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A SPECTRAL ANSATZ FOR THE LONG-TIME

HOMOGENIZATION OF THE WAVE EQUATION

by Mitia Duerinckx, Antoine Gloria & Matthias Ruf

Abstract. — Consider the wave equation with heterogeneous coefficients in the homogenization
regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving
rise to effective dispersive effects. The main achievement of the present work is a new ansatz
for the long-time two-scale expansion inspired by spectral analysis. Based on this spectral
ansatz, we extend and refine all previous results in the field, proving homogenization up to
optimal timescales with optimal error estimates, and covering all the standard assumptions on
heterogeneities (both periodic and stationary random settings).

Résumé (Un ansatz spectral pour l’homogénéisation de l’équation des ondes en temps long)
On considère l’équation des ondes en milieux hétérogènes dans le régime d’homogénéisation.

En temps long, l’onde interagit de façon non triviale avec les hétérogénéités, donnant lieu à des
effets dispersifs. Le résultat principal de ce travail est un nouvel ansatz pour le développement
à deux échelles en temps long, inspiré par une analyse spectrale. Sur la base de cet ansatz
spectral, nous étendons et raffinons tous les résultats précédents du domaine : nous obtenons
un résultat d’homogénéisation valable jusqu’à l’échelle de temps optimale avec des estimations
d’erreur optimales, et nous couvrons à la fois le cas d’hétérogénéités périodiques et aléatoires
stationnaires.
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1. Introduction

1.1. General overview. — Let d ⩾ 1 be the space dimension and let a be a sym-
metric coefficient field on Rd that satisfies the boundedness and ellipticity properties

|a(x)ξ| ⩽ |ξ|, ξ · a(x)ξ ⩾ λ|ξ|2, for all x, ξ ∈ Rd,(1.1)

for some λ > 0. We shall consider both the case when a is periodic and the case when a

is a stationary ergodic random field (in the latter case, we restrict to a Gaussian
model for illustration, cf. Definition 1.3). Given an impulse f ∈ C∞

c ((0,∞); L2(Rd)),
we consider the ancient solution of the associated linear wave equation

(1.2)
{
(∂2t −∇ · a(·/ε)∇)uε = f, in R× Rd,

uε = f = 0, for t < 0,

in the homogenization regime 0 < ε ≪ 1, and we are interested in the accurate
description of the long-time behavior of the flow. The reason why we focus on ancient
solutions (with uε = f = 0 for t < 0) is to ensure the well-preparedness of the wave
and to avoid propagating time oscillations; see the discussion in Section 1.6. Note that
we can also consider the case of strongly elliptic systems up to obvious modifications.
It is however crucial that coefficients be symmetric (to avoid exponentially growing
modes in the Floquet-Bloch theory).

On short timescales t = O(1), standard theory [7] ensures that the flow can be ap-
proximated to leading order by the ancient solution of a homogenized wave equation,

(1.3)
{
(∂2t −∇ · a∇)u = f, in R× Rd,

u = f = 0, for t < 0,

where the (constant) effective coefficient a is the same as for the homogenization of
the corresponding steady-state problem. This means that homogenization and time
evolution decouple to leading order on short timescales. As first understood by Santosa
and Symes [25], this is however no longer the case on longer timescales: more precisely,
a non-trivial interaction between homogenization and time evolution appears as soon
as t ⩾ O(ε−2) in the periodic setting, leading to a dispersive correction to the naively
homogenized wave equation (1.3).

In the periodic setting, the first rigorous analysis of this phenomenon is based on
spectral theory, more specifically on Floquet–Bloch theory, and is due to Lamacz [23]
in one space dimension, and to Dohmal, Lamacz, and Schweizer [9, 10] in higher di-
mension. They proved the convergence to some suitable dispersive homogenized wave
equation up to times t≪ ε−3. Due to the use of the Floquet–Bloch theory, it was
not clear that this approach could be applied beyond the periodic setting to other
standard frameworks for homogenization (such as quasi-periodic or random coeffi-
cient fields). To treat such cases, Benoit and the second author developed in [5] an
approximate version of the Floquet–Bloch theory, which was inspired by [2] and by
the observation that the derivative of the Bloch wave with respect to the wave num-
ber at 0 is a multiple of the standard corrector in homogenization. Extending this
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Long-time homogenization of the wave equation 525

to all orders, [5] introduced a notion of ‘Taylor–Bloch waves’, which approximately
diagonalize the elliptic operator −∇ · a∇ at low wavenumber. In contrast to the
standard Floquet–Bloch analysis, this approximate spectral approach is easily trans-
ferred to the random setting as it does not rely on the existence of exact Bloch waves
(see [14] for an extension of these ideas to other regimes). In the periodic case, this
allowed the authors of [5] to derive a whole hierarchy of higher-order homogenized
equations that are valid to leading order up to times t ⩽ O(ε−ℓ) for any ℓ ⩾ 0. These
higher-order homogenized equations are well-posed up to truncating high-frequencies.
In the random case, they also managed to cover the case of random coefficient fields,
for which a homogenized description can only be found up to some maximal timescale
t = O(ε−ℓ∗). Although this analysis allows reaching long timescales, it does not pro-
vide approximations with optimal accuracy. There is indeed a strong limitation in the
analysis: since the impulse f in equation (1.2) is not adapted to O(ε) oscillations of
the coefficients, Bloch waves at low wave number only describe the solution to leading
order, and Bloch waves at higher wave number should further be taken into account
for a finer description. The main difficulty is that Bloch waves at higher wave number
are not easily related to “correctors” in homogenization, so that it was unclear how
to improve the accuracy in [5].

Shortly after [5], following a variant of classical two-scale expansion methods [6],
Allaire, Lamacz, and Rauch [3] and Abdulle and Pouchon [24, 1] obtained similar
results in the periodic setting and did improve the accuracy in the description of the
wave flow on long timescales in terms of some two-scale expansion. Interestingly, and
as opposed to the equations obtained by approximate spectral theory, the homoge-
nized equations obtained in [3, 24, 1] have to be significantly reformulated several
times before they give rise to a well-posed problem (this is called the “criminal ap-
proximation” in [3]). Because the number of such reformulations increases with the
order of accuracy, and although arbitrarily long times and optimal accuracy can be
reached, the “infinite-order” homogenized operator they implicitly define cannot be
inverted even for very smooth functions.

On the one hand, approaches inspired by spectral theory are physically-motivated
(for waves equations, the spectrum is of the essence), yield well-posed equations valid
for long times, but so far were limited in terms of accuracy. On the other hand, ap-
proaches based on systematic two-scale expansions allow reaching both long times
and optimal accuracy, but essentially require as many reformulations as the order
of accuracy to obtain a well-posed equation, which prevents one from inverting the
associated “infinite-order” homogenized operator (in other words, the bound on the
homogenization error is not sharp). To sum up, a physically-motivated two-scale ex-
pansion to reach long times and optimal accuracy was still missing.

The main aim of this paper is to introduce a full spectral two-scale expansion for
(1.2), that extends [5] to any order and allows us to invert the “infinite-order” ho-
mogenized operator for smooth enough impulses f . This spectral two-scale expansion
is defined in Theorem 1, whereas the infinite-order result is given in Corollary 1. This
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infinite-order result shows that the analysis we do here is indeed paying off (it can-
not be obtained using the systematic two-scale expansions of [3, 24, 1]). The main
insight of this work is encapsulated in Proposition 1.5, which reformulates the explicit
formula for the solution of (1.2) based on Floquet–Bloch theory in a way that lever-
ages an intrinsic two-scale expansion (which we call spectral two-scale expansion).
A fundamental physical feature of this spectral two-scale expansion is the following:
corrections due to the fact that the impulse f is not adapted to O(ε) oscillations of the
coefficients are local with respect to f , see Remark 1.1. This original feature should be
of interest to the engineering community, as it means in particular that the expansion
actually reduces (essentially) to the much simpler one used in [5] outside the support
of the impulse. The main merit of this work is to work out this spectral two-scale
expansion and its combinatorial structure. The adaptation from the periodic to the
random setting is essentially routine to the expert in stochastic homogenization. It is
however important and shows the limitation of homogenization techniques for waves
in random media — which is why a detailed statement is included in Theorem 3.

Last, we also thoroughly discuss the two-scale approach of [3, 24, 1] (which we call
geometric two-scale expansion, cf. Section 1.5), and we relate it to the new spectral
two-scale expansion. This essentially amounts to comparing redundant hierarchies of
corrector equations, which we do in an algorithmic way. As an output, we improve
the error analysis of [3, 24, 1], cf. (1.12).

The rest of this introduction is organized as follows: In Section 1.2, we state our
main results on long-time homogenization, both in the periodic and in the random set-
tings, comparing the results obtained with the spectral and the geometric approaches.
Next, in Section 1.3, we comment on the important question of the well-posedness of
the formal homogenized equations (cf. (1.5) and (1.10) below). In Sections 1.4 and 1.5,
we motivate the special form of the spectral and the geometric two-scale expansions.
We conclude in Section 1.6 with a discussion of the well-preparedness assumption
for (1.2), going beyond the framework of ancient solutions.

Notation

– We write ∇ = (∇j)1⩽j⩽d for the gradient with respect to the space variable,
∂t for the time derivative, and (Dj)0⩽j⩽d for the space-time gradient with D0 = ∂t
and Dj = ∇j for 1 ⩽ j ⩽ d. Given n ∈ N, we denote by ∇n = (∇n

i1...in
)1⩽i1,...,in⩽d

the nth-order spatial derivative.
– For a vector field F and a matrix field G, we set (∇F )jl = ∇lFj and (∇ ·G)j =

∇lGjl (we systematically use Einstein’s summation convention for repeated indices).
We also denote by (∇F )T the pointwise transposed field, (∇F )Tjl = (∇F )lj .

– Given to matrices A,B ∈ Rm×n, we denote by A : B their inner product
defined by A : B = AijBij (again using Einstein’s summation convention). For
ξ ∈ Rd and an nth-order tensor T = (Tj1...jn)1⩽j1,...,jn⩽d, we use the notation
T ⊙ ξ⊗n = Tj1...jnξj1 . . . ξjn for the contraction. For two symmetric tensors

T = (Tj1...jn)j1,...,jn and S = (Sj1...jm)j1,...,jm ,

J.É.P. — M., 2024, tome 11
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we define their symmetric tensor product T ⊗s S as the (n +m)th-order symmetric
tensor characterized by (T ⊗s S)⊙ ξ⊗(n+m) = (T ⊙ ξ⊗n)(S ⊙ ξ⊗m) for all ξ ∈ Rd.

– The spatial Fourier transform of a function f defined on Rd is denoted by f̂(ξ) =´
Rd e

−iξ·xu(x) dx, and the inverse Fourier transform by f(x) =
´
Rd e

iξ·xf̂(ξ) d∗ξ with
d∗ξ = (2π)−ddξ.

– We set ⟨s⟩ := (1 + |s|2)1/2, and we similarly define the pseudo-differential oper-
ator ⟨∇⟩ with Fourier symbol (1 + |ξ|2)1/2. More generally, given a continuous map
χ : Rd → R, we define the pseudo-differential operator χ(∇) with Fourier-symbol χ(ξ).
Moreover, given an nth-order tensor T = (Tj1...jn)1⩽j1,...,jn⩽d we define the differential
operator T ⊙∇n = Tj1...jn∇n

j1...jn
.

– N stands for the set of nonnegative integers. For a multi-index n = (n1, . . . , nk) ∈
Nk, we let |n| = n1 + · · ·+ nk.

– E [·] stands for expectation in the random setting, and is also used in the periodic
setting as a short-hand notation for averaging on the unit cell Q = (−1/2, 1/2)d,
E [X] =

ffl
Q
X.

– We denote by C ⩾ 1 any constant that only depends on the dimension d and on
the ellipticity constant λ in (1.1). We use the notation ≲ (resp. ≳) for ⩽ C× (resp. ⩾
(1/C)×) up to such a multiplicative constant C. We write ≪ (resp. ≫) for ⩽ (1/C)×
(resp. ⩾ C×) up to a sufficiently large multiplicative constant C. We add subscripts
to indicate dependence on other parameters. We use Landau’s big-O notation in a less
rigorous way to indicate the scaling behavior of quantities, where the precise bounds
can depend on many parameters.

– The ball centered at x of radius r in Rd is denoted by Br(x), and we set B(x) =

B1(x), Br = Br(0), and B = B1(0).
– When defining hierarchies of correctors and of homogenized coefficients, we take

the convention that all quantities that are not defined are implicitly set to zero:
e.g. ψn = 0 for n < 0 and bn = 0 for n ⩽ 0 in Definition 2.1, etc.

1.2. Main results: long-time homogenization. — Our main results yield long-time
error estimates for the two-scale expansion of the heterogeneous wave equation (1.2)
with optimal accuracy up to the optimal maximal timescale, with optimal norms (see
below the statements for a precise discussion of optimality). We separately consider
the periodic and the random settings; the case of quasi-periodic coefficient fields could
be treated as well but is skipped for shortness.

1.2.1. Periodic setting. — We start with the case when the coefficient field a is pe-
riodic on the unit cell Q = (−1/2, 1/2)d. The main result of this contribution pro-
vides a two-scale expansion with optimal error estimate up to times t ⩽ O(ε−ℓ) for
any ℓ ⩾ 0. This is obtained by extending the spectral approach of [5] to higher-order
accuracy in form of a suitable two-scale expansion: while the error estimate in [5]
saturated at O(ε), we now reach accuracy O(εℓt), cf. (1.6). The formal homogenized
equation (1.5) takes the form of a dispersive correction of (1.3) and the discussion of
its well-posedness is postponed to Section 1.3; note that the homogenized differential
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operator in (1.5) below is necessarily symmetric in the sense that bk = 0 for all k
even.(1) The proof of this main result is displayed in Section 2, together with the
definition of spectral correctors.

