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Abstract

Time reversal exploits the invariance of electromagnetic wave propagation in reciprocal
and lossless media to localize radiating sources. Time-reversed measurements are back-
propagated in a simulated domain and converge to the unknown source location. The
focusing time (i.e. the simulation instant at which the fields converge to the source location)
and the source location can be identified using field maxima, entropy, time kurtosis, and
space kurtosis. This paper analyses the spatial energy-density distribution of time-reversed
electromagnetic fields by introducing a convergence metric based on the spatial average
and variance of the energy density. It is analytically proven that the proposed metric iden-
tifies the focusing time and the source location, with direct links to the source frequency
content. The analytical results are verified in a free-space numerical simulation and the pro-
posed metric is then compared to existing ones in a simulated inhomogeneous medium.
Next, this metric is applied and compared in an experimental case study to localize electro-
magnetic interference sources. The proposed metric outperforms existing ones to identify
the focusing time and can also be used to locate the source. Finally, because of its tenso-
rial nature, it can handle anisotropic media, opening the door to quantitative analyses of
time-reversal focusing in metamaterials.

1 INTRODUCTION

In the electromagnetic time-reversal cavity, introduced by
Carminati et al. [1], a sensor spanning a full solid angle around a
source allows to focus electromagnetic fields at the source loca-
tion. This principle has been applied for both wave focusing
and imaging. During the direct-time phase, transient or time-
harmonic electromagnetic fields are recorded on the boundary
of the domain of interest on a “time-reversal mirror” (e.g. a few
monopole antennas on the boundary of a reverberant chamber,
as in Ref. [2]). The direct-time source is then removed. During
the backward propagation phase, the time-reversed measure-
ments are sent from the time-reversal mirror. Because only a
finite number of sensors are available, the resulting fields are
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not a perfect copy of their direct-time counterpart. However, at
least a local field maximum is observed (e.g. in Ref. [3]) at the
(unknown) source location. For imaging problems, the back-
ward propagation is often done in a simulated environment.
Contrary to experimental case studies, the electromagnetic fields
are available at all sampled points in time and space. A focus-
ing time and location can then be obtained by appropriate
metrics.

State-of-the-art metrics to determine the time and location
of the field focusing involve determining the local maximum
or comparing the maximum to the side lobes [2, 4], computing
the entropy of the electric field [5], or its space and time kur-
toses [6, 7]. The first two methods might not be appropriate
for narrowband signals. Also, the entropy lacks interpretability
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2 LE BOUDEC ET AL.

for electromagnetic waves. Finally, the field entropy and space
kurtosis might suffer from an oscillating behaviour, which
makes optimal focusing hard to determine. This paper proposes
a new spatial convergence metric based on probability theory
and electromagnetic energy density. Our metric differs from
the state-of-the-art in that it includes weighted field integrals
including the time and space coordinates. As we will see, this
offers three main advantages: first, the resulting metric has clear
physical interpretations; second, we verify that it predicts fewer
false positives than the electric field entropy or kurtoses; third,
it directly allows to handle anisotropic case studies. The latter
point is central when metamaterials are analysed as homoge-
neous media with effective anisotropic properties, particularly
for super-resolution techniques.

The paper is organized as follows: first, Section 2 introduces
the metric alongside necessary definitions; Section 3 then shows
the consistency of the proposed metric for the field radiated by
an electric dipole; next, Section 4 compares the metric to exist-
ing metrics in a numerical case study; Section 5 also applies and
compares the proposed metric to an experimental case study;
Section 6 discusses and compares all results; finally, Section 7
presents the conclusions of the paper.

2 DEFINITIONS

We base our metric on the electromagnetic energy density uEM,
which describes the density of potential energy carried by the
electromagnetic fields. Its instantaneous value at time t and posi-
tion r in a homogeneous, isotropic, lossless and passive medium
of permittivity 𝜀 and permeability 𝜇 is given by [8, eq. (6.106)]

uEM(t , r) = 1
2
𝜖|E(t , r)|2 + 1

2𝜇
|B(t , r)|2 (1)

We write three-dimensional vectors in bold type. The latter
equation stems from Poynting’s theorem and corresponds to
potential energy stored in the electric (first term) and magnetic
(second term) fields. The electromagnetic field potential energy
is given by a spatial integration of the energy density:

UEM(t ) = ∭
V

uEM(t , r)dV (2)

where V denotes the three-dimensional domain of interest.
From this, we define the expected value of a function g with
respect to the electromagnetic energy at time t as

⟨g⟩t

EM
def
= 1

UEM(t ) ∭
V

g(t , r)uEM(t , r)dV (3)

This amounts to considering uEM(t , r)∕UEM(t ) as a probabil-
ity density function in a three-dimensional (spatial) probability
space. The expected value can also be seen as a weighted aver-
age. We thus call ⟨x⟩t

