Cubes algorithm [10].

2. Next, a skin surface is created from the pre-operative CT image using the
same algorithm.

3. This pre-operative surface is deformed according to the results of our FEM
computations. We then have a planned post-operative surface of the skin.
This can be compared with the real post-operative surface as they are both
registered to the same pre-operative data.

4. For the vertices of this planned post-operative surface the closest distance
to the real post-operative surface is computed and visualized using color-
coding. For this coding the normals to the surface are used. They are set to
the exterior of the skin surface. When the normal to the real post-operative
surface intersects the planned surface in the positive direction, green colors
are used for positive values. When it intersects the planned surface in the
negative direction, the errors get red colors and negative values.
This results in an easily interpretable image of the errors over the entire
surface (figure 1:a,b).

5. In a last step we discard the positional information and an error histogram
is made from all the differences (errors) between planned and real post-
operative data (figure 1:c). Because we would like all errors to be zero, the
ideal histogram is a Dirac pulse δ. Therefore the average error µ and the
standard deviation σ need to be as small as possible.
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(a) (b)

Fig. 2. Comparison between predicted and real post-operative facial skin envelopes.
(a) Predicted post-operative image (The “wrinkle” you notice, is the result of a fix-
ation bandage applied during the acquisition. This should be avoided during the CT
examination); (b) Real (registered) post-operative image.

Validation of the Basic Model. We use this procedure to validate the results
with the basic model. Figure 2 shows a direct comparison between the predicted
(planned) post-operative image and the registered real post-operative image. It
is very difficult, even nearly impossible, to make a good comparison between
these two images as they are represented here. Therefore, it is more effective
to display the differences between the predicted and the real data according to
steps 4 and 5 of the validation procedure (see figure 1).

From this histogram we can see that the average error is negative, showing a
’lack of material’. If we analyze the error image (figure 1) and derive positional
information (which has disappeared in the histogram), it is clear that mainly
in the parts with high stress due to the displacements (close to the bone dis-
placements), large negative errors occur. In these areas the basic model cannot
predict reality sufficiently.

2.3 Soft Tissue Growth

Model Improvement. When using the basic model, a relatively large residual
error is found in the area with large tissue stress (mainly the boundary between
displaced and fixed tissue). From Fung [2] and Rodriguez [11] we know that
soft tissue will grow under stress conditions. As we try to model the soft tissue
envelope about 4 months after surgery, it is very important to include this tissue
growth into the model.

As a hypothesis, we state that tissue growth can be modeled as an inter-
nal volume force in the tetrahedra, similar to the force caused by a thermal
expansion. We replace the previous R = 0 by a term

R =
∫

V

BT DασgrowthdV. (4)

with σgrowth the growth stress and α a stability factor (see 2.3). σgrowth is a
new degree of freedom, which is introduced to fully control the growth. It is a
stress induced by the growth process.
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(a) k = 0 (b) k = 5 (c) k = 10 (d) k = 20

Fig. 3. A cube is stretched to the left and to the right, and the resulting stress in the
cube causes growth with different equilibrium states for k = 0, 5, 10 and 20.

The tissue growth is caused by the stress introduced by the bone displace-
ments. Therefore we can state that σgrowth is the sum of the stress due to the
displacements (σd) and some extra stress σg generated by the growth process
itself (which is induced by the initial displacement stress σd0). Therefore we can
say σgrowth = σd + σg(σd0). We assume that σg = kσd0 if σd0 > 0 and σg = 0
otherwise. k is the parameter which determines how large the soft tissue growth
has to be (figure 3). We then have the following formulation:

R =
∫

V

BT DασgrowthdV (5)

=
∫

V

BT Dα(σd + σg)dV (6)

=
∫

V

BT Dα(σd + kσd0)dV (7)

These equations cause the tissue model to grow in an iterative process, which is
described in the next paragraph. Iterations are made until an equilibrium state
is reached, which happens when σd = −kσd0 if σd0 > 0 and σd = 0 otherwise.

Iterative Procedure. To initialize the iterative process, the stresses introduced
by the bone displacements are computed. During the first iteration, these stresses
are used to compute the ’growth’ forces. When the resulting displacements from
this first iteration are computed, the remaining stresses are computed again. In
the subsequent iterations we always use the stress remaining from the previous
iteration to compute σd. In this way the residual stress in the soft tissue model
is reduced in every iteration until the stresses (and thus also the growth per
iteration) is smaller than a certain threshold value.

Stability Factor α. In order to keep the iterative growth process controlled
and stable, a stability factor α was introduced in the volume force term R. This
factor guarantees a safe and stable evolution of the element stresses towards
their equilibrium values. α = 0.0005 is a good value for α, as can be derived
from figure 4, where the number of iterations needed for convergence is plotted
for different values of α. For values of α > 0.0006 the growth process diverges
and no stable equilibrium state can be reached any more.
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Fig. 4. The number of iterations needed for growth convergence is plotted for different
values of α. The optimal value (14 iterations in this case) is reached for α = 0.00045
to 0.0005.