Theorem 1. — Let a be Q-periodic. There exist sequences of spectral correctors {ψn}n
and {ζn,m}n,m obtained as solutions of elliptic problems on the periodic cell Q, a se-
quence of homogenized tensors {bn}n, and a sequence of Fourier multiplier {γn}n
with |γn(ξ)| ⩽ 1, cf. Definition 2.1, such that the following holds. For all ℓ ⩾ 1 and
for any impulse f ∈ C∞(R;H∞(Rd)) with f = 0 for t < 0, the ancient solution uε of
the heterogeneous wave equation (1.2) is accurately described by the ‘spectral two-scale
expansion’

(1.4) Sℓ
ε[u

ℓ
ε, f ] :=

ℓ∑
n=0

εnψn(·/ε)⊙ γℓ(ε∇)∇nuℓε

+ ε3
ℓ−3∑

2m=0

(−1)mε2m
ℓ−3−2m∑

n=0

εnζn,m(·/ε)⊙ γℓ(ε∇)∇n+1∂2mt f,

where uℓε is an ancient solution of the following formal homogenized equation on
R× Rd, in one of the meanings provided in Lemma 2.10,

(1.5) ∂2t u
ℓ
ε −∇ ·

(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)
∇uℓε = f +O(εℓ).

(Here, ψn is an nth-order tensor field, ζn,m is an (n+1)th-order tensor field, and bk is
a matrix-valued (k−1)th-order tensor — see the notation section for the contraction ⊙
of tensors of the same order.) More precisely, we have the following error estimate:
for all ℓ ⩾ 1 and t ⩾ 0,

(1.6) ∥utε − Sℓ
ε[u

ℓ;t
ε , f t]∥L2(Rd) + ∥D(utε − Sℓ

ε[u
ℓ;t
ε , f t])∥L2(Rd)

⩽ (εC)ℓ⟨t⟩ ∥⟨D⟩Cℓf∥L1((0,t);L2(Rd)). ♢

Remark 1.1. — The spectral two-scale expansion (1.4) has an important property
of physical interest: the second sum contains a series of terms that are all local with
respect to the impulse f , and this local contribution vanishes outside the support of f .
This specific form for the expansion owes to the Bloch wave analysis of Section 1.4.
It also illustrates the superiority of the present analysis over [5]: although outside the
support of the impulse the expansion in [5] has essentially the same form as (1.4) (up
to the pseudo-differential operator γℓ(ε∇)), it does not reach accuracy beyond the
order O(ε). ♢

Remark 1.2. — The above two-scale expansion (1.4) involves the pseudo-differential
operator γℓ(ε∇). Although convenient in the analysis, it might not be so in practice

(1)This is a consequence of the fact this operator appears as the homogenization of the self-adjoint
wave operator; see [5, Prop. 1] or our direct proof of Proposition 3.5 below.
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Long-time homogenization of the wave equation 529

(e.g. for numerical purposes). As shown in (2.6), we can expand

γℓ(ε∇) = 1 +

∞∑
k=2

εkγkℓ ⊙∇k

for some explicit tensors {γkℓ }k, so that for the purpose of (1.6) it can be approximated
to the required accuracy O(εℓ) by a finite-order differential operator. Note that the
pseudo-differential operator has some intrinsic spectral interpretation, playing the role
of a normalization of Bloch waves, cf. Section 1.4. ♢

The scaling εℓ⟨t⟩ of the error (1.6) is optimal. This can be seen in this periodic
setting on the explicit spectral formula (1.24) for the solution (with a first order Taylor
expansion of the time integrand) for a forcing term f compactly supported in time.
The scaling of the error with respect to the norm of f involves the optimal order
of derivatives with respect to ℓ (we indeed need at least ℓ derivatives to define uℓ –
we have not tried to optimize the multiplicative constant C). In particular it implies
the summability of the two-scale expansion (or the invertibility of the associated
“infinite-order homogenized operator” as pointed out in the introduction) in form of
the following corollary.

Corollary 1. — Let a be Q-periodic. Given an impulse f ∈ C∞(R;H∞(Rd)) that
decays as t ↓ −∞ in the sense of

´ 0

−∞ |t|∥⟨D⟩kf t∥L2(Rd) dt < ∞ for any k ⩾ 0,
consider the unique solution of the associated heterogeneous wave equation{

(∂2t −∇ · a(·/ε)∇)uε = f, in R× Rd,

limt↓−∞ utε ≡ 0, in Rd.

Then, in terms of the two-scale expansion (1.4), with uℓε now denoting the correspond-
ing solution of the formal homogenized equation (1.5) in the sense of Lemma 2.10, we
have for all t ∈ R,

(1.7) ∥D(utε − Sℓ
ε[u

ℓ;t
ε , f t])∥L2(Rd) ⩽ (εC)ℓ

ˆ t

−∞
(t− s)∥⟨D⟩Cℓfs∥L2(Rd) ds.

In particular, if for instance the impulse takes the form f t(x) = f1(t)f2(x), where f1
has a smooth and compactly supported Fourier transform on R and where f2 has a
compactly supported Fourier transform on Rd, then the two-scale expansion is sum-
mable in the following sense: for 0 < ε≪f 1 small enough (only depending on d, λ, f),
for all T ∈ R,

♢(1.8) lim
ℓ↑∞

sup
t⩽T

∥D(utε − Sℓ
ε[u

ℓ;t
ε , f t])∥L2(Rd) = 0.

For comparison, we display the corresponding result that can be obtained instead
of Theorem 1 when using a more standard “geometric” approach to devise a two-
scale expansion as in [3, 24, 1] (see Section 1.5 for an explanation of the naming
“geometric”). We slightly improve the error estimates of [3] thanks to the use of
suitable flux correctors (see Remark 3.7). Yet, the scaling with respect to ℓ in the
error estimate (1.11) is much worse than the one in Theorem 1 by a factor ℓℓ, thus
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showing the advantage of the spectral approach. (In particular, Corollary 1 does
not follow from Theorem 2.) The proof is displayed in Section 3, together with the
definition of hyperbolic correctors.

Theorem 2. — Let a be Q-periodic. There exists a sequence of hyperbolic correctors
{ϕn,m}n,m obtained as solutions of elliptic problems on the periodic cell Q, and there
exists a sequence of homogenized coefficients {an,m}n,m, cf. Definition 3.1, such that
the following holds. For all ℓ ⩾ 1 and for any impulse f ∈ C∞(R;H∞(Rd)) with
f = 0 for t < 0, the ancient solution uε of the heterogeneous wave equation (1.2) is
accurately described by the ‘hyperbolic two-scale expansion’

(1.9) Hℓ
ε [v

ℓ
ε] :=

ℓ∑
n=0

ℓ−n∑
m=0

εn+mϕn,m(·/ε)⊙∇n∂mt v
ℓ
ε,

where vℓε is an ancient solution of the following formal homogenized equation on
R × Rd, up to a suitable revamping, cf. (3.7), in one of the meanings provided in
Lemma 2.10,

(1.10) ∂2t v
ℓ
ε −∇ ·

( ℓ∑
n=1

ℓ−n∑
m=0

an,m ⊙ (ε∇)n−1(ε∂t)
m
)
∇vℓε = f +O(εℓ).

(Here, ϕn,m is an nth-order tensor and an,m is a matrix-valued (n−1)th-order tensor.)
More precisely, we have the following error estimate: for all ℓ ⩾ 1 and t ⩾ 0,

(1.11) ∥utε −Hℓ
ε [v

ℓ;t
ε ]∥L2(Rd) + ∥D(utε −Hℓ

ε [v
ℓ;t
ε ])∥L2(Rd)

⩽ (εCℓ)ℓ⟨t⟩ ∥⟨D⟩Cℓ⟨εCD⟩ℓ
2

f∥L1((0,t);L2(Rd)). ♢

It is instructive to compare spectral and geometric two-scale expansions (1.4)
and (1.9). Outside the support of f , (1.4) provides an approximation of uε to or-
der O(εℓ) by a sum of ℓ + 1 terms, whereas (1.9) reaches a similar order of approx-
imation with a sum of 1

4 (ℓ + 1)(ℓ + 4) terms (note that ϕn,m vanishes for m odd,
cf. Definition 3.1). This difference between O(ℓ) and O(ℓ2) terms in the expansions
illustrates the more intrinsic character of the spectral two-scale expansion and its
superiority in terms of estimates. There is obviously a link between spectral and hy-
perbolic correctors, and spectral correctors {ψn, ζn,m}n,m can indeed be recovered as
linear combinations of hyperbolic correctors {ϕn,m}n,m with coefficients that are non-
linear functions of hyperbolic homogenized coefficients {an,m}n,m. Working out the
precise algorithmic relation between the spectral and geometric approaches is quite
involved and necessarily algorithmic. This is the subject of Section 4. In particular,
in combination with Theorem 1, one can improve (1.11) a posteriori to

(1.12) ∥utε −Hℓ
ε [v

ℓ;t
ε ]∥L2(Rd) + ∥D(utε −Hℓ

ε [v
ℓ;t
ε ])∥L2(Rd)

⩽ (εC)ℓ⟨t⟩ ∥⟨D⟩Cℓf∥L1((0,t);L2(Rd)),

thus removing the spurious factor ℓℓ. This constitutes a significant strengthening of
the error analysis of [3] and could not be obtained from the geometric two-scale
expansion approach only.
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1.2.2. Random setting. — We turn to the case of a stationary ergodic random coeffi-
cient field a. For simplicity and illustration, we shall focus on the following Gaussian
model.

Definition 1.3. — The coefficient field a is said to be Gaussian with parameter β > 0

if it has the form a = h(G) for some h ∈ Lip(Rk)d×d with k ⩾ 1 and for some Rk-
valued centered stationary Gaussian random field G such that the covariance function

c(x) := E [G(x)⊗G(0)] , c : Rd −→ Rk×k,

has β-algebraic decay at infinity, |c(x)| ⩽ (1 + |x|)−β . ♢

The analysis of Theorem 1 can be repeated in this Gaussian setting, and leads to
the following two-scale expansion result with optimal error estimate up to the optimal
maximal timescale. Note that the maximal timescale depends on the decay rate β for
correlations and saturates in case of integrable decay β > d (which corresponds to
the strongest mixing possible in the Gaussian setting and yields the central limit
theorem scaling for large-scale averages of the coefficients). This result extends [5] to
higher-order accuracy. The proof is displayed in Section 2.8. Exactly as in the periodic
case above, a corresponding result could also be obtained in terms of the geometric
two-scale expansion; we skip the detail for shortness.

Theorem 3. — Let a be Gaussian with parameter β > 0 in the above sense, and define

ℓ∗ := ⌈β∧d
2 ⌉.

We can construct spectral correctors {ψn}n⩽ℓ∗ and {ζn,m}n+2m⩽ℓ∗−3 as well-behaved
solutions of some hierarchy of elliptic problems on the probability space, homogenized
tensors {bn}n⩽ℓ∗ , and a Fourier multiplier γℓ with |γℓ(ξ)| ⩽ 1, cf. Appendix A, such
that the following holds. For any impulse f ∈ C∞(R;H∞(Rd)) with f = 0 for t < 0,
the ancient solution uε of the heterogeneous wave equation (1.2) is accurately described
by the corresponding spectral two-scale expansion Sℓ

ε[u
ℓ
ε, f ] given in (1.4), where uℓε

is an ancient solution of the corresponding formal homogenized equation (1.5) in one
of the meanings provided in Lemma 2.10. More precisely, we have the following error
estimate: for all t ⩾ 0 and q <∞,

∥utε − Sℓ∗
ε [uℓ∗;tε , f t]∥Lq(Ω;L2(Rd)) + ∥D(utε − Sℓ∗

ε [uℓ∗;tε , f t])∥Lq(Ω;L2(Rd))

≲q ∥⟨·⟩⟨D⟩Cℓf∥L1(R;L2(Rd)) ×



⟨t⟩εd/2|log ε|1/2 : β > d, d even,
⟨t⟩εd/2

(
⟨t⟩1/2 ∧ ε−1/2

)
: β > d, d odd,

⟨t⟩εd/2|log ε| : β = d, d even,
⟨t⟩εd/2

(
(⟨t⟩|log ε|)1/2 ∧ ε−1/2

)
: β = d, d odd,

⟨t⟩εβ/2|log ε|1/2 : β < d, β ∈ 2N,
⟨t⟩εβ/2

(
⟨t⟩1−{β/2} ∧ ε−{β/2}) : β < d, β /∈ 2N,

with the short-hand notation {β/2}=β/2−⌊β/2⌋∈ [0, 1) for the fractional part of β/2.
♢
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For short times t = O(1), in the setting of integrable covariance β > d, the above
two-scale expansion error estimate is O(εd/2) (up to a logarithmic correction in even
dimensions). This is optimal and random fluctuations of uε become dominant beyond
this scaling since fluctuations naturally have the scaling O(εd/2) of the central limit
theorem, cf. e.g. [13]. For longer times, the two-scale expansion error further depends
on whether the dimension is odd or even due to the growth of correctors: For β > d,
the two-scale expansion error remains negligible ≪ 1, in the sense that the wave can
be accurately described in terms of some homogenized equation, only provided that

(1.13) t≪


ε−1/3 : d = 1,

ε−d/2|log ε|−1/2 : d even,
ε−(d−1)/2 : d odd > 1.

Up to such timescales, the above result can be used in particular to derive ballistic
transport properties of the wave, see [5, 14], as well as to derive spectral information
in a suitable low-energy regime, see [12]. Although the two-scale expansion cannot be
pushed further in general (except in the case of very specific structure of the coefficient
field, see e.g. the remark above Corollary 1.3 in [12]), ballistic transport could hold
for longer times (see e.g. the case of matched impedance in [26]).

Remarks 1.4 (Extensions)
– Nontrivial initial data: In Theorems 1 and 3, we focus on well-prepared data,

or equivalently, on ancient solutions of the heterogeneous wave equation, cf. (1.2).
If we rather consider the initial-value problem

(∂2t −∇ · a(·/ε)∇)zε = f, in R+ × Rd,

zε|t=0 = u◦, in Rd,

∂tzε|t=0 = v◦, in Rd,

with initial data u◦, v◦ ∈ L2(Rd), then, because of ill-preparedness, an O(ε) contri-
bution with almost-periodic time oscillations with O(ε−1) frequency is expected to
appear and to maintain forever: this is formally described in Section 1.6 below and
shows that a two-scale description cannot hold beyond accuracy O(ε). This issue is
naturally by-passed by rather considering the time-averaged solution

ztε,θ(x) :=

ˆ ∞

0

θ(t− s) zsε(x) ds, for some θ ∈ C∞
c (R).