EM the average x–coordinate of energy at
time t , and similarly for the y and z coordinates. In turn, the
energy–location standard deviation 𝜎t

xx for the x coordinate at

time t is

(
𝜎t

xx

)2 def
=

⟨
(x − ⟨x⟩t

EM)2
⟩t

EM
(4)

In general, we define the energy–location covariance matrix
Σt

EM as usual in probability theory:

e⊤v Σ
t
EMeu

def
=

⟨(
u − ⟨u⟩t

EM

)(
v − ⟨v⟩t

EM

)⟩t

EM
(5)

where u, v ∈ {x, y, z}. This corresponds to our definition of the
inverse of the “quality of focusing” of electromagnetic fields.
The trace of the energy–location covariance matrix defines a
scalar aggregate metric

(𝜎t )2 def
= Tr

(
Σt

EM

)
=
(
𝜎t

xx

)2
+
(
𝜎t

yy

)2
+
(
𝜎t

zz

)2
(6)

The entries of the energy–location covariance matrix Σt
EM (e.g.

(𝜎t
xx )2) allow for a description of the quality of focusing in

anisotropic media.

3 CASE OF AN ELECTRIC DIPOLE

This section applies the metric defined above to a simple the-
oretical case. In the direct-time phase, we assume that a point
dipole of moment p(t ) polarized along the z-axis and placed at
the origin radiates electromagnetic fields. Far from the source,
we record the fields

EDT(t , r) = −𝜇 sin(𝜃)
p′(t − r∕c )

4𝜋r
e𝜃 + (r−2) (7)

BDT(t , r) = −𝜇 sin(𝜃)
p′(t − r∕c ) + p(t − r∕c )c∕r

4𝜋cr
e𝜙 (8)

where r = |r|, 𝜃 and 𝜙 are the polar and azimuthal angles, c is the
speed of light,(r−2) includes terms asymptotically bounded by
r−2, and the (current) dipole moment is given by

p(t ) = ∭ Jz (t , r)dV (9)

This can be obtained from Ref. [8] by performing inverse
Fourier transforms and switching between charge and current
moments, thanks to the conservation of charge equation [8,
eq. (6.3)].

Next, during the back-propagation phase, the source is
removed (indeed, it is unknown in imaging problems), and the
fields are propagated from a surface enclosing the region of
interest, as in Ref. [1]. The far-field time-reversed fields are thus
the sum of a converging and diverging wave:

ETR,ff(t , r) = 𝜇 sin(𝜃)
p′(t − r∕c ) − p′(t + r∕c )

4𝜋r
e𝜃 (10)
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LE BOUDEC ET AL. 3

FIGURE 1 Conservation and exchange of energy during the
time-reversal operation.

BTR,ff(t , r) = 𝜇 sin(𝜃)
p′(t − r∕c ) + p′(t + r∕c )

4𝜋cr
e𝜙

+ 𝜇 sin(𝜃)
p(t − r∕c ) − p(t + r∕c )

4𝜋r2
e𝜙

(11)

A Taylor series expansion of a twice continuously differentiable
dipole moment p shows that these expressions are regular at the
origin. Incidentally, this expansion shows why we did not neglect
the 1∕r2 contribution for the magnetic field. Also, the polarity
of the direct-time electric field matches that of the converg-
ing wave of the time-reversed field. As explained by Rubinstein
et al. [9], the magnetic field is odd under time-reversal symmetry.

In turn, by direct computation from Equation (1), the time-
reversed energy density is given by

uEM(t , r) = 𝜇

[
sin(𝜃)
4𝜋cr

]2[
p′(t − r∕c )2 + p′(t + r∕c )2

]
(12)

plus terms involving the powers higher than r−2, which we
neglect because of the far-field approximation1. In this formal-
ism, assuming that the source is only active during the interval
[−T , T ] for some T > 0, it is visible that for t < T , the energy
is carried by the converging wave alone. For −T ≤ t ≤ T ,
the energy is absorbed by a point source at the origin and
immediately re-emitted by a diverging wave to satisfy energy
conservation. Likewise, for t > T , the energy is carried by the
diverging wave alone. This is illustrated in Figure 1.