Parameter Values. The material parameters E and ν for living soft tissues
are hard to measure in practice and they are not described in literature. Young’s
modulus E is not important for our application, as it appears once in all terms
of the equations and can thus be removed from the equations. Contrary to this,
the Poisson coefficient ν has a larger implication on the soft tissue deformation.

Good values for this coefficient ν and for the growth parameter k can be
obtained through an analysis of the error values obtained from the validation on
different patient data. The average error and the standard deviation for different
values of ν is shown in figure 5:(a,b), and the same is done for different values
of the growth parameter k in figure 5:(c,d).

We analyzed the parameter values on the data of 4 different patients and we
noted that the optimal values for the different patients are very close to each
other. From this we state that these values for the Poisson parameter ν and the
growth parameter k can be used for any arbitrary patient. The parameters (k,
ν) are optimal for (k = 20, ν = 0.25).

3 Results

We illustrate this method for 4 patients suffering from unilateral microsomia. All
these patients have been treated with intraoral unilateral mandibular distraction.
The distraction device had two degrees of freedom: unidirectional translation and
angular rotation.

Using the validation procedure we described earlier, we compare the re-
sults obtained with the improved model to the results obtained with the ba-
sic model. Predictions resulting from both methods are compared with the real
post-operative image. The error distances are shown in figure 6.
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Fig. 5. Mean and standard deviation of the error distribution over a patient’s complete
face of the predictions for different values of the Poisson parameter ν and growth
parameter k.

Although the approximation is still not exact, it can immediately be seen
that the prediction for the right cheek is much better in the extended model.
This can also be seen in the histogram plot for the two error images (figure 7:a).
The mean error µ = −0.57 and the standard deviation σ = 1.43 both have
smaller values than for the basic model (µ = −1.05, σ = 2.17) and thus make a
better approximation of the Dirac pulse δ.

As was indicated in the description of the validation procedure, the new
method then needs to be validated on data of different patients, to make sure
the results are also better in an arbitrary case. For this goal, the simulations
were run with both the basic and the improved model on the data of 4 different
patients. The error histograms compared to the real post-operative images were
put together and averaged (figure 7:b).

The results are less remarkable (because of the averaging operation), but it is
still clear that the results with the improved model have errors (when compared
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(a) Errors using the basic model (b) Errors using the model includ-
ing tissue growth (k=20)

(c) Errors using the basic model (d) Errors using the model includ-
ing tissue growth (k=20)

Fig. 6. Color-encoded differences between the real post-operative image and the
planned image with the basic model (left) and with the extended model including
tissue growth (right). The color scale covers the interval [-10mm . . . 10mm].

to the real post-operative images) which are more centered around 0 (µ = −0.06
compared to µ = −0.55) and have a smaller standard deviation (σ = 2.15
compared to σ = 2.66) than when the basic model is used.

4 Discussion
An important goal of maxillofacial surgery planning is to give the surgeon and
the patient an accurate idea about what the face will look like as a result of the
surgery. People are interested in a prediction of the facial outlook when swelling
etc. has gone. They want to know what the patient will look like a few months
after surgery, on the long term.

Therefore we need to incorporate long-term tissue behavior - like tissue
growth - into the model used. Because of the large stresses induced by surgery,
soft tissue grows considerably and has a large effect on the facial skin surface.

The validation results show the improvements made to the soft tissue model
by including tissue growth. This definitely increases the accuracy by which max-
illofacial surgery can be modelled. On the other hand, the validation also revealed
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Fig. 7. Histogram data, comparison between the basic model and the extended model
(growth parameter k = 20).

that there are still relatively large areas in which the skin surface is modelled
incorrectly.

The type of improvements to be made in an next step is not a simple question.
Most people can easily say whether two faces are different (even with small
differences) or not, but have difficulties to point the differences. In a similar way
we see that our models are still not precise enough but it is difficult to find the
refinements needed to make this last step.

Intuitively a first refinement could be made by discriminating muscles and fat
as different soft tissue types with different characteristics. A next challenge will
then certainly be to determine the characteristics of those different soft tissue
types, as they are still largely unknown.

The boundary conditions form another field where important improvements
could be made. It would be very useful to know precisely if the soft tissue next
to the displaced bone elements stays fixed to it, or what happens exactly. And
which parts of the soft tissue do not deform given a certain type of osteotomy?
These are all questions which are still unanswered, but which can dramatically
influence the quest for facial soft tissue models.

5 Conclusion

We developed a new soft tissue deformation prediction model for maxillofacial
surgery planning. Starting from a simple, linear elastic 3-dimensional finite ele-
ment model, a new model was constructed which includes the soft tissue growth
during the months after surgery. An extensive validation procedure was also de-
veloped, which enabled us to objectively compare results with different methods.

The results obtained with this new model including tissue growth show a
significant improvement over the results without tissue growth. The planned
post-operative images match the real post-operative images much better now,
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making the surgery planning more useful to surgeons and patients. But before
they can be really applied in practice, some further refinements still need to be
made, as proposed in the discussion.
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