Indeed, setting t0 := inf(supp θ), an integration by parts ensures that zε,θ is the
ancient solution of{

(∂2t −∇ · a(·/ε)∇)zε,θ = θ′(t)u◦ + θ(t)v◦ + fθ, in R× Rd,

ztε,θ = 0, for t < t0,
(1.14)

in terms of the time-averaged impulse f tθ(x) :=
´∞
0
θ(t−s) fs(x) ds. Hence, an effective

approximation for the time-averaged solution zε,θ is obtained as a direct consequence
of Theorems 1 and 3 for ancient solutions. Another way to solve this issue is to consider
oscillating initial data (u◦ε, v

◦
ε ) in form of a spectral two-scale expansion.
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– Heterogeneous mass density: As in [3], we may replace ∂2t by ρ(x/ε)∂2t in the
wave equation (1.2). Provided that the weight function ρ satisfies the uniform non-
degeneracy condition 1/C0 ⩽ ρ(x) ⩽ C0 for some constant C0 > 0, it does not change
much in the analysis once the definitions of correctors are suitably adapted. The
necessary changes are transparent and we skip the detail for shortness ♢

1.3. Well-posedness of homogenized equations. — We start by discussing the for-
mal homogenized equation (1.5) obtained with the spectral approach, where we recall
that b

k
= 0 for all k even. The obstacle to the well-posedness of this equation is the

lack of ellipticity of the operator

(1.15) −∇ ·
(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)
∇,

because of dispersive corrections. Indeed, the next-order homogenized coefficient b
3

can be proved to be non-negative, cf. [25], so that equation (1.5) is ill-posed in general.
This is not new to homogenization, and a similar difficulty occurs in the elliptic
setting when studying higher-order two-scale expansions, see e.g. [6, 15]. In this case,
one typically uses an inductive method, which, for the wave equation, would read as
follows: for ℓ ⩾ 1, set wℓ

ε :=
∑ℓ

k=1 ε
k−1w̃k, where w̃1 is the solution of{

(∂2t −∇ · a∇)w̃1 = f, in R× Rd,

w̃1 = f = 0, for t < 0,

and where for 2 ⩽ k ⩽ ℓ we inductively define w̃k as the unique solution of

(1.16)
{
(∂2t −∇ · a∇)w̃k =

∑k
j=2 ∇ · (bj ⊙∇j−1)∇w̃k+1−j , in R× Rd,

w̃k = 0, for t < 0.

It is easily checked that this wℓ
ε indeed satisfies (1.5). However, as originally observed

in [3] (in the similar setting of (1.10)), this notion of solution displays an immoderate
growth in time, which destroys any hope of using it for an accurate description of (1.2)
on long timescales. More precisely, the energy norm ∥∇wℓ;t

ε ∥L2(Rd) is expected to
behave like O(⟨εt⟩ℓ−1), which would make the approximation uε ∼ Sℓ

ε[w
ℓ
ε, f ] trivially

false on long timescales t≫ ε−1. This time growth (also called secular growth) appears
as a snowball effect as corrector terms in the above hierarchy of equations for {w̃k}k⩾1

have the preceding profiles as sources.
Instead of this naive inductive method, one must look for another way to rearrange

equation (1.5). In fact, as a ⩾ λ Id, we note that the Fourier symbol of the opera-
tor (1.15) remains positive in a fixed Fourier support for ε small enough. Therefore,
if the spatial Fourier transform of the impulse f is compactly supported (uniformly
in time), then for ε small enough the Duhamel formula allows us to define a unique
solution that keeps the same compact support in Fourier space at all times. With-
out this additional assumption on f , the operator (1.15) needs to be modified at
high frequencies O(1/ε) to ensure ellipticity, and there are different ways to proceed.
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In the following we discuss the three different regularizing terms that we consider in
Theorem 1. The resulting solutions satisfy (1.5) up to an error of the order O(εℓ).
We briefly describe high-frequency filtering, higher-order regularization, and the so-
called Boussinesq trick: these three approaches happen to be essentially equivalent up
to higher-order O(εℓ) errors, and we refer to Section 2.3 for the details.

(I) High-frequency filtering. — In [3], the authors proposed to use a low-pass trunca-
tion, which amounts to filtering out high frequencies of the impulse: equation (1.5) is
then replaced by

∂2t u
(I),ℓ
ε −∇ ·

(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)
∇u(I),ℓ

ε = χ(εα∇)f,

for some α ∈ (0, 1) and some χ ∈ C∞
c (Rd) with χ| 1

2B
= 1 and χ|Rd∖B = 0.

(II) Higher-order regularization. — The alternative method used in [5] amounts
to regularizing the operator (1.15) by adding a higher-order positive operator
κℓ(ε|∇|)ℓ(−△), where the factor κℓ > 0 is chosen for instance as the smallest value
that ensures the following uniform positivity,

ξ ·
(
a+

ℓ∑
k=2

bk ⊙ (iξ)⊗(k−1) + κℓ|ξ|ℓ
)
ξ ⩾ 1

2λ|ξ|
2, for all ξ ∈ Rd.

(III) Boussinesq trick. — This last method proceeds by rearranging the ill-posed equa-
tion (1.5) and is inspired by the standard perturbative procedure to rearrange the
ill-posed Boussinesq equation in the theory of water waves, see e.g. [8]. This so-called
Boussinesq trick was first adapted to the present setting by Lamacz [23] in one space
dimension for ℓ = 3. It was extended in [9] to higher dimension for ℓ = 3, and further
extended to all orders ℓ ⩾ 3 by Abdulle and Pouchon [1]. It is somehow of the same
spirit as the higher-order regularization above, but with the additional twist that it
further uses the wave equation itself. This approach is slightly more intrinsic than
the previous two ones, but it also has the disadvantage of involving derivatives of
the impulse. Let us illustrate the main idea for ℓ = 3. We first choose κ3 > 0 as the
smallest value such that

ξ · (b3 ⊙ (iξ)⊗2)ξ + κ3|ξ|2(ξ · aξ) ⩾ 0, for all ξ ∈ Rd.

We then decompose the operator (1.15) as
−∇ ·

(
a+ b3 ⊙ (ε∇)2

)
∇ = −∇ ·

(
a(1− κ3ε

2△) + b3 ⊙ (ε∇)2
)
∇− κ3ε

2△(∇ · a∇),

and we use that at leading order the equation (1.5) yields
∇ · a∇u3ε = ∂2t u

3
ε − f +O(ε2),

to the effect that one may reformulate (1.5) as
∂2t (1− ε2κ3△)u(III),3

ε −∇·
(
a(1− κ3ε

2△) + b3 ⊙ (ε∇)2
)
∇u(III),3

ε = (1− ε2κ3△)f,

up to an error of order O(ε4). By our choice of κ3, this equation is well-posed. This
method extends to arbitrary order and we refer to Section 2.3 for the details.

J.É.P. — M., 2024, tome 11



Long-time homogenization of the wave equation 535

Next, we turn to the well-posedness of the corresponding formal homogenized equa-
tion (1.10) obtained for the geometric two-scale expansion. While for equation (1.5)
the difficulty only came from the lack of ellipticity of the spatial differential opera-
tor (1.15), the existence theory for equation (1.10) is much more delicate as this equa-
tion involves higher-order mixed space-time derivatives. Just as for equation (1.5), the
inductive method (1.16) used in the elliptic setting leads to secular growth of the ap-
proximate solution and is of no use in the present situation. Before being able to use
high-frequency filtering, higher-order regularization, or the Boussinesq trick, we need
to get rid of higher-order mixed space-time derivatives in (1.10), which can be done
by iteratively using the equation itself (quite in the spirit of the above presentation
of the Boussinesq trick for ℓ = 3). This is called the criminal approximation in [3].
The thorough revisiting of this idea is the object of Section 3.3: more precisely, if vℓε
solves (1.10), then it is shown to satisfy an equation of the form

∂2t v
ℓ
ε −∇ ·

(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)
∇vℓε = f + ε2∇ ·

( ℓ−2∑
n=1

cn ⊙ (εD)n−1
)
∇f +O(εℓ),

where {bn}n coincides with the spectral homogenized coefficients and where {cn}n is
some family of nonlinear combinations of the hyperbolic coefficients {an,m}n,m; see
Lemma 3.8 for a precise statement. Now the differential operator in the left-hand side
of this equation is the same as in (1.5): it displays a lack of ellipticity, but the same
approach to well-posedness can be repeated, using either high-frequency filtering,
higher-order regularization, or the Boussinesq trick. Note that the right-hand side in
the above reformulation of the homogenized equation (1.10) differs from the homoge-
nized equation (1.5) obtained with the spectral approach, but there is no contradiction
as the spectral and hyperbolic two-scale expansions also differ: this demonstrates the
actual complexity of the link between spectral and hyperbolic correctors; see Section 4.

1.4. Spectral approach and two-scale expansion. — This section constitutes the
main insight of this contribution: the form of the spectral two-scale ansatz (1.4),

(1.17) uε ∼ S∞
ε [uε, f ] :=

∑
n⩾0

εnψn(·/ε)⊙ γ(ε∇)∇nuε

+ ε3
∑

n,m⩾0

(−1)mεn+2mζn,m(·/ε)⊙ γ(ε∇)∇n+1∂2mt f.

For that purpose, we focus on the periodic setting and first proceed to a fine Floquet–
Bloch analysis of the solution uε of the heterogeneous wave equation (1.2). Starting
point is an application of the Floquet transform, which is known to transform the
heterogeneous wave operator −∇ · a(·/ε)∇ on L2(Rd) into a family of fibered wave
operators on the periodic Bloch space L2(Q).

When embedding the periodic cell into the physical space Rd, there is an indeter-
minacy related to the choice of the origin (q ∈ Q), which we consider as an additional
variable. Averaging over this variable in Q allows us to place ourselves in the set-
ting of continuum stationarity – thus unifying the notation with the random setting.
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(All the upcoming results actually hold for q fixed in the periodic setting.) Hence,
as in [5, 14, 16], we enrich the structure by considering shifts of the periodic coeffi-
cient field and by augmenting the physical space Rd to include such shifts: we define
ũε ∈ L∞

loc(R+; L2(Rd ×Q)) such that, for all q ∈ Q, ũε(·, q) is the ancient solution of
the following shifted wave equation,

(1.18)
{(
∂2t −∇ · a( ·

ε + q)∇
)
ũε(·, q) = f, in R× Rd,

ũε(·, q) = f = 0, for t < 0.

In this augmented setting, the ε-Floquet transform [14, 16] of an element w̃∈L2(Rd×Q)

is formally defined as

(Vε
ξw̃)(q) :=

ˆ
Rd

e−iξ·y w̃(y, q − y/ε) dy,

which is Q-periodic with respect to q. The Fourier inversion formula takes on the
following guise, cf. [14, Lem. 2.2],

(1.19) w̃(x, q) =

ˆ
Rd

eiξ·x (Vε
ξw̃)(x/ε+ q) d∗ξ.

This leads to a direct integral decomposition(2)

L2(Rd ×Q) =

ˆ ⊕

Rd

L2(Q) eξ d
∗ξ

via Fourier modes eξ(x) := eiξ·x. Under this decomposition, the above wave equa-
tion (1.18) is equivalent to the following family of wave equations on the unit cell Q:
for all ξ ∈ Rd,{(

∂2t − (1/ε2)(∇+ iεξ) · a(∇+ iεξ)
)
Vε
ξũε = f̂(ξ), in R×Q,

Vε
ξũε = f̂(ξ) = 0, for t < 0,

where we recall that f̂ stands for the spatial Fourier transform of f . Solving this equa-
tion by means of Duhamel’s formula and using (1.19) to invert the Floquet transform,
we get

(1.20) ũtε(x, q) =

ˆ t

0

ˆ
Rd

eiξ·x
(
sin

(
(1/ε)(t− s)(Lεξ)

1/2
)

(1/ε)(Lεξ)1/2
1

)
(x/ε+ q) f̂s(ξ) d∗ξ ds,

with the short-hand notation

(1.21) Lξ := −(∇+ iξ) · a(∇+ iξ).

In other words, the solution can be decomposed as a superposition of fibered evolutions
on L2(Q), and, since the force f is not oscillating, only the fibered spectral measures
associated with the constant function 1 matter. It remains to evaluate the space-time
oscillating factor in formula (1.20) and to extract an effective behavior as ε≪ 1.

(2)Or, more precisely, a family of direct integral decompositions parameterized by ε, which changes
the way the unit cell Q is embedded in Rd.
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Proposition 1.5. — Let a be Q-periodic, let the impulse f ∈ C∞(R;H∞(Rd)) satisfy
f = 0 for t < 0, and assume for simplicity that the spatial Fourier transform f̂

is compactly supported uniformly in time. For all ξ, the self-adjoint operator Lξ on
L2(Q) defined in (1.21) has discrete spectrum and we denote its smallest eigenvalue
by λξ ⩾ 0. For |ξ| ≪ 1, this eigenvalue is simple and we denote by wξ a corresponding
normalized eigenfunction. We then set
(1.22) πξ1 := E [wξ]wξ, and π⊥

ξ 1 := 1− πξ1,

we note that the map Rd → R+ × L2(Q) : ξ 7→ (λξ, πξ1) is analytic for |ξ| ≪ 1, and
that for |ξ| ≲ 1 and ε≪ 1 it holds that
(1.23) |(1/ε2)λεξ| ≲ |ξ|2, and ∥πεξ1− 1∥L2(Q) ≲ ε|ξ|.