We now apply the proposed metric to the derived energy
density. The detailed calculations are presented in Appendix A.
We show that the average energy–location is the origin (i.e. the
source location):

⟨r⟩t

EM = 0 (13)

for all t , which shows the consistency of the proposed metric.
Indeed, this shows that the average energy–location can be used

1 As a consequence, the energy density we work with in this section does not correspond
to electromagnetic fields near the origin. Indeed, the far-field approximation cannot be
directly used to construct time-reversed solutions at the origin—we need to use the com-
plete expressions. However, as we will see in the next section, the derived properties still
hold for simulations.

to locate the source location. Furthermore, the energy–location
variances for all components x, y and z are convex-quadratic
functions of time given by

(
𝜎t

xx

)2
=
(
𝜎t

yy

)2
= 2c2

5

[
𝜎2

s + (t − ts )2
]

(14)

(
𝜎t

zz

)2
= c2

5

[
𝜎2

s + (t − ts )2
]

(15)

where we have introduced the average source–power time

ts
def
=

∫ ∞

−∞ t p′(t )2dt

∫ ∞

−∞ p′(t )2dt
= ⟨t ⟩(p′ )2 (16)

and the source–power variance

𝜎2
s

def
=

⟨
(t − ts )2

⟩
(p′ )2

(17)

The energy–location variance depends on the source excitation
and attains its global minimum at the focusing time t⋆, equal to
the average source–power time ts. Indeed, the duration of the
source excitation is mirrored in that of the time-reversed fields
(longer-duration signals take longer to converge than short-
duration signals). Moreover, this metric shows how broadband
sources (i.e. with low source–power variance) are more focused
than narrowband sources. For example, an impulse-like source
(i.e. whose energy is deployed at a single instant)—whose
source–power variance is zero—exhibits no energy–location
variance. Such a field is, however, an idealization. On the other
hand, a purely harmonic signal possesses a high (theoretically
infinite) source–power variance and is thus expected to be
poorly focused. For such signals, time-domain methods (includ-
ing the proposed method) might be ill-suited, as they also
require long acquisition windows and are well-modelled in the
frequency domain by an amplitude and a phase.

In turn, the minimum value of the trace of the energy–
location covariance matrix is conveniently given by

(𝜎t )2|t=t⋆
def
= (𝜎⋆ )2 = (c𝜎s )2 (18)

It becomes apparent that the energy–location variance depends
on the speed of light in the medium; slower waves, with reduced
wavelengths, focus in a smaller volume.

The energy–location covariance matrix at the focusing time
t⋆ is given by

�⋆
EM = (c𝜎s )2

⎡⎢⎢⎢⎣
2

5
0 0

0
2

5
0

0 0
1

5

⎤⎥⎥⎥⎦ (19)

More generally, we show in Appendix A that the energy–
location covariances are zero for all times. This diagonality
results from the dipole being aligned with the z axis; for tilted
polarizations, the covariances might be non-zero, but the trace
remains constant.
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4 LE BOUDEC ET AL.

3.1 Physical interpretation of the proposed
metric

There are two main differences between the proposed and exist-
ing metrics (see Section 4.1): on the one hand, the proposed
metric relies on the energy density, which allows to describe the
work carried out by electromagnetic fields on charges—in other
words, the interaction between fields and matter. It therefore
makes sense to construct a metric based on energy and not the
fields themselves. For example, the time-reversed magnetic field
in Equation (11) is zero at the origin (r = 0), as can be shown
by performing a Taylor series expansion. In turn, a metric based
solely on the magnetic field would yield irrelevant results. By
duality, the same holds for the time-reversed electric field when
considering a magnetic dipole.

On the other hand, the proposed metric includes spatially
weighted averages of the electromagnetic energy density in the
form of the average energy–location and the energy–location
variance. As seen above in the theoretical derivation, the aver-
age energy–location of time-reversed fields corresponds to the
direct-time source location. Physically, this is a consequence of
the time-reversal invariance of the wave equation and the design
of the time-reversal procedure: the method creates a wavefront
converging to the direct-time source location and possessing a
rotational symmetry around the polarization axis centred at the
source location. This symmetry is mirrored in the energy density
and focuses the average energy–location at the source loca-
tion, ensuring consistency. Simultaneously, most of the fields,
and thus most of the energy density, are concentrated around
the source location, yielding a low energy–location variance. An
analogy is to consider the effect of letting the variance of a
Gaussian distribution tend to 0: the density converges (weakly)
to a perfectly focused Dirac 𝛿 distribution.

3.2 The effect of the dipole moment

In the theoretical derivation, we neglected high-order contribu-
tions to the time-reversed fields. In this section, we first verify
numerically that the theoretical results hold for the numerical
time-domain simulation of a dipole. To this end, we run a set
of two-dimensional (2D) axis-symmetric finite-difference, time
domain (FDTD) simulations using the Meep solver introduced
in Oskooi et al. [10]. The simulation domain is a homoge-
neous, lossless, isotropic and passive medium with a z-polarized
dipole source at the origin. We test a smooth, nearly compactly
supported asymmetric dipole moment given by

p(t ) = f ′′
[
(t − t0)∕𝛾] + 1

2
f ′′

[
(t − 2t0)∕𝛾] in A m (20)

where f (s) = e−s2
, t0 = 1∕ f0, 𝛾 = (𝜋 f0)−1, and f0 is the main

frequency component. This moment is illustrated in Figure 2.
We vary the normalized frequencies f0∕c in the range 0.5 to
2 m−1.

