Files

Abstract

Dielectric elastomer actuators (DEAs) have raised interest due to their remarkable capabilities in various applications, such as soft robotics, haptic feedback systems, and biomedical devices. To harness the full potential of DEAs, the choice of the electrode material and fabrication method is critical. This study investigates the application of carbon based printed electrodes for DEAs, focusing on three prominent printing techniques: pad printing, inkjet printing and stencil printing. Comparisons are made to evaluate their performance in terms of electrical conductivity, mechanical properties and actuator performance. Findings from this research aim at providing valuable insights into selecting the most suitable electrode fabrication method for specific DEA applications.

Details