With this notation, for ε ≪f 1 (depending on the Fourier support of f), the above
formula (1.20) for ũε can be expanded as follows: for all n ⩾ 1,
(1.24)

ũtε(x, q) =

ˆ
Rd

eiξ·x (πεξ1)(x/ε+ q)

(ˆ t

0

sin
(
(t− s)((1/ε2)λεξ)

1/2
)

((1/ε2)λεξ)1/2
f̂s(ξ) ds

)
d∗ξ

+ ε3
n−1∑
m=0

(−1)mε2m
ˆ
Rd

eiξ·x Ψm
ξ,ε(x/ε+ q) ∂2mt f̂ t(ξ) d∗ξ

+O(ε2(n+1)) ∥⟨∂t⟩2n+1f̂∥L1 ∩L∞(R;L1(Rd)),

in terms of
(1.25) Ψm

ξ,ε := (Lεξ)
−m−1(1/ε)π⊥

εξ1,

which for |ξ| ≲ 1 is analytic with respect to ε≪ 1 and satisfies ∥Ψm
ξ,ε∥L2(Q) ≲m |ξ|. ♢

We emphasize the structure of the above expansion (1.24). Since in (1.20) only
the fibered spectral measures associated with the constant function w0 ≡ 1 (which is
the ground state of L0) matter, the main contribution in (1.24) is naturally given by
the perturbed ground state wεξ ∝ πεξ1. However, as the impulse f is not oscillating,
hence is not adapted to oscillations of the ground state wεξ, higher modes also create
another non-vanishing contribution. In other words:

– The first term in (1.24) corresponds to the contribution of the ground state of
the fibered operators {Lξ}ξ and the time dependence is expressed by some effective
evolution determined by the fibered ground eigenvalues {λξ}ξ.

– The second term in (1.24) is only of order O(ε3) and is induced by higher modes.
More precisely, the ill-preparedness of the impulse f creates a non-trivial oscillatory
contribution in Duhamel’s formula due to higher modes, which amounts after time
integration to a contribution that is local with respect to f . In particular, note that
this term vanishes outside the support of f .
For comparison, the Bloch wave approach in [23, 9, 10, 5] rather focused on the first
term in (1.24), thus neglecting the O(ε3) contribution of higher modes, and further
replaced the oscillating factor πεξ1 by a simpler (not normalized) proxy that is easier
to characterize but that yields an additional O(ε) error.
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Proof of Proposition 1.5. — To evaluate the space-time oscillating factor in (1.20), we
must investigate the spectrum of Lξ in the perturbative regime |ξ| ≪ 1. As this
self-adjoint operator has compact resolvent by Rellich’s theorem, it has discrete spec-
trum. We denote by λξ its smallest eigenvalue, which is nonnegative as Lξ is. Note
that for ξ = 0 the smallest eigenvalue of L0 is λ0 = 0 and is simple (with constant
eigenfunction). Since the perturbation Lξ − L0 is L0-bounded with relative norm
≲ 1 + |ξ|2, standard perturbation theory [22] together with the discreteness of the
spectrum of L0 ensures that the smallest eigenvalue λξ remains simple for |ξ| ≪ 1

small enough. Moreover, the branch of eigenvalues ξ 7→ λξ is analytic for |ξ| ≪ 1,
and there is a corresponding analytic branch of eigenfunctions. Recall the definition
of the corresponding projectors πξ, π⊥

ξ in the statement, and note that π01 = 1, so
that (1.23) follows. Now expanding the constant function 1 with respect to those
projectors, identity (1.20) turns into

(1.26)

ũtε(x, q) =

ˆ
Rd

eiξ·x(πεξ1)(x/ε+ q)

(ˆ t

0

sin
(
(t− s)((1/ε2)λεξ)

1/2
)

((1/ε2)λεξ)1/2
f̂s(ξ) ds

)
d∗ξ

+

ˆ t

0

ˆ
Rd

eiξ·x
(
sin

(
(1/ε)(t− s)(Lεξ)

1/2
)

(1/ε)(Lεξ)1/2
π⊥
εξ1

)
(x/ε+ q) f̂s(ξ) d∗ξ ds.

The first right-hand side term is already of the desired form, cf. (1.24). We turn to the
second term, which captures the contribution of higher modes. Due to the discreteness
of the spectrum, for |ξ| ≪ 1, the operator Lξ has a spectral gap Lξ|ℑπ⊥

ξ
≳ 1. Combined

with (1.23), this yields the following bound for (1.25),

∥Ψm
ξ,ε∥L2(Q) ≲m |ξ|.

For n ⩾ 1, noting that iterated integration by parts in the time integral yields for all
λ > 0,
ˆ t

0

sin((1/ε)(t− s)λ1/2)

(1/ε)λ1/2
f̂s(ξ) ds =

n∑
m=0

(
ε2/λ

)m+1
(−∂2t )mf̂ t(ξ)

−
(
ε2/λ

)n+1
ˆ t

0

cos
(
(1/ε)(t− s)λ1/2

)
∂s(−∂2s )nf̂s(ξ) ds,

where we used the vanishing assumption for the impulse at initial time s = 0, it then
follows from functional calculus that
ˆ t

0

ˆ
Rd

eiξ·x
(
sin

(
(1/ε)(t− s)(Lεξ)

1/2
)

(1/ε)(Lεξ)1/2
π⊥
εξ1

)
(x/ε+ q) f̂s(ξ) d∗ξ ds

= ε3
n−1∑
m=0

(−1)mε2m
ˆ
Rd

eiξ·x Ψm
ξ,ε(x/ε+ q) ∂2mt f̂ t(ξ) d∗ξ

+O(ε2(n+1)) ∥⟨∂t⟩2n+1f̂∥L1 ∩L∞(R;L1(Rd)).

Inserting this into (1.26) yields the conclusion (1.24). □
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We turn to the applicability of this spectral computation beyond the periodic set-
ting. In case of a stationary ergodic random coefficient field a, a similar Floquet
decomposition (1.20) can be justified, cf. [14, 16], but the corresponding fibered oper-
ators {Lξ}ξ are then defined on L2(Ω), where Ω is the underlying probability space,
and typically have non-discrete spectrum. For instance, the spectrum of L0 = −∇·a∇
on L2(Ω) is expected to be made of a simple eigenvalue at 0 embedded at the bot-
tom of an absolutely continuous spectrum, cf. [16]. In this setting, the Floquet–Bloch
theory fails and the above perturbative spectral computation cannot be adapted.
As shown in [5, 14], however, an ‘approximate spectral theory’ can be developed:
formal Rayleigh–Schrödinger series can be approximately constructed up to a cer-
tain accuracy, leading to approximate Bloch waves that can be used to approximately
diagonalize the heterogeneous wave operator and describe the flow on long timescales.
Equivalently, we may start from a two-scale ansatz given by the formal ε-expansion
of the spectral formula (1.24), and then use PDE techniques to show that it indeed
provides a good approximation of the flow to a certain accuracy. This approach is
the one we use for the proof of Theorems 1 and 3: it allows us to forget about the
underlying spectral interpretation, which is only used to devise an educated guess for
a two-scale ansatz.

Finally, let us describe the ε-expansion of the spectral formula (1.24), showing that
it takes the form of the spectral two-scale ansatz (1.17), and let us derive the relevant
hierarchy of PDEs for its coefficients. For that purpose, following [5], we first con-
sider the (not normalized) ground state ψεξ of Lεξ satisfying E [ψεξ] = 1. Expanding
formally

(1.27) ψεξ ∼
∑
n⩾0

εnψ̌n
ξ , λεξ ∼

∑
n⩾1

εnλ̌nξ ,

and separating powers of ε in the eigenvalue relation Lεξψεξ = λεξψεξ, we find that
the maps ψ̌n

ξ : Q → C and coefficients λ̌nξ ∈ C are defined inductively by ψ̌0
ξ = 1,

λ̌0ξ = 0, and for all n ⩾ 1,

−∇ · a∇ψ̌n
ξ = ∇ · (aiξψ̌n−1

ξ ) + iξ · a(∇ψ̌n−1
ξ + iξψ̌n−2

ξ ) +

n∑
k=1

λ̌kξ ψ̌
n−k
ξ ,(1.28)

E
[
ψ̌n
ξ

]
= 0, λ̌nξ = −E

[
iξ · (a∇ψ̌n−1

ξ + aiξψ̌n−2
ξ )

]
.

(Recall that by convention we implicitly set ψ̌n
ξ ≡ 0 for n < 0.) This hierarchy of

equations uniquely defines {ψ̌n
ξ , λ̌

n
ξ }n by the Fredholm alternative since by induction

the periodic average of the right-hand side of (1.28) vanishes; cf. Section 2.1. Note that
we find λ̌1ξ = 0 in agreement with (1.23). Next, we normalize ψεξ to get a normalized
ground state wεξ and we define the corresponding projections πεξ, cf. (1.22),

(1.29) wεξ =
ψεξ

E [|ψεξ|2]1/2
, E [wεξ] =

1

E [|ψεξ|2]1/2
, πεξ1 =

ψεξ

E [|ψεξ|2]
,
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and, in terms of (1.27),

(1.30)

(1/ε)π⊥
εξ1 =

1

E [|ψεξ|2]
(1/ε)

(
− ψεξ + E

[
|ψεξ|2

] )
=

1

E [|ψεξ|2]
∑
n⩾0

εn
(
− ψ̌n+1

ξ +

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌k

ξ

] )
.

We turn to the ε-expansion of {Ψm
ξ,ε}m, cf. (1.25): we write their expansions as

(1.31) Ψm
ξ,ε ∼ 1

E [|ψεξ|2]
∑
n⩾0

εnζ̌n,mξ ,

and it remains to write PDEs to characterize the coefficients {ζ̌n,mξ }n,m. For m = 0,
inserting (1.30) and separating powers of ε in the defining equation

LεξΨ
0
ξ,ε = (1/ε)π⊥

εξ1,

we find that the maps ζ̌n,0ξ : Q→ C are defined inductively for all n ⩾ 0 by

(1.32) −∇ · a∇ζ̌n,0ξ = ∇ · (aiξζ̌n−1,0
ξ )

+ iξ · a
(
∇ζ̌n−1,0

ξ + iξζ̌n−2,0
ξ

)
− ψ̌n+1

ξ +

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌k

ξ

]
,

with nontrivial integration constant fixed as

(1.33) E
[
ζ̌n,0ξ

]
:= −

n∑
k=1

k+2∑
l=2

(λ̌lξ/λ̌
2
ξ)E

[
ψ̌k+2−l
ξ ζ̌n−k,0

ξ

]
.

(Recall again that by convention we implicitly set ζ̌n,0ξ ≡ 0 for n < 0.) Again, these ob-
jects are well-defined by induction and the Fredholm alternative since our choice (1.33)
precisely ensures that the right-hand side of (1.32) has vanishing periodic average;
cf. Section 2.1. Next, we argue iteratively for m ⩾ 1: starting from the defining equa-
tion

LεξΨ
m
ξ,ε = Ψm−1

ξ,ε ,

we find that the maps ζ̌n,mξ : Q→ C are defined inductively for all n ⩾ 0 by

(1.34) −∇ · a∇ζ̌n,mξ = ∇ · (aiξζ̌n−1,m
ξ ) + iξ · a

(
∇ζ̌n−1,m

ξ + iξζ̌n−2,m
ξ

)
+ ζ̌n,m−1

ξ ,

with nontrivial integration constant fixed as

(1.35) E
[
ζ̌n,mξ

]
:= −(1/λ̌2ξ)

n+2∑
k=0

E
[
ψ̌n+2−k
ξ ζ̌k,m−1

ξ

]
−

n∑
k=2

k+1∑
l=2

(λ̌lξ/λ̌
2
ξ)E

[
ψ̌k+1−l
ξ ζ̌n−k,m

ξ

]
.

Putting all this together, using expansions (1.27) and (1.31), and extracting the
polynomial ξ-dependence of the coefficients in the notation,

ψ̌n
ξ = ψn ⊙ (iξ)⊗n, λ̌n+1

ξ = ξ · (bn ⊙ (iξ)⊗(n−1))ξ, ζ̌n,mξ = ζn,m ⊙ (iξ)⊗(n+1),
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the spectral formula (1.24) appears to be precisely equivalent to the spectral two-scale
ansatz (1.17), with Fourier multiplier γ given by

γ(ξ) := E
[
|ψξ|2

]−1
,

and with uε satisfying the associated formal homogenized equation, cf. (1.5),

∂2t uε −∇ ·
(
a+

∑
n⩾2

bn ⊙ (ε∇)n−1
)
∇uε ∼ f,

where dispersive corrections correspond to derivatives of the fibered ground states
{λξ}ξ at ξ = 0. We have also derived the PDE hierarchies defining correctors
{ψn, ζn,m}n,m, cf. (1.28), (1.32), and (1.34). For the proof of Theorems 1 and 3,
we replace infinite series by finite sums and show by PDE techniques that these are
still good approximations for the wave flow. In the random setting, just as in the
elliptic case [18, 4, 21, 15], we can only solve a finite number of the above corrector
equations, which is why a homogenized description is only obtained up to some
maximal timescale and accuracy, depending both on space dimension and on mixing
properties of the coefficient field.

1.5. Geometric approach and hyperbolic two-scale expansion. — Instead of star-
ting from the above spectral analysis, another way to describe oscillations of the
solution uε of the heterogeneous wave equation (1.2) is to appeal more directly to two-
scale expansion techniques [6] and rather postulate the following natural hyperbolic
two-scale ansatz,

(1.36) uε ∼ H∞
ε [vε] :=

∑
n,m⩾0

εn+mϕn,m(·/ε)⊙∇n∂mt vε,

where time and space play essentially symmetric roles and where vε should satisfy
some effective (constant-coefficient) hyperbolic equation. Inserting this ansatz into the
heterogeneous wave equation (1.2) and separating powers of ε, we are led to defining
hyperbolic correctors as Allaire, Lamacz, and Rauch in [3, Def. 2.2]. These correctors
can be viewed as a refinement of usual elliptic correctors: for all n ⩾ 0, the nth-order
hyperbolic corrector ϕn,0 and homogenized tensor an,0 defined in Section 3 indeed
coincide with their elliptic counterparts [6, 21, 15].