To perform the time reversal, we modify the Meep source
code to efficiently scale the magnetic fields H and B by a

FIGURE 2 The dipole moment p(t ) used to validate the proposed metric.
The filled graph indicates the source–power-density (p′ )2. The horizontal line
has a length of 3𝜎s and is centred at the average source–power time ts.

FIGURE 3 Example data used to derive the results in Figure 4 for
f0∕c = 1 m−1. The markers indicate, at each simulation time-step, a numerical
computation of the energy–location variance as in Equation (4). Because of the
rotational symmetry around the z axis, we combine the xy-plane metrics as
(𝜎t

xx )2 + (𝜎t
yy )2. The quadratic least-squares fit is shown as a solid-and-dashed

line. The solid markers indicate the minimum of the fit.

factor −1, thus reversing the Poynting vector. This scaling cor-
responds to time reversal under two conditions: first, there is no
active source and no charge accumulation. Second, the domain
is large enough to accommodate the entire signal.

During the time reversal and at each time step, we compute
the average energy–locations rt

0, then the aggregate energy–
location standard deviation 𝜎t from Equation (6). The integrals
are approximated using the trapezoidal method on the FDTD
grid points. In all simulations, the shape of 𝜎t as a function
of time is nearly quadratic, allowing to determine the optimal
focusing-time t⋆ and the optimal aggregate energy–location
standard deviation 𝜎⋆ from the coordinates of the minimum of
the quadratic fit. An example of such a fit is shown in Figure 3.

The results show that the average energy–location is always
the origin, up to numerical errors. As seen in Figure 4, there is
an excellent agreement between t⋆ and ts. If a source delivers a
delayed signal, we can expect the same from the time-reversed
field. Moreover, the energy–location standard deviation 𝜎⋆ and
the source–power standard deviation 𝜎s match closely. They
have the same inverse frequency dependence. Thus, the pro-
posed metric depends on the source–power standard deviation
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LE BOUDEC ET AL. 5

FIGURE 4 FDTD validation of the proposed spatial convergence metric
as a function of the normalized main frequency component. (a) Focusing time
t⋆ given by the simulation and the corresponding average source–power time
ts. (b) Energy–location standard deviation 𝜎⋆ and source–power standard
deviation 𝜎s.

and average source–power time. As the main frequency com-
ponent increases, the focusing time and the energy–location
standard deviation decrease inversely.

4 COMPARISON WITH EXISTING
CONVERGENCE METRICS

The previous section showed that the proposed metric is con-
sistent (i.e. the average energy–location is the source location),
relates the energy–location variance with the source–power
variance in the case of a dipole source, and can predict the
focusing time. In this section, we apply the proposed metric to
a numerical case study and compare it to existing metrics.

4.1 Time-reversal convergence metrics

We now move to a comparison of the presented metric to
existing ones. These metrics yield a time- (resp. space-) depen-
dent quantity, which attains an extremum at the focusing time
(resp. source location). The analysis of the fields at the focusing
time can also determine the source location.

4.1.1 Determination of the focusing time

The following metrics can be used to determine the focus-
ing time.

Spatial maximum electric field norm
The maximum of the electric field norm is taken over the
simulated (or measured) spatial domain at every point in time:

Emax(t ) = max
r

|E(t , r)| (21)

This maximum is expected to find a temporal maximum close
to the focusing time.

Electric field entropy
The electric field entropy [11], a function of time, is given by

S (t ) =

[∭
V
|E(t , r)|2dV

]2

∭
V
|E(t , r)|4dV

(22)

where V is the spatial domain considered. The entropy is
expected to be minimal at the focusing time.

Space kurtosis
Very similar to the electric field entropy, the space kurtosis,
introduced by Feng et al. [6], is given by

Kurt(t ) = |V | ∭
V

[|E(t , r)| − ⟨|E|⟩t
]4

dV{
∭

V

[|E(t , r)| − ⟨|E|⟩t
]2

dV

}2
(23)

where V is the spatial domain considered, |V | is its volume,
and

⟨|E|⟩t = 1|V | ∭V

|E(t , r)|dV (24)

is the spatial average of the electric field norm at a given time t .
It is expected to be maximum at the focusing time.

Energy–location standard deviation
The energy–location standard deviation 𝜎t , as defined in Equa-
tion (6), is expected to be minimized at the focusing time, as
shown in the theoretical analysis above.

4.1.2 Determination of the source location

The following metrics can be used to determine the source loca-
tion.

Temporal maximum electric field norm
The maximum of the electric field norm is taken over the
simulated (or measured) time at every location in space:

Emax(r) = max
t

|E(t , r)| (25)

This maximum is expected to find a spatial maximum close to
the source location.
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6 LE BOUDEC ET AL.