As in the elliptic setting, hyperbolic correctors have a natural geometric interpre-
tation. We focus on the periodic case to simplify the presentation. The first corrector
ϕ1,0, which is the same as in the elliptic setting, is defined to correct Euclidean coor-
dinates x 7→ xi into a-harmonic ones x 7→ xi + ϕ1,0i (x): indeed, ϕ1,0i is the unique
periodic solution of

−∇ · a(∇ϕ1,0i + ei) = 0,

with E
[
ϕ1,0

]
= 0. The corresponding two-scale expansion H1

ε [v] := v + εϕ1,0i ( ·
ε )∇iv

is then viewed as an intrinsic Taylor expansion of the limiting profile v in terms of
a-harmonic coordinates. In order to describe oscillations with finer accuracy, higher-
order correctors are iteratively defined to correct higher-order polynomials and make
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them adapted to the heterogeneous wave operator. More precisely, higher-order cor-
rectors {ϕn,m}n,m are defined in such a way that, for any polynomial p in space-time
variables x, t, the corrected polynomial
(1.37) H∞[p] :=

∑
n,m⩾0

ϕn,m ⊙∇n∂mt p

captures oscillations of the heterogeneous wave operator in the sense that
(∂2t −∇ · a∇)H∞[p]

has no periodic oscillations any longer. In that case, this quantity can automatically
be written as

(1.38) (∂2t −∇ · a∇)H∞[p] =

(
∂2t −∇ ·

(∑
n⩾1

∑
m⩾0

an,m ⊙∇n−1∂mt

)
∇
)
p,

for some suitable family {an,m}n,m of constant tensors; see Proposition 3.6. This
reflects the fact that on large scales the heterogeneous constitutive relation ∇u 7→ a∇u
is replaced by the effective relation ∇u 7→ a∇u at leading order, while additional
corrective terms must be included when looking for finer accuracy,
(1.39) ∇u 7−→

(∑
n⩾1

∑
m⩾0

an,m ⊙∇n−1∂mt

)
∇u.

The difference with the elliptic setting is that in the present hyperbolic setting both
space and time variables need to be corrected alike. Comparing to the spectral ap-
proach, note that the presence of mixed space-time derivatives in the resulting homo-
genized equation (1.10) leads to additional well-posedness issues: naive notions of
solution display a secular growth, which was first avoided in [3] as explained at the
end of Section 1.3.

1.6. Ill-prepared data. — Up to now, we have focused on well-prepared data, or
equivalently, on ancient solutions of the heterogeneous wave equation (1.2). We now
briefly discuss the effect of ill-prepared data by means of Floquet–Bloch theory, which
provides further insight on the claims of Remark 1.4. For that purpose, as in Proposi-
tion 1.5, we assume that the coefficient field a is periodic and that the impulse f has
compactly supported spatial Fourier transform: in this setting, for ε small enough,
the operator Lεξ has discrete spectrum and its lowest eigenvalue λεξ is simple for
all ξ in the Fourier support of f . We then show that, if initial data do not fit spa-
tial oscillations of the ground state, their projection on higher modes propagates and
maintains forever, leading to an O(ε) contribution that consists of a superposition
of typically incommensurate time oscillations with O(ε−1) frequency. This almost-
periodic structure prohibits any approximate description by a two-scale expansion
beyond accuracy O(ε). More precisely, we consider the initial-value problem

(
∂2t −∇ · a( ·

ε + q)∇
)
zε(·, q) = 0, in R+ × Rd,

zε(·, q)|t=0 = u◦, in Rd,

∂tzε(·, q)|t=0 = v◦, in Rd.
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By Floquet–Bloch theory, arguing as for (1.26), we now get

zε(x, q) =

ˆ
Rd

eix·ξ(πεξ1)(x/ε+ q)

×
(
cos

(
t((1/ε2)λεξ)

1/2
)
û◦(ξ) +

sin
(
t((1/ε2)λεξ)

1/2
)

((1/ε2)λεξ)1/2
v̂◦(ξ)

)
d∗ξ

+ rε(x, q),

where the remainder rε contains all the effects of initial ill-preparedness,

rε(x, q) :=

ˆ
Rd

eix·ξ
(
cos

(
t((1/ε2)Lεξ)

1/2
)
π⊥
εξ1

)
(x/ε+ q) û◦(ξ) d∗ξ

+

ˆ
Rd

eix·ξ
( sin (t((1/ε2)Lεξ)

1/2
)

((1/ε2)Lεξ)1/2
π⊥
εξ1

)
(x/ε+ q) v̂◦(ξ) d∗ξ.

Denoting by {νnεξ}n⩾0 the non-decreasing sequence of eigenvalues of Lεξ on L2(Q)

(repeated according to multiplicity, with ν1εξ > ν0εξ = λεξ), and denoting by {γnεξ}n⩾0

a corresponding sequence of normalized eigenfunctions, the above remainder can be
written as

rε(x, q) =

∞∑
n=1

ˆ
Rd

eix·ξκnεξγ
n
εξ(x/ε+ q)

×
(
cos

(
(t/ε)(νnεξ)

1/2
)
û◦(ξ) +

ε sin
(
(t/ε)(νnεξ)

1/2
)

(νnεξ)
1/2

v̂◦(ξ)
)
d∗ξ,

in terms of κnεξ := E
[
γnεξ

]
= O(εξ). As claimed, this shows that the remainder rε is of

order O(ε) and oscillates both in space and time with O(ε−1) frequency. Moreover,
at a fixed Fourier mode ξ, the time dependence is (typically) almost-periodic, which
prohibits any approximate description by means of a two-scale expansion beyond
accuracy O(ε).

As explained in Remark 1.4, these complicated oscillations are naturally removed
by taking time averages. In terms of the above remainder rε, this amounts to noting
that, given θ ∈ C∞

c (R), we formally have for all λ > 0,
ˆ ∞

0

θ(t− s) cos((s/ε)λ1/2) ds = ε2
∞∑
k=0

ε2k(−1)k+1λ−k−1θ(2k+1)(t),

ˆ ∞

0

θ(t− s)
ε sin((s/ε)λ1/2)

λ1/2
ds = ε2

∞∑
k=0

ε2k(−1)k+1λ−k−1θ(2k)(t),

so that the above flow decomposition is precisely turned into an expansion of the
form (1.24) for the time-averaged flow (1.14).

2. Spectral approach and two-scale expansion

This section is devoted to the definition of spectral correctors and to the proof
of Theorems 1 and 3 and of Corollary 1, including the well-posedness of the formal
homogenized equation (1.5).
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2.1. Definition of spectral correctors. — We start by recalling the definition of
the spectral correctors {ψn}n and homogenized tensors {bn}n, as first introduced in
[5, Def. 2.1] and motivated in Section 1.4, cf. (1.28). We further introduce Fourier mul-
tipliers {γℓ}ℓ, which are proxies for the factor E

[
|ψεξ|2

]−1 in (1.29), (1.30), and (1.31).

Definition 2.1 (Spectral correctors). — For all ξ ∈ Rd, we define {ψ̌n
ξ , λ̌

n
ξ }n⩾0 induc-

tively via ψ̌0
ξ = 1, λ̌0ξ = 0, and for all n ⩾ 1 we define ψ̌n

ξ ∈ H1
per(Q) as the periodic

scalar field that has vanishing average E
[
ψ̌n
ξ

]
= 0 and satisfies

(2.1) −∇ · a∇ψ̌n
ξ = ∇ · (aiξψ̌n−1

ξ ) + iξ · a(∇ψ̌n−1
ξ + iξψ̌n−2

ξ ) +

n∑
k=2

λ̌kξ ψ̌
n−k
ξ ,

where we have defined

(2.2) λ̌nξ = −E
[
iξ · a(∇ψ̌n−1

ξ + iξψ̌n−2
ξ )

]
,

recalling that we implicitly set ψ̌n
ξ ≡ 0 for n < 0 for notational convenience. Factoring

out powers of iξ in the above, we may then define the real-valued symmetric tensor
fields {ψn}n and symmetric tensors {bn}n via

(2.3) ψn ⊙ (iξ)⊗n = ψ̌n
ξ , ξ · (bn ⊙ (iξ)⊗(n−1))ξ = λ̌n+1

ξ .

We shall also use the notation a := b
1 as the latter coincides with the homogenized

coefficient for the associated elliptic equation. Next, for all ℓ ⩾ 1, we can define the
following Fourier multiplier,

♢(2.4) γℓ(ξ) := E
[
|
∑ℓ

n=0 ψ
n ⊙ (iξ)⊗n|2

]−1
.

Remarks 2.2
– As the choice (2.2) precisely ensures that the right-hand side of (2.1) has van-

ishing average, an iterative use of the Poincaré inequality on the unit cell Q easily
yields the following estimates: for all n,

(2.5) |bn|+ ∥ψn∥H1(Q) ⩽ Cn.

This ensures in particular the well-posedness of equations (2.1) & (2.2).
– Since by definition we have

E
[∑ℓ

n=0 ψ
n ⊙ (iξ)⊗n

]
= 1,

Jensen’s inequality yields

E
[
|
∑ℓ

n=0 ψ
n ⊙ (iξ)⊗n|2

]
⩾ 1,

which ensures that the definition (2.4) of the Fourier multiplier γℓ(ξ) indeed makes
sense and satisfies γℓ(ξ) ⩽ 1 for all ξ. In addition, in view of (2.5), we can expand,
for |ξ| ≪ 1 small enough,

(2.6) γℓ(ξ) = 1 +

∞∑
k=2

γkℓ ⊙ ξ⊗k,

J.É.P. — M., 2024, tome 11



Long-time homogenization of the wave equation 545

for some coefficients {γkℓ }k. In addition, this can be truncated to any order n ⩾ 0,

(2.7)
∣∣∣γℓ(ξ)− n∑

k=0

γkℓ ⊙ ξ⊗k
∣∣∣ ⩽ (C|ξ|)n+1.

– The uniform ellipticity of a, cf. (1.1), ensures that a = b1 is elliptic, and therefore
we have λ̌2ξ = ξ · aξ ⩾ λ|ξ|2 for all ξ ∈ Rd. ♢

As a consequence of the self-adjointness of fibered operators {Lξ}ξ in Section 1.4,
their first eigenvalues {λξ}ξ are real, hence, in view of (1.27) and (2.3), we deduce
that bn must vanish for all n even. Equivalently, λ̌nξ vanishes for n odd. This can
alternatively be proved by a direct computation starting from definition (2.2), cf. [5,
Prop. 1]; a similar (more involved) argument will be provided in Proposition 3.5, so
we skip the detail for now.

Proposition 2.3. — We have bn = 0 for all n even. ♢

As is common in the elliptic setting, it is useful to further introduce suitable flux
correctors, which will allow us to refine error estimates by directly exploiting cancel-
lations due to fluxes having vanishing average.

Definition 2.4 (Spectral flux correctors and auxiliary correctors). — For n ⩾ 0,
we define the spectral flux correctors σn := (σn

i1...in
)1⩽i1,...,in⩽d by

σn
i1...in = (∇Φn

i1...in)
T ,

where Φn
i1...in

∈ H1
per(Q)d is the periodic vector field that satisfies E

[
Φn

i1...in

]
= 0 and

−△(Φn
i1...in)in+1 = ein+1 ·a(∇ψn

i1...in+ψ
n−1
i1...in−1

ein)−
n+1∑
k=2

(eik ·b
k−1
i1...ik−2

eik−1
)ψn+1−k

ik+1...in+1
.

For n ⩾ 2, we also define the auxiliary correctors ρn := (ρni1...in)1⩽i1,...,in⩽d by

ρni1...in = ∇inΨ
n
i1...in−1

,

where Ψn
i1...in−1

∈ H1
per(Q) is the periodic vector field that satisfies E

[
Ψn

i1...in−1

]
= 0

and
−△Ψn

i1...in−1
= ψn−1

i1...in−1
. ♢

Next, we turn to the definition of the correctors {ζn,m}n,m, as motivated in Sec-
tion 1.4, cf. (1.32) and (1.34), and we start with the case m = 0.

Lemma 2.5. — For all n ⩾ 0 and ξ ∈ Rd, we recursively define ζ̌n,0ξ ∈ H1
per(Q) as the

unique periodic scalar field that satisfies

(2.8) −∇ · a∇ζ̌n,0ξ = ∇ · (aiξζ̌n−1,0
ξ ) + iξ · a

(
∇ζ̌n−1,0

ξ + iξζ̌n−2,0
ξ

)
− ψ̌n+1

ξ +

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌k

ξ

]
,
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with integration constant

(2.9) E
[
ζ̌n,0ξ

]
:= −

n∑
k=1

k+2∑
l=2

(λ̌lξ/λ̌
2
ξ)E

[
ψ̌k+2−l
ξ ζ̌n−k,0

ξ

]
.

With this choice of the constant, the above equation for ζ̌n,0ξ is indeed well-posed by the
Fredholm alternative as it iteratively ensures that the right-hand side has vanishing
average,

(2.10) E
[
iξ · a

(
∇ζ̌n−1,0

ξ + iξζ̌n−2,0
ξ

)]
+

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌k

ξ

]
= 0.

Factoring out powers of iξ, we may then define the real-valued symmetric tensor
field ζn,0 such that

ζn,0 ⊙ (iξ)⊗(n+1) := ζ̌n,0ξ . ♢

Proof. — It suffices to show by induction that (2.10) holds for all n ⩾ 0. For k ⩾ 0,
testing the defining equation (2.1) for ψ̌k+1

ξ with ζ̌n,0ξ , we get after averaging and
integrating by parts,

E
[
ψ̌k+1
ξ (−∇ · a∇ζ̌n,0ξ )

]
= E

[
ψ̌k
ξ

(
∇ · (aiξζ̌n,0ξ ) + iξ · a∇ζ̌n,0ξ

)
+ ψ̌k−1

ξ (iξ · aiξ)ζ̌n,0ξ

]
+

k+1∑
l=2

λ̌lξ E
[
ψ̌k+1−l
ξ ζ̌n,0ξ

]
.

Now inserting the defining equation (2.8) for ζ̌n,0ξ , and reorganizing the terms, this
becomes

E
[
ψ̌k+1
ξ

(
∇ · (aiξζ̌n−1,0

ξ ) + iξ · a(∇ζ̌n−1,0
ξ + iξζ̌n−2,0

ξ )
)
+ ψ̌k

ξ (iξ · aiξ)ζ̌
n−1,0
ξ

]
= E

[
ψ̌k
ξ

(
∇ · (aiξζ̌n,0ξ ) + iξ · a(∇ζ̌n,0ξ + iξζ̌n−1,0

ξ )
)
+ ψ̌k−1

ξ (iξ · aiξ)ζ̌n,0ξ

]
+ E

[
ψ̌k+1
ξ ψ̌n+1

ξ

]
+

k+1∑
l=2

λ̌lξ E
[
ψ̌k+1−l
ξ ζ̌n,0ξ

]
.

Iterating this identity (n+ 1)-times, starting from k = 0, and using that ψ0 = 1 and
that E [ψm] = 0 for all m ⩾ 1, we deduce after straightforward simplifications

E
[
iξ · a(∇ζ̌n,0ξ + iξζ̌n−1,0

ξ )
]
+

n+2∑
k=0

E
[
ψ̌n+2−k
ξ ψ̌k

ξ

]
= −

n+1∑
k=2

k∑
l=2

λ̌lξ E
[
ψ̌k−l
ξ ζ̌n+1−k,0

ξ

]
,

or equivalently,

E
[
iξ · a(∇ζ̌n,0ξ + iξζ̌n−1,0

ξ )
]
+

n+2∑
k=0

E
[
ψ̌n+2−k
ξ ψ̌k

ξ

]
= −λ̌2ξ E

[
ζ̌n−1,0
ξ

]
−

n−1∑
k=1

k+2∑
l=2

λ̌lξ E
[
ψ̌k+2−l
ξ ζ̌n−k−1,0

ξ

]
.

Now the choice (2.9) of the integration constant for ζ̌n−1,0
ξ precisely ensures that the

right-hand side vanishes, which proves that the identity (2.10) holds with n replaced
by n+ 1. □
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Next, we turn to the construction of corresponding correctors {ζn,m}n for m ⩾ 1,
as motivated in (1.34). The proof of this lemma is analogous to the one above and is
skipped for shortness.

Lemma 2.6. — Given m ⩾ 1, for all n ⩾ 0 and ξ ∈ Rd, we recursively define ζ̌n,mξ ∈
H1

per(Q) as the unique periodic scalar field that satisfies
(2.11) −∇ · a∇ζ̌n,mξ = ∇ · (aiξζ̌n−1,m

ξ ) + iξ · a(∇ζ̌n−1,m
ξ + iξζ̌n−2,m

ξ ) + ζ̌n,m−1
ξ ,

with integration constant

E
[
ζ̌n,mξ

]
:= (1/λ̌2ξ)

n+2∑
k=0

E
[
ψ̌n+2−k
ξ ζ̌k,m−1

ξ

]
−

n∑
k=1

k+2∑
l=2

(λ̌lξ/λ̌
2
ξ)E

[
ψ̌k+2−l
ξ ζ̌n−k,m

ξ

]
.

With this choice of the integration constants, the above equation for ζ̌n,m+1
ξ is indeed

well-posed by the Fredholm alternative as it iteratively ensures that the right-hand side
has vanishing average,
(2.12) E

[
iξ · a

(
∇ζ̌n−1,m

ξ + iξζ̌n−2,m
ξ

)
+ ζ̌n,m−1

ξ

]
= 0.

In particular, E
[
ζ̌0,mξ

]
= 0 for all m ⩾ 0. Factoring out powers of iξ, we may then

define the real-valued symmetric tensor field ζn,m such that
ζn,m ⊙ (iξ)⊗(n+1) := ζ̌n,mξ . ♢

Again, it is useful to further introduce associated flux correctors, which allow us
to refine error estimates by directly exploiting cancellations due to fluxes having
vanishing average.

Definition 2.7 (Spectral flux correctors). — For n ⩾ 0, we define the spectral flux
corrector τn,0 := (τn,0i1...in+1

)1⩽i1,...,in+1⩽d by
τn,0i1...in+1

= (∇Φn,0
i1...in+1

)T ,

where Φn,0
i1...in+1

∈ H1
per(Q)d is the periodic vector field that satisfies E

[
Φn,0

i1...in+1

]
= 0

and
−△Φn,0

i1...in+1
= a

(
∇ζn,0i1...in+1

+ ζn−1,0
i1...in

ein+1

)
− E

[
a
(
∇ζn,0i1...in+1

+ ζn−1,0
i1...in

ein+1

)]
.

We define the spectral flux corrector τn,m := (τn,mi1...in+1
)1⩽i1,...,in+1⩽d for n ⩾ −1 and

m ⩾ 1 by
τn,mi1...in+1

= (∇Φn,m
i1...in+1

)T ,

where Φn,m
i1...in+1

∈ H1
per(Q)d is the periodic vector field that satisfies E

[
Φn,m

i1...in+1

]
= 0

and
−△Φn,m

i1...in+1
= a

(
∇ζn,mi1...in+1

+ ζn−1,m
i1...in

ein+1

)
+ ζn+1,m−1

i1...in+2
ein+2

.

(Note that the definition of the ζn,m’s ensures that the expression in the right-hand
side has vanishing average.) ♢

Based on the above definitions, as for (2.5), an iterative use of the Poincaré in-
equality on the unit cell Q easily yields the following estimates.

Lemma 2.8. — For all m,n ⩾ 0,
♢(2.13) ∥(ψn, σn, ρn)∥H1(Q) + |bn| ⩽ Cn, ∥(ζn,m, τn,m)∥H1(Q) ≲ Cn+m.
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2.2. Spectral two-scale expansion. — Given a smooth function w, we consider its
two-scale expansion of order ℓ ⩾ 0 associated with the above-defined spectral correc-
tors, as motivated by spectral considerations in Section 1.4,

(2.14) Sℓ
ε[w, f ] :=

ℓ∑
n=0

εnψn(·/ε)⊙ γℓ(ε∇)∇nw

+ ε3
ℓ−3∑

2m=0

(−1)mε2m
ℓ−3−2m∑

n=0

εnζn,m(·/ε)⊙ γℓ(ε∇)∇n+1∂2mt f.

We show by PDE techniques that this expansion is indeed well-adapted to describe
the local behavior of the solution to the hyperbolic equation in the following sense: the
heterogeneous hyperbolic operator applied to Sℓ

ε[w, f ] is equivalent to a higher-order
effective operator applied to w, up to error terms of formal order O(εℓ). The proof is
postponed to Section 2.4.

Proposition 2.9 (Spectral two-scale expansion). — Let ℓ ⩾ 1, ε > 0, and let w, f be
smooth functions satisfying

(2.15) ∂2tw −∇ ·
(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)
∇w = f.

Then, the associated spectral two-scale expansion of order ℓ, defined in (2.14), satisfies
the following relation in the distributional sense in R× Rd,

(∂2t −∇ · a∇)Sℓ
ε[w, f ] = f

−
2ℓ∑

n=ℓ

εn
ℓ∧(n−1)∑

k=(n−ℓ)∨1

(−1)n−kE
[
ψn−k
ik+1...in

ψk
i1...ik

]
γℓ(ε∇)∇n

i1...inf

− εℓ∇ ·
(
ρℓi1...iℓ(·/ε)eiℓγℓ(ε∇)∇ℓ−1

i1...iℓ−1
f
)

− εℓ∇ ·
(
(aψℓ

i1...iℓ
− σℓ

i1...iℓ
)(·/ε) γℓ(ε∇)∇∇ℓ

i1...iℓ
w
)

+ εℓ(ψℓ + ρℓ)(·/ε)⊙ γℓ(ε∇)∇ℓf − εℓσℓ
i1...iℓ

(·/ε) : γℓ(ε∇)∇2∇ℓ
i1...iℓ

w

+

ℓ∑
n=1

ℓ+1∑
k=ℓ+2−n

εn+k−2ψn
i1...in(·/ε)b

k−1

in+1...in+k−2
: γℓ(ε∇)∇2∇n+k−2

i1...in+k−2
w

− εℓ
ℓ−2∑

2m=0

(−1)m∇·
((

aζℓ−3−2m,m
i1...iℓ−2−2m

− τ ℓ−3−2m,m
i1...iℓ−2−2m

)
(·/ε)γℓ(ε∇)∇∇ℓ−2−2m

i1...iℓ−2−2m
∂2mt f

)
− εℓ

ℓ−2∑
2m=0

(−1)mτ ℓ−3−2m,m
i1...iℓ−2−2m

(·/ε) : γℓ(ε∇)∇2∇ℓ−2−2m
i1...iℓ−2−2m

∂2mt f

+ εℓ∂2t

ℓ−3∑
2m=0

(−1)mζℓ−3−2m,m(·/ε)⊙ γℓ(ε∇)∇ℓ−2−2m∂2mt f. ♢
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2.3. Well-posedness of homogenized equation. — As motivated in Proposition 2.9,
cf. (2.15), we consider the following formal homogenized equation, for ℓ ⩾ 1,{

∂2tU
ℓ

ε −∇ ·
(
a+

∑ℓ
k=2 b

k ⊙ (ε∇)k−1
)
∇U ℓ

ε = f, in R× Rd,

U
ℓ

ε = f = 0, for t < 0.
(2.16)

However, as explained in the introduction, the symbol of the operator

(2.17) −∇ ·
(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)
∇

may vanish, so equation (2.16) is ill-posed in general. As described in Section 1.3,
several higher-order modifications of this equation can then be used to ensure well-
posedness: high-frequency filtering as in [3], higher-order regularization as in [5], or the
Boussinesq trick as in [1]. Let us precisely define each of them.

(I) High-frequency filtering. — Let α ∈ (0, 1), and let χ ∈ C∞
c (Rd) be a cut-off func-

tion with
χ| 1

2B
= 1, χ|Rd∖B = 0.

Provided that 0 < ε≪α 1 is small enough, the Fourier symbol of the operator (2.17)
is strictly positive on ε−αB, and we may then define u

(I),ℓ
ε as the unique solution

in R× Rd of

(2.18) ∂2t u
(I),ℓ
ε −∇ ·

(
a+

ℓ∑
k=2

bk ⊙ (ε∇)n−1
)
∇u(I),ℓε = χ(εα∇)f,

with u
(I),ℓ
ε = f = 0 for t < 0, such that the spatial Fourier transform of u(I),ℓε is

supported in R× ε−αB.

(II) Higher-order regularization. — Choose κℓ ⩾ 0 as the smallest real number such
that for all ξ ∈ Rd,

(2.19) ξ ·
(
a+

ℓ∑
k=2

bk ⊙ (iξ)⊗(k−1) + κℓ|ξ|ℓ
)
ξ ⩾ 1

2λ|ξ|
2.

Note that (2.5) entails κℓ ⩽ Cℓ. Then, for all ε > 0, we can define u(II),ℓε as the unique
solution in R× Rd of

(2.20) ∂2t u
(II),ℓ
ε −∇ ·

(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1 + κℓ(ε|∇|)ℓ
)
∇u(II),ℓε = f,

with u
(II),ℓ
ε = f = 0 for t < 0.

(III) Boussinesq trick. — Set κ1 = 1, κ2j = 0 for all j, and for j > 0 we define
inductively κ2j+1 ⩾ 0 as the smallest value such that for all ξ ∈ Rd,

(2.21) ξ ·
(
κ2j+1a +

2j∑
l=1

κl b
2j+2−l ⊙ (iξ/|ξ|)2j+1−l

)
ξ ⩾ 0.
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Note that (2.5) entails |κl| ⩽ Cl for all l. Then, for all ε > 0, we can define u(III),ℓ
ε as

the unique solution in R× Rd of

(2.22) ∂2t

(
1 +

ℓ∑
l=2

κl(ε|∇|)l−1
)
u(III),ℓε

−∇ ·
( ℓ∑

n=1

(
κna+

n−1∑
l=1

κlb
n+1−l ⊙ (∇/|∇|)n−l

)
(ε|∇|)n−1

)
∇u(III),ℓε

=
(
1 +

ℓ∑
l=2

κl(ε|∇|)l−1
)
f,

with u
(III),ℓ
ε = f = 0 for t < 0.

We analyze these three modifications of the formal homogenized equation (2.16)
and show that they are well-posed and all equivalent up to higher-order errors. The
proof is postponed to Section 2.5.

Lemma 2.10 (Well-posedness of effective equation). — Let f ∈ C∞(R;H∞(Rd)) and
let ℓ ⩾ 1.

(i) If the spatial Fourier transform of f is supported in R×BR for some R ⩾ 1, and
provided that εR ≪ 1 is small enough (independently of ℓ), then the formal effective
equation (2.16) admits a unique ancient solution U

ℓ

ε ∈ L∞
loc(R; L

2(Rd)) with spatial
Fourier transform supported in R×BR. Moreover, it satisfies for all r, t ⩾ 0,

∥⟨D⟩rDU ℓ;t

ε ∥L2(Rd) ≲ ∥⟨D⟩rf∥L1((0,t),L2(Rd)),

∥U ℓ;t

ε ∥L2(Rd) ≲ ⟨t⟩∥f∥L1((0,t);L2(Rd)).

(ii) The modified equations (2.18), (2.20), and (2.22) are well-posed in the space
L∞
loc(R; L

2(Rd)) in their respective sense, and their solutions satisfy for all r ⩾ 0, for
(⋆) = (I) or (II),

∥⟨D⟩rDu(⋆),ℓ;tε ∥L2(Rd) ≲ ∥⟨D⟩rf∥L1((0,t);L2(Rd)),

∥u(⋆),ℓ;tε ∥L2(Rd) ≲ ⟨t⟩∥f∥L1((0,t);L2(Rd)),

and for (⋆) = (III),

∥⟨D⟩rDu(III),ℓ;tε ∥L2(Rd) ⩽ Cℓ∥⟨D⟩r⟨ε∇⟩⌊(ℓ−1)/2⌋f∥L1((0,t);L2(Rd)),

∥u(III),ℓ;tε ∥L2(Rd) ⩽ Cℓ⟨t⟩∥⟨ε∇⟩⌊(ℓ−1)/2⌋f∥L1((0,t);L2(Rd)).