FIGURE 5 Simulation setup to compare the metrics in inhomogeneous
media. A source placed at the marked location radiates in a closed 2D cavity
including three spherical scatterers. The fields are recorded and re-emitted
from the eight antennas of the time-reversal mirror. The source region is
masked and excluded from computations.

Time kurtosis
Feng et al. [7] introduced the time kurtosis of the electric field
norm (a function of space):

Kurt(r) = |T | ∫
T

[|E(t , r)| − ⟨|E|⟩r]4
dt{∫

T

[|E(t , r)| − ⟨|E|⟩r]2
dt
}2

(26)

where T is the time interval considered, |T | is the length of the
interval, and

⟨|E|⟩r = 1|T | ∫T

|E(t , r)|dt (27)

is the time average of the electric field norm at a given position
in space r. The time kurtosis is also expected to be maximal
close to the source location.

Average energy–location
The theoretical analysis presented in Section 3 hints towards the
use of the average energy–location ⟨r⟩t

EM to find the source
location. Since this metric depends on time, it is reasonable
to consider the average energy–location at the time t⋆ where
the energy–location standard deviation is minimized. In other

words, we expect the source location to be close to ⟨r⟩t⋆

EM.

4.2 Simulation of inhomogeneous media

In Section 3.2, we verified that the theoretical properties hold in
numerical simulations for different dipole moments. We now
assess the metric’s performance in inhomogeneous media by
comparing it to the metrics introduced in the last section. The
2D simulation domain consists of a rectangular metallic cavity
including two spherical and metallic scatterers (see Figure 5). A
horizontally polarized dipole radiates the second-order deriva-
tive of a Gaussian pulse whose main frequency component is
243 MHz. The resulting transient electric field is measured on
an eight-channel time-reversal mirror consisting of monopole

FIGURE 6 Spatial maximum electric field norm as a function of time
applied to the 2D inhomogeneous medium case study. The red dot indicates
the global maximum.

antennas located as indicated in Figure 5. Four of these antennas
are located 13 cm (respectively 30 cm) to the right of (respec-
tively above) the considered domain. Indeed, to avoid biasing
the different metrics towards the location of the time-reversal
mirror, a region including this mirror is excluded from the
computation domain.

Next, the measurements are time-reversed and back-
propagated from the time-reversal mirror.

Figures 6–10 present the results obtained using the proposed
and the considered existing metrics. The spatial maximum elec-
tric field norm (Figure 6) and the energy–location standard
deviation (Figure 7(a)) can determine the focusing time. Both
the entropy (Figure 8(a)) and the space kurtosis (Figure 9(a)) are
minimized or maximized at times where the field is localized
(i.e. not spread over the entire domain), but not at the source
location (Figure 8(b)). Moreover, the average energy–location
is close to the source location (Figure 7(b)). The time kurtosis
(Figure 9(b)) and maximum electric field norm (Figure 10) are
high at the original location. However, the field enhancement
caused by the scatterers introduces spurious local maxima far
from the source location.

5 EXPERIMENTAL VALIDATION

In this section, we compare the proposed metric to exist-
ing ones in an experimental setup similar to the one used
in Ref. [12]. Contrary to the previous section, the direct-time
data is acquired experimentally, and the back-propagation is
performed in a simulation.

5.1 Experimental setup

The experimental setup includes a rectangular cavity with two
monopole antennas, each measuring 5.7 cm in length, mounted
on a wall of the cavity, as shown in Figure 11. The excitation
signal considered in this study is a Gaussian pulse within a fre-
quency range of 0 to 10 GHz, applied to the source antenna
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LE BOUDEC ET AL. 7

FIGURE 7 Proposed metric applied to a 2D inhomogeneous medium.
(a) Energy–location standard deviation as a function of time. The average
source–power time is indicated. The dashed line (right-hand side axis) also
indicates the domain energy ∬ ue (t , r)dS . The red dot indicates the global
minimum, and the energy density at the corresponding time is displayed in (b).
In the same plot, the path of the average energy–location at all times is
displayed in a colour scheme corresponding to (a).

FIGURE 8 Entropy-based metric applied to a 2D inhomogeneous
medium. (a) The electric field entropy as a function of time. The red dot
indicates the global minimum. (b) plots the energy density distribution at the
corresponding time of lowest entropy.

FIGURE 9 Kurtosis-based metrics applied to a 2D inhomogeneous
medium. (a) Space kurtosis as a function of time. A red dot indicates the global
maximum. (b) Time kurtosis as a function of space. The scatterers correspond
to the white ellipses.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
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m
)

Maximum electric field norm (V/m)

2

FIGURE 10 Time maximum of the electric field norm applied to the 2D
inhomogeneous-medium case study. A red cross indicates the source location.

(lower x–coordinate in Figure 11). To apply the time-reversal
method, the frequency response of the cavity between the
two monopole antennas is measured using a vector network
analyser. Subsequently, to obtain the signal received by the time-
reversal mirror, the Fourier transform of the excitation signal
is multiplied by the measured frequency response. Finally, an
inverse Fourier transform is applied to the result, illustrated in
Figure 12. In the backward propagation phase, the geometry
of the problem is modelled in CST Studio Suite. The received
signal is time-reversed and numerically injected back into the
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8 LE BOUDEC ET AL.

FIGURE 11 Experimental setup. (a) A copper-walled reverberant
chamber is fitted with a single-antenna time-reversal mirror. The
electromagnetic interference source is introduced by a similar antenna shifted
in the negative-x direction. Both antennas are shown in (b).

FIGURE 12 Time-domain representation of the signal measured at the
time-reversal mirror.

model from the time-reversal mirror. Then, the metrics pre-
sented in Section 4.1 are applied to the simulated electric and
magnetic fields. To reduce the effect of the back-propagating
antenna near-field, a cylinder around the antenna (illustrated in
Figure 16(b)) is excluded from the computation domain.

5.2 Results

Figures 13–17 present the results obtained using the proposed
and the considered existing metrics. Again, the spatial maxi-
mum electric field norm (Figure 13) and the energy–location
standard deviation (Figure 14(a)) can identify the focusing
time. Indeed, the energy density at the corresponding instant
(Figure 14(b)) is localized at the source location. Neverthe-
less, the path described by the average location of energy is
contained in a narrow central region, and the source location
cannot be identified. As in the simulated case, both the entropy

FIGURE 13 Spatial maximum electric field norm as a function of time
applied to the 3D experimental case study. The red dot indicates the global
maximum.

FIGURE 14 Proposed metric applied to a 3D experimental case study.
(a) Energy–location standard deviation as a function of time. The average
source–power time is indicated. The dashed line (right-hand side axis) also
indicates the domain energy ∭ ue (t , r)dV . The red dot indicates the global
minimum, and the energy density at the xy-slice at z = 6.5 cm and the
corresponding time is displayed in (b). In the same plot, the path of the average
energy–location at all times is displayed in a colour scheme corresponding
to (a).

(Figure 15(a)) and the space kurtosis (Figure 16(a)) yield spu-
rious focusing times, as can be seen in Figure 15(b). Also, as
seen in Figure 16(b), the time kurtosis is maximal at the source
location. However, it also features a spurious local maximum
close to the source. Finally, the maximum electric field norm in
Figure 17 identifies the source location but also contains many
local maxima caused by numerous reflections in the cavity.
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LE BOUDEC ET AL. 9

FIGURE 15 Entropy-based metric applied to a 3D experimental case
study. (a) The electric field entropy as a function of time. The red dot indicates
the global minimum. (b) plots the energy density distribution at the xy-slice at
z = 6.5 cm and the corresponding time of lowest entropy.
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FIGURE 16 Kurtosis-based metrics applied to a 3D experimental case
study. (a) Space kurtosis as a function of time. A red dot indicates the global
maximum. (b) Time kurtosis as a function of space at the xy-slice at z = 6.5 cm.

FIGURE 17 Time maximum of the electric field norm applied to a 3D
experimental case study. We show the xy-slice at z = 6.5 cm.

6 DISCUSSION

The findings, summarized in Table 1, show that the proposed
metric can always determine the focusing time. In the simulated
case study, the average energy–location can also estimate the
source location. The proximity between the time-reversal mirror
and the source can explain the localization failure for the average
energy–location metric in the experimental case. Indeed, in this
case, the field enhancement induced by the time-reversal mir-
ror antenna attracts the average energy–location. The fact that
the total energy is not constant in the considered domain (see
Figures 7(a) and 14(a)) might also have an effect. Nevertheless,
contrary to other metrics (e.g. the spatial maximum electric field
norm, which fares comparably), it is not affected by the field
enhancement caused by the scatterers.

Both the experimental and the simulated case studies feature
reverberant environments. In reverberation chambers, the typ-
ical eigenmode bandwidth (determined by losses) and density
(determined by the geometry and frequency) define a threshold
for the signal bandwidth, under which mode stirring is usu-
ally needed [13]. While the imaging resolution usually increases
with bandwidth, as an increasing number of eigenmodes are
involved, this increase is however not metric-dependent.

7 CONCLUSION

In source localization using time reversal, a backward-
propagation stage is required to identify the source location.
The data from this stage is post-processed to determine the
focusing time and source location. Several metrics to quantify
this process have been proposed in the literature, including the
electric field maximum, the field entropy, time kurtosis, and
space kurtosis. We introduced a novel metric based on the spa-
tiotemporal distribution of the electromagnetic energy density.
In a theoretical analysis, we showed that the proposed metric
can identify the focusing time through the minimum of the
energy–location variance (or standard deviation). The focus-
ing time and the minimum energy–location variance (i.e. the
best achievable field focusing) can be predicted by the source
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10 LE BOUDEC ET AL.