(iii) If the spatial Fourier transform of f is supported in R×BR for some R ⩾ 1,
and provided that εR≪ 1 is small enough (independently of ℓ), we have for all r, t ⩾ 0,

∥⟨D⟩r(u(I),ℓ;tε − U
ℓ;t

ε )∥L2(Rd) ⩽ (εC)ℓ∥⟨D⟩Kαℓ+rf∥L1((0,t);L2(Rd)),

∥⟨D⟩r(u(II),ℓ;tε − U
ℓ;t

ε )∥L2(Rd) ⩽ (εC)ℓ⟨t⟩∥⟨D⟩ℓ+rf∥L1((0,t);L2(Rd)),

∥⟨D⟩r(u(III),ℓ;tε − U
ℓ;t

ε )∥L2(Rd) ⩽ (εC)ℓ⟨t⟩∥⟨D⟩2ℓ+r−2f∥L1((0,t);L2(Rd),

with Kα ⩽ 1/α in the first estimate. ♢
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2.4. Proof of Proposition 2.9. — By scaling, it suffices to consider the case ε = 1

and we omit the subscript ε = 1 for notational convenience. The two-scale expan-
sion (2.14) can be decomposed as Sℓ[w, f ] = Sℓ

1[w] + Sℓ
2[f ], in terms of

Sℓ
1[w] :=

ℓ∑
n=0

ψn ⊙ γℓ(∇)∇nw,

Sℓ
2[f ] :=

ℓ−3∑
2m=0

ℓ−3−2m∑
n=0

(−1)mζn,m ⊙ γℓ(∇)∇n+1∂2mt f.

We split the proof into three steps, separately deriving equations for each part.

Step 1. Equation for Sℓ
1[w]. — We show that

(2.23) (∂2t −∇ · a∇)Sℓ
1[w]

=

ℓ∑
n=0

ψn ⊙ γℓ(∇)∇n

(
∂2tw −∇ ·

(
a+

ℓ∑
k=2

b
k ⊙∇k−1

)
∇w

)
−∇ ·

(
(aψℓ

i1...iℓ
− σℓ

i1...iℓ
) γℓ(∇)∇∇ℓ

i1...iℓ
w
)
− σℓ

i1...iℓ
: γℓ(∇)∇2∇ℓ

i1...iℓ
w

+

ℓ∑
n=1

ℓ+1∑
k=ℓ+2−n

ψn
i1...inb

k−1

in+1...in+k−2
: γℓ(∇)∇2∇n+k−2

i1...in+k−2
w.

A direct calculation based on the general formula
−∇ · a∇(hg) = (−∇ · a∇h)g −∇ · (ah) · ∇g − a∇h · ∇g − ha : ∇2g

yields, for all n ⩾ 0,

−∇ · a∇
(
ψn ⊙ γℓ(∇)∇nw

)
= (−∇ · a∇ψn

i1...in)γℓ(∇)∇n
i1...inw −∇ · (aψn

i1...inein+1
)γℓ(∇)∇n+1

i1...in+1
w

− (ein+1
· a∇ψn

i1...in)γℓ(∇)∇n+1
i1...in+1

w − (ein+2
· aψn

i1...inein+1
)γℓ(∇)∇n+2

i1...in+2
w.

Combined with the defining equation (2.1) for ψn, this entails

−∇ · a∇
(
ψn ⊙ γℓ(∇)∇nw

)
= ∇ · (aψn−1

i1...in−1
ein)γℓ(∇)∇n

i1...inw −∇ · (aψn
i1...inein+1

)γℓ(∇)∇n+1
i1...in+1

w

+ (ein · a∇ψn−1
i1...in−1

)γℓ(∇)∇n
i1...inw − (ein+1

· a∇ψn
i1...in)γℓ(∇)∇n+1

i1...in+1
w

+ (ein · aψn−2
i1...in−2

ein−1)γℓ(∇)∇n
i1...inw − (ein+2 · aψn

i1...inein+1)γℓ(∇)∇n+2
i1...in+2

w

−
n∑

k=2

(eik · bk−1
i1...ik−2

eik−1
)ψn−k

ik+1...in
γℓ(∇)∇n

i1...inw,

and thus, after summation over 0 ⩽ n ⩽ ℓ, taking into account the telescoping sum
we obtain that

(∂2t −∇ · a∇)Sℓ
1[w] =

ℓ∑
n=0

ψn
i1...inγℓ(∇)∇n

i1...in

(
∂2t −

ℓ−n∑
k=2

b
k−1

j1...jk−2
: ∇2∇k−2

j1...jk−2

)
w

−∇· (aψℓ
i1...iℓ

eiℓ+1
)γℓ(∇)∇ℓ+1

i1...iℓ+1
w− eiℓ+1

·a(∇ψℓ
i1...iℓ

+ψℓ−1
i1...iℓ−1

eiℓ)γℓ(∇)∇ℓ+1
i1...iℓ+1

w

− (eiℓ+2
· aψℓ

i1...iℓ
eiℓ+1

)γℓ(∇)∇ℓ+2
i1...iℓ+2

w,
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which we can rewrite as

(∂2t −∇ · a∇)Sℓ
1[w] =

ℓ∑
n=0

ψn
i1...inγℓ(∇)∇n

i1...in

(
∂2t −

ℓ+1−n∑
k=2

b
k−1

j1...jk−2
: ∇2∇k−2

j1...jk−2

)
w

−∇ · (aψℓ
i1...iℓ

eiℓ+1
)γℓ(∇)∇ℓ+1

i1...iℓ+1
w − (eiℓ+2

· aψℓ
i1...iℓ

eiℓ+1
)γℓ(∇)∇ℓ+2

i1...iℓ+2
w

−
(
eiℓ+1

·a(∇ψℓ
i1...iℓ

+ψℓ−1
i1...iℓ−1

eiℓ
)
−

ℓ+1∑
k=2

(eik ·b
k−1
i1...ik−2

eik−1
)ψℓ+1−k

ik+1...iℓ+1

)
γℓ(∇)∇ℓ+1

i1...iℓ+1
w.

Recalling the definition of flux correctors, cf. Definition 2.4, this means

(∂2t −∇ · a∇)Sℓ
1[w] =

ℓ∑
n=0

ψn
i1...inγℓ(∇)∇n

i1...in

(
∂2t −

ℓ+1−n∑
k=2

b
k−1

j1...jk−2
: ∇2∇k−2

j1...jk−2

)
w

−∇ ·
(
(aψℓ

i1...iℓ
− σℓ

i1...iℓ
)eiℓ+1

)
γℓ(∇)∇ℓ+1

i1...iℓ+1
w

− (eiℓ+2
· aψℓ

i1...iℓ
eiℓ+1

)γℓ(∇)∇ℓ+2
i1...iℓ+2

w,

and the claim (2.23) follows.

Step 2. Equation for Sℓ
2[f ]. — We show that

(2.24) (∂2t −∇ · a∇)Sℓ
2[f ] = −

ℓ−2∑
n=1

ψn ⊙ γℓ(∇)∇nf

−
ℓ−2∑

2m=0

(−1)m∇ ·
((

aζℓ−3−2m,m
i1...iℓ−2−2m

− τ ℓ−3−2m,m
i1...iℓ−2−2m

)
γℓ(∇)∇∇ℓ−2−2m

i1...iℓ−2−2m
∂2mt f

)
−

ℓ−2∑
2m=0

(−1)mτ ℓ−3−2m,m
i1...iℓ−2−2m

: γℓ(∇)∇2∇ℓ−2−2m
i1...iℓ−2−2m

∂2mt f

+

ℓ−2∑
n=0

n+1∑
k=0

(−1)n+1−kE
[
ψn+1−k
ik+1...in+1

ψk
i1...ik

]
γℓ(∇)∇n+1

i1...in+1
f

+ ∂2t

ℓ−3∑
2m=0

(−1)mζℓ−3−2m,m ⊙ γℓ(∇)∇ℓ−2−2m∂2mt f.

A direct calculation yields for all m,n,

−∇ · a∇
(
ζn,m ⊙ γℓ(∇)∇n+1∂2mt f

)
= (−∇ · a∇ζn,mi1...in+1

)γℓ(∇)∇n+1
i1...in+1

∂2mt f −∇ · (aζn,mi1...in+1
ein+2)γℓ(∇)∇n+2

i1...in+2
∂2mt f

−(ein+2
·a∇ζn,mi1...in+1

)γℓ(∇)∇n+2
i1...in+2

∂2mt f−(ein+3
·aζn,mi1...in+1

ein+2
)γℓ(∇)∇n+3

i1...in+3
∂2mt f.

For m = 0, inserting the defining equation for ζn,0, cf. (2.8), this entails

−∇ · a∇
(
ζn,0 ⊙ γℓ(∇)∇n+1f

)
= ∇ ·

(
aζn−1,0

i1...in
ein+1

)
γℓ(∇)∇n+1

i1...in+1
f −∇ ·

(
aζn,0i1...in+1

ein+2

)
γℓ(∇)∇n+2

i1...in+2
f

+
(
ein+1

· a∇ζn−1,0
i1...in

)
γℓ(∇)∇n+1

i1...in+1
f −

(
ein+2

· a∇ζn,0i1...in+1

)
γℓ(∇)∇n+2

i1...in+2
f

+
(
ein+1

· aζn−2,0
i1...in−1

ein
)
γℓ(∇)∇n+1

i1...in+1
f −

(
ein+3

· aζn,0i1...in+1
ein+2

)
γℓ(∇)∇n+3

i1...in+3
f

− ψn+1
i1...in+1

γℓ(∇)∇n+1
i1...in+1

f +

n+1∑
k=0

(−1)n+1−k E
[
ψn+1−k
ik+1...in+1

ψk
i1...ik

]
γℓ(∇)∇n+1

i1...in+1
f,
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and thus, after summation over 0 ⩽ n ⩽ ℓ− 3,

−∇ · a∇
ℓ−3∑
n=0

ζn,0 ⊙ γℓ(∇)∇n+1f = −∇ ·
(
aζℓ−3,0

i1...iℓ−2
eiℓ−1

)
γℓ(∇)∇ℓ−1

i1...iℓ−1
f

− eiℓ−1
· a

(
∇ζℓ−3,0

i1...iℓ−2
+ ζℓ−4,0

i1...iℓ−3
eiℓ−2

)
γℓ(∇)∇ℓ−1

i1...iℓ−1
f

−
(
eiℓ · aζ

ℓ−3,0
i1...iℓ−2

eiℓ−1

)
γℓ(∇)∇ℓ

i1...iℓ
f

−
ℓ−2∑
n=1

ψn
i1...inγℓ(∇)∇n

i1...inf+

ℓ−3∑
n=0

n+1∑
k=0

(−1)n+1−k E
[
ψn+1−k
ik+1...in+1

ψk
i1...ik

]
γℓ(∇)∇n+1

i1...in+1
f.

Proceeding similarly for m > 0, we find

−∇ · a∇
ℓ−3−2m∑

n=0

ζn,m ⊙ γℓ(∇)∇n+1∂2mt f

= −∇ ·
(
aζℓ−3−2m,m

i1...iℓ−2−2m
eiℓ−1−2m

)
γℓ(∇)∇ℓ−1−2m

i1...iℓ−1−2m
∂2mt f

− eiℓ−1−2m
· a

(
∇ζℓ−3−2m,m

i1...iℓ−2−2m
+ ζℓ−4−2m,m

i1...iℓ−3−2m
eiℓ−2−2m

)
γℓ(∇)∇ℓ−1−2m

i1...iℓ−1−2m
∂2mt f

−
(
eiℓ−2m

· aζℓ−3−2m,m
i1...iℓ−2−2m

eiℓ−1−2m

)
γℓ(∇)∇ℓ−2m

i1...iℓ−2m
∂2mt f

+

ℓ−3−2m∑
n=0

ζn,m−1
i1...in+1

γℓ(∇)∇n+1
i1...in+1

∂2mt f.

Combining the above two identities, we are led to

−∇ · a∇Sℓ
2[f ] = −

ℓ−3∑
2m=0

(−1)m∇ ·
(
aζℓ−3−2m,m

i1...iℓ−2−2m
eiℓ−1−2m

)
γℓ(∇)∇ℓ−1−2m

i1...iℓ−1−2m
∂2mt f

−
ℓ−3∑

2m=0

(−1)meiℓ−1−2m
·a

(
∇ζℓ−3−2m,m

i1...iℓ−2−2m
+ ζℓ−4−2m,m

i1...iℓ−3−2m
eiℓ−2−2m

)
γℓ(∇)∇ℓ−1−2m

i1...iℓ−1−2m
∂2mt f

−
ℓ−3∑

2m=0

(−1)m
(
eiℓ−2m

· aζℓ−3−2m,m
i1...iℓ−2−2m

eiℓ−1−2m

)
γℓ(∇)∇ℓ−2m

i1...iℓ−2m
∂2mt f

−
ℓ−2∑
n=1

ψn
i1...inγℓ(∇)∇n

i1...inf+

ℓ−3∑
n=0

n+1∑
k=0

(−1)n+1−k E
[
ψn+1−k
ik+1...in+1

ψk
i1...ik

]
γℓ(∇)∇n+1

i1...in+1
f

+

ℓ−3∑
2m=2

(−1)m
ℓ−3−2m∑

n=0

ζn,m−1
i1...in+1

γℓ(∇)∇n+1
i1...in+1

∂2mt f.