TABLE 1 Summary of the metric results in both case studies (simulated 2D inhomogeneous medium and 3D experimental reverberant cavity). In both cases,
the time reversal stage is performed in a simulation. We separately assess the metrics’ ability to determine the focusing time and the source location. The comparison
between the experimental and simulated case studies is irrelevant as the dimensionality, geometries, and source signals differ.

Inhomogeneous medium case study Experimental case study

Metric Focusing time error (ns) Source location error (cm) Focusing time error (ns) Source location error (cm)

Spatial max. E-field Emax(t ) 0.03 10.4†,‡ 0.01* 0.6‡

Temporal max. E-field Emax(r) N/A 10.4† N/A 0.6

Entropy 3.37 58.3†,‡ 1.10* 16.3‡

Space kurtosis 4.68 58.3†,‡ 1.10* 16.3‡

Time kurtosis N/A 14.9† N/A 1.1

Average energy–location N/A 7.3 N/A 7.7

Energy–location variance 0.07 7.6†,‡ 0.01* 0.6‡

†Ignoring two 20 cm squares centred at the scatterers.
‡Obtained by determining the energy density maximum at the focusing time.
*Focusing time reference obtained by visual inspection of the energy density.

excitation waveform through the average source–power time
and the source–power variance. We then applied the proposed
metric to a numerical case study in inhomogeneous media and
compared it to the existing metrics. Finally, we applied the met-
rics to an experimental case study to locate an electromagnetic
interference source.

To conclude, in the studied cases, the focusing time is
predicted significantly more reliably by the proposed metric
compared to existing ones. This time alone can suffice to deter-
mine the source location by observing the field distribution at
the corresponding time. The entropy and the kurtosis only con-
sider the statistical distribution of the field values, irrespective of
where these values are placed. This lack is filled by the proposed
metric, which combines the spatial and temporal information
of the field. In applications such as electromagnetic interference
source localization, combining several metrics to mitigate the
adverse effect of a single metric’s disadvantages seems advis-
able. Finally, the metric allows the study of anisotropic media by
considering the entire energy–location covariance matrix (not
only its trace). It opens the path to analysing wave focusing in
complex media, such as metamaterials.
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APPENDIX A: ENERGY–LOCATION

COVARIANCE OF A DIPOLE

In this appendix, we look at the time dependence of the pro-
posed metric in the case of a time-reversed dipole, yielding the
results presented in Section 3.

We first compute the energy UEM(t ) in spherical coordinates,
from Equation (12):

UEM(t ) =
𝜇

(4𝜋c )2 ∫
∞

0

[
p′(t − r∕c )2 + p′(t + r∕c )2

]
dr

∫
𝜋

0
sin3(𝜃)d𝜃 ∫

2𝜋

0
d𝜙 (A1)

to get

∫
∞

0

[
p′(t − r∕c )2 + p′(t + r∕c )2

]
dr = 6𝜋c2

𝜇
UEM(t ) (A2)

By performing the integral separately on both terms of the inte-
grand above, together with the changes of variable u = t ∓ r∕c,
we see that UEM(t ) does not depend on the time t . We thus write
UEM from now on.

Next, let us compute the average energy–location. By rota-
tional symmetry around the z-axis, ⟨x⟩t

EM = ⟨y⟩t

EM; we thus
focus on

⟨x⟩t

EM =
𝜇

UEM(4𝜋c )2 ∫
∞

0

[
p′(t − r∕c )2 + p′(t + r∕c )2

]
dr

∫
𝜋

0
sin4(𝜃)d𝜃 ∫

2𝜋

0
cos(𝜙)d𝜙 = 0 (A3)

Likewise,

⟨
z
⟩t

EM
=

𝜇

UEM(4𝜋c )2 ∫
∞

0

[
p′(t − r∕c )2 + p′(t + r∕c )2

]
dr

∫
𝜋

0
sin3(𝜃) cos(𝜃)d𝜃 ∫

2𝜋

0
d𝜙 = 0 (A4)

In summary, the average energy–location is the origin, i.e.⟨r⟩t

EM = 0 for all t .
We turn our attention to the energy–location variance. We

have

(𝜎t
xx )2 =

⟨
x2
⟩t

EM
− (⟨x⟩t

EM
⏟⏟⏟

0

)2 (A5)

As above,

(𝜎t
xx )2 =

𝜇

UEM(4𝜋c )2 ∫
∞

0
r2
[
p′(t − r∕c )2 + p′(t + r∕c )2

]
dr

∫
𝜋

0
sin5(𝜃)d𝜃 ∫

2𝜋

0
cos2(𝜙)d𝜙

=
𝜇

15𝜋c2UEM ∫
∞

0
r2
[
p′(t − r∕c )2 + p′(t + r∕c )2

]
dr (A6)