Recalling the definition of flux correctors, cf. Definition 2.7, as well as (2.10)
and (2.12), and reorganizing the terms, the claim (2.24) follows. Note that the flux
correctors τn,m’s are nontrivial even for n = −1, but those appear only in the case
when ℓ− 3 is odd.
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Step 3. Conclusion. — Combining the results of the last two steps, reorganizing the
terms, and recalling the relation (2.15) between w, f , we are led to

(2.25) (∂2t −∇ · a∇)Sℓ[w, f ] = f

−
(
γℓ(∇)−1 − 1−

ℓ−2∑
n=0

n+1∑
k=0

(−1)n+1−kE
[
ψn+1−k
ik+1...in+1

ψk
i1...ik

]
∇n+1

i1...in+1

)
γℓ(∇)f

−∇ ·
(
(aψℓ

i1...iℓ
− σℓ

i1...iℓ
) γℓ(∇)∇∇ℓ

i1...iℓ
w
)

+

ℓ∑
n=(ℓ−1)∨1

ψn
i1...inγℓ(∇)∇n

i1...inf − σℓ
i1...iℓ

: γℓ(∇)∇2∇ℓ
i1...iℓ

w

+

ℓ∑
n=1

ℓ+1∑
k=ℓ+2−n

ψn
i1...inb

k−1

in+1...in+k−2
: γℓ(∇)∇2∇n+k−2

i1...in+k−2
w

−
ℓ−2∑

2m=0

(−1)m∇ ·
((

aζℓ−3−2m,m
i1...iℓ−2−2m

− τ ℓ−3−2m,m
i1...iℓ−2−2m

)
γℓ(∇)∇∇ℓ−2−2m

i1...iℓ−2−2m
∂2mt f

)
−

ℓ−2∑
2m=0

(−1)mτ ℓ−3−2m,m
i1...iℓ−2−2m

: γℓ(∇)∇2∇ℓ−2−2m
i1...iℓ−2−2m

∂2mt f

+ ∂2t

ℓ−3∑
2m=0

(−1)mζℓ−3−2m,m ⊙ γℓ(∇)∇ℓ−2−2m∂2mt f,

and it remains to reformulate the second and fourth right-hand side terms. For the
second right-hand side term, we recall the definition (2.4) of γℓ, which yields

γℓ(ξ)
−1 − 1−

ℓ−2∑
n=0

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌k

ξ

]
= E

[∣∣∣ ℓ∑
n=0

ψ̌n
ξ

∣∣∣2]− 1−
ℓ−2∑
n=0

n+1∑
k=0

E
[
ψ̌n+1−k
ξ ψ̌k

ξ

]
=

2ℓ∑
n=ℓ

ℓ∑
k=n−ℓ

E
[
ψ̌n−k
ξ ψ̌k

ξ

]
.

For the fourth right-hand side term in (2.25), we use the auxiliary correctors of Defi-
nition 2.4 to write for ℓ ⩾ 2,

ψℓ−1
i1...iℓ−1

γℓ(∇)∇ℓ−1
i1...iℓ−1

f = ρℓi1...iℓγℓ(∇)∇ℓ
i1...iℓ

f −∇ ·
(
ρℓi1...iℓeiℓγℓ(∇)∇ℓ−1

i1...iℓ−1
f
)
.

Combining these identities yields the conclusion. □

2.5. Proof of Lemma 2.10. — We split the proof into five steps.

Step 1. Proof of (i): well-posedness provided supp f̂ ⊂ R×BR. — In Fourier space, the
operator −∇ · (a+

∑ℓ
k=2 b

k ⊙ (ε∇)k−1)∇ has symbol

µℓ
ε(ξ) := ξ ·

(
a+

ℓ∑
k=2

b
k ⊙ (iεξ)⊗(k−1)

)
ξ.
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By Proposition 2.3, we know that µℓ
ε is real-valued. Recalling that the uniform ellip-

ticity condition (1.1) entails λ|ξ|2 ⩽ ξ · aξ ⩽ |ξ|2 after homogenization, and taking
advantage of (2.5), we find for |ξ| ⩽ R,

µℓ
ε(ξ) ⩾ |ξ|2

(
λ−

ℓ∑
k=2

(εC|ξ|)k−1
)
⩾ |ξ|2

(
λ−

ℓ∑
k=2

(εCR)k−1
)
.

Provided that εR≪ 1 is small enough, we deduce for |ξ| ⩽ R,

(2.26) (1/C)|ξ|2 ⩽ µℓ
ε(ξ) ⩽ C|ξ|2.

We may thus define a solution of (2.16) in Fourier space via Duhamel’s formula,
that is,

F[U
ℓ;t

ε ](ξ) :=

ˆ t

0

sin
(
(t− s)µℓ

ε(ξ)
1/2

)
µℓ
ε(ξ)

1/2
f̂s(ξ) ds,

where Fg = ĝ stands for the spatial Fourier transform. This formula indeed satisfies
in R× Rd,

(2.27) ∂2t F[U
ℓ

ε] + µℓ
εF[U

ℓ

ε] = f̂ ,

and thus, upon inverse Fourier transformation, this provides a weak solution U
ℓ

ε

of (2.16) in L∞
loc(R; L

2(Rd)). In addition, by construction, the spatial Fourier transform
is supported in R×BR as f̂ is.

We turn to the proof of a priori estimates. As the equation is linear and has constant
coefficients, derivatives of the solution satisfy the same equation up to replacing f by
its corresponding derivatives. It is therefore enough to prove the stated estimates with
r = 0,

∥DU ℓ;t

ε ∥L2(Rd) ≲ ∥f∥L1((0,t),L2(Rd)),(2.28)

∥U ℓ;t

ε ∥L2(Rd) ≲ ⟨t⟩∥f∥L1((0,t);L2(Rd)).(2.29)

Moreover, we note that the L2-estimate (2.29) directly follows from (2.28): recalling
that D = (∂t,∇), we indeed get from (2.28) and integration that

∥U ℓ;t

ε ∥L2(Rd) ⩽
ˆ t

0

∥∂tU
ℓ

ε∥L2(Rd) ≲
ˆ t

0

∥f∥L1((0,s);L2(Rd)) ds ⩽ ⟨t⟩∥f∥L1((0,t);L2(Rd)),

that is, (2.29). It remains to establish (2.28). For that purpose, multiplying both sides
of equation (2.27) by the complex conjugate of ∂tF[U

ℓ

ε] and taking the real part,
we get

1
2∂t

ˆ
Rd

(
|∂tF[U

ℓ

ε]|2 + µℓ
ε|F[U

ℓ

ε]|2
)
⩽ ∥f̂ t∥L2(Rd)∥∂tF[U

ℓ

ε]∥L2(Rd),

which implies

∂t

(ˆ
Rd

(
|∂tF[U

ℓ

ε]|2 + µℓ
ε|F[U

ℓ

ε]|2
))1/2

≲ ∥f t∥L2(Rd).

Integrating in time and appealing to (2.26), this yields the claim (2.28). Note that
uniqueness follows from these a priori estimates by linearity.
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For Step 5, we shall also need an a priori estimate for U ℓ

ε in terms of the Ḣ−1-norm
of the impulse. Multiplying (2.27) with the complex conjugate of (| · |2 + δ)−1∂tF[U

ℓ

ε]

and repeating the above argument, we infer that

∂t

(ˆ
Rd

(|ξ|2 + δ)−1µℓ
ε(ξ) |F[U

ℓ

ε](ξ)|2 dξ
)1/2

⩽

(ˆ
Rd

(|ξ|2 + δ)−1|f̂ t(ξ)|2 dξ
)1/2

.

Integrating in time, using the monotone convergence theorem to pass to the limit
δ ↓ 0, and appealing again to (2.26), we deduce

∥U ℓ;t

ε ∥L2(Rd) ≲ ∥f∥L1((0,t);Ḣ−1(Rd)),

and similarly, due to the constant coefficients and linearity of the equation, we get for
all r ⩾ 0,

(2.30) ∥⟨D⟩rU ℓ;t

ε ∥L2(Rd) ≲ ∥⟨Dr⟩f∥L1((0,t);Ḣ−1(Rd)).

Step 2. Proof of (ii) for high-frequency filtering. — Let α, χ be fixed. We appeal
to (2.26) with R = ε−α: provided that ε1−α ≪ 1 is small enough, we deduce for
|ξ| ⩽ ε−α,

(2.31) (1/C)|ξ|2 ⩽ µℓ
ε(ξ) ⩽ C|ξ|2.

Hence, as in Step 1, replacing f by χ(εα∇)f , there is a unique solution u(I),ℓ
ε of (2.18)

in L∞
loc(R; L

2(Rd)) with spatial Fourier transform supported in R × ε−αB, and the
claimed a priori estimates similarly follow.

Step 3. Proof of (ii) for higher-order regularization. — In Fourier space, the regular-
ized operator −∇ ·

(
a+

∑ℓ
k=2 b

k ⊙ (ε∇)k−1 + κℓ(ε|∇|)ℓ
)
∇ has symbol

µ(II),ℓ
ε (ξ) := ξ ·

(
a+

ℓ∑
k=2

b
k ⊙ (iεξ)⊗k−1 + κℓ(ε|ξ|)ℓ

)
ξ.

Recall that by Proposition 2.3 this symbol is real-valued. Moreover, the lower bound ξ·
aξ ⩾ λ|ξ|2 ensures that κℓ can indeed be chosen as the smallest value satisfying (2.19),
while the bound (2.5) entails κℓ ⩽ Cℓ. This choice of κℓ, together with (2.5), yields

1
2λ|ξ|

2 ⩽ µ(II),ℓ
ε (ξ) ⩽ Cℓ|ξ|2⟨εξ⟩ℓ.

We can then solve (2.20) in Fourier space again via Duhamel’s formula, and the stated
a priori estimates are deduced as in Step 1 using the above coercivity of the regularized
symbol. Uniqueness follows by linearity.

Step 4. Proof of (ii) for Boussinesq trick. — In terms of the symbol

(2.32) µ(III),ℓ
ε (ξ) :=

ξ ·
(∑ℓ

n=1

(
κna+

∑n−1
l=1 κlb

n+1−l ⊙ (iξ/|ξ|)n−l
)
(ε|ξ|)n−1

)
ξ

1 +
∑ℓ

l=2 κl(ε|ξ|)l−1
,

equation (2.22) can be written in Fourier space as

(2.33) ∂2t F[u
(III),ℓ
ε ] + µ(III),ℓ

ε F[u(III),ℓε ] = f̂ .
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Note that (2.32) makes sense as κl ⩾ 0 for all l. In addition, the choice (2.21) of {κl}l
precisely ensures that all the terms of the sum over n in the numerator of (2.32) are
nonnegative (and actually vanish for n even due to Proposition 2.3). Only keeping
the term for n = 1, and recalling κ1 = 1 by definition, we deduce the lower bound

µ(III),ℓ
ε (ξ) ⩾

ξ · aξ
1 +

∑ℓ
l=2 κl(ε|ξ|)l−1

⩾
λ|ξ|2

1 +
∑ℓ

l=2 κl(ε|ξ|)l−1
,

which is pointwise non-negative. We can then define a solution of (2.33) via Duhamel’s
formula

F[u(III),ℓε ](ξ) =

ˆ t

0

sin
(
(t− s)µ

(III),ℓ
ε (ξ)1/2

)
µ
(III),ℓ
ε (ξ)1/2

f̂s(ξ) ds,

and thus, upon inverse Fourier transformation, this provides a weak solution of (2.22)
in L∞

loc(R; L
2(Rd)).

We turn to the proof of a priori estimates. As in Step 1, it suffices to establish the
estimate in energy norm. For that purpose, we start from the following equivalent
formulation of (2.33),

(2.34) βℓ
ε∂

2
t F[u

(III),ℓ
ε ] + γℓεF[u

(III),ℓ
ε ] = βℓ

εf̂ ,

in terms of the symbols

βℓ
ε(ξ) := 1 +

ℓ∑
l=2

κl(ε|ξ|)l−1,

γℓε(ξ) := ξ ·
( ℓ∑

n=1

(
κna+

n−1∑
l=1

κlb
n+1−l ⊙ (i ξ

|ξ| )
n−l

)
(ε|ξ|)n−1

)
ξ,

with γℓε/βℓ
ε = µ

(III),ℓ
ε . Arguing as in Step 1, and using that βℓ

ε(ξ) ⩾ 1 and γℓε(ξ) ⩾ λ|ξ|2,
we find that any ancient solution of (2.34) satisfies

∥Du(III),ℓ;tε ∥L2(Rd) ≲
ˆ t

0

∥(βℓ
ε)

1/2f̂∥L2(Rd).

Inserting the upper bound

βℓ
ε(ξ) ⩽

ℓ∑
l=1

(εC|ξ|)l−1
1l odd ⩽ Cℓ⟨εξ⟩2⌊

ℓ−1
2 ⌋,

we are led to the claimed a priori estimate on the energy norm.

Step 5. Proof of (iii): comparison of modified equations. — We analyze the differences
v
(⋆),ℓ
ε := u

(⋆),ℓ
ε −U ℓ

ε, and we start with (⋆) = (I). By definition, it satisfies the equation

∂2t v
(I),ℓ
ε −∇ ·

(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)
∇v(I),ℓε = (χ(εα∇)− 1)f,

so that (2.30) yields for all r ⩾ 0,

∥⟨D⟩rv(I),ℓ;tε ∥L2(Rd) ≲ ∥⟨D⟩r(χ(εα∇)− 1)f∥L1((0,t);Ḣ−1(Rd)).
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By the properties of the cut-off function χ, we find for all ξ ∈ Rd and k ⩾ 0,

(2.35) |χ(εαξ)− 1| ⩽ 1|εαξ|⩾1/2 ⩽ (2εα|ξ|)k.

Choosing k = ⌊ℓ/α⌋+ 1, we then get by Plancherel’s formula,

∥⟨D⟩rv(I),ℓ;tε ∥L2(Rd) ≲ (εC)ℓ∥⟨D⟩Kαℓ+rf∥L1((0,t);L2(Rd))

with Kα ⩽ 1/α, as claimed.
We turn to the case (⋆) = (II). By definition, the difference v

(II),ℓ
ε satisfies the

following equation,

∂2t v
(II),ℓ
ε −∇ ·

(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1 + κℓ(ε|∇|)ℓ
)
∇v(II),ℓε = κℓ(ε|∇|)ℓ△U ℓ

ε.

Hence, combining (2.30) and the a priori estimate of item (ii), together with the bound
κℓ ⩽ Cℓ, we get

∥⟨D⟩rv(II),ℓ;tε ∥L2(Rd) ⩽ Cℓ∥⟨D⟩r(ε|∇|)ℓ