We now show that this is a convex quadratic function of time.
To this end, we calculate the time derivatives by differentiating
under the integral sign:

d(𝜎t
xx )2

dt
=

2𝜇
15𝜋c2UEM

⋅

∫
∞

0
r2
[
p′(t − r∕c )p′′(t − r∕c ) + p′(t + r∕c )p′′(t + r∕c )

]
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝜕r [−c∕2p′ (t−r∕c )2+c∕2p′ (t+r∕c )2]

dr

=
2𝜇

15𝜋cUEM ∫
∞

0
r
[
p′(t − r∕c )2 − p′(t + r∕c )2

]
dr (A7)

by integration by parts and the support of p. Further differenti-
ating,

d2(𝜎t
xx )2

dt 2
=

4𝜇
15𝜋cUEM

⋅

∫
∞

0
r
[
p′(t − r∕c )p′′(t − r∕c ) − p′(t + r∕c )p′′(t + r∕c )

]
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝜕r [−c∕2p′ (t−r∕c )2−c∕2p′ (t+r∕c )2]

dr

=
2𝜇

15𝜋UEM ∫
∞

0

[
p′(t − r∕c )2 + p′(t + r∕c )2

]
dr = 4c2

5
> 0

(A8)
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12 LE BOUDEC ET AL.

by Equation (A2). Similarly, for the z-component, we obtain

d2(𝜎t
zz )2

dt 2
= 2c2

5
> 0 (A9)

Therefore, the energy–location variance for the x, y, and z com-
ponents is a convex-quadratic function of time. It reaches its
global minimum at some time t⋆ satisfying, by Equation (A7),

d(𝜎t
xx )2

dt
= 0 ⟺ ∫

∞

0
r
[
p′(t⋆ − r∕c )2 − p′(t⋆ + r∕c )2

]
dr = 0

⟺ ∫
∞

0
r p′(t⋆ − r∕c )2dr = ∫

∞

0
r p′(t⋆ + r∕c )2dr (A10)

By the changes of variable u = t⋆ ∓ r∕c, the criterion becomes

∫
t⋆

−∞
(t⋆ − u)p′(u)2du = ∫

∞

t⋆
(u − t⋆ )p′(u)2du

⟺ t⋆ ∫
∞

−∞
p′(u)2du = ∫

∞

−∞
up′(u)2du (A11)

⟺ t⋆ =
∫ ∞

−∞ t p′(t )2dt

∫ ∞

−∞ p′(t )2dt
= ts = ⟨t ⟩(p′ )2 (A12)

by grouping integrals. We also recognized the expected value of
t given the density (p′ )2, i.e. the average source–power time ts.
Note that this time t⋆ is the same for all coordinates.

Finally, the minimum energy–location variance is obtained by
evaluating Equation (A6) at the time t⋆ obtained above:

(𝜎⋆xx )2 =
𝜇

15𝜋c2UEM ∫
∞

0
r2
[
p′(t⋆ − r∕c )2 + p′(t⋆ + r∕c )2

]
dr

=
𝜇c

15𝜋UEM

[
∫

t⋆

−∞
(t⋆ − u)2 p′(u)2du + ∫

∞

t⋆
(u − t⋆ )2 p′(u)2du

]

=
𝜇c

15𝜋UEM ∫
∞

−∞
(u − t⋆ )2 p′(u)2du (A13)

where we performed the changes of variable u = t ∓ r∕c and
regrouped the resulting integrals. Again, we recognize a variance
in terms of source power:

(𝜎⋆xx )2 =
𝜇c

15𝜋UEM
𝜎2

s ∫
∞

−∞
p′(t )2dt (A14)

For some t0 > T , the total energy is given by the outgoing
component alone:

UEM =
𝜇

(4𝜋c )2 ∫
∞

0
p′(t0 − r∕c )2dr ∫

𝜋

0
sin3(𝜃)d𝜃 ∫

2𝜋

0
d𝜙

=
𝜇

6𝜋c ∫
t0

−∞
p′(t )2dt =

𝜇

6𝜋c ∫
∞

−∞
p′(t )2dt (A15)

by the change of variable t = t0 − r∕c and because t0 > T .
Introducing into Equation (A14), we obtain

(𝜎⋆xx )2 = (𝜎⋆yy )2 = 2c2

5
𝜎2

s (A16)

Similarly, for the z component,

(𝜎⋆zz )2 = c2

5
𝜎2

s (A17)

Finally, it is straightforward to check from Equation (A6) that
the covariances are zero for all t , i.e.

⟨xy⟩t

EM =
⟨

xz
⟩t

EM
=
⟨

yz
⟩t

EM
= 0 (A18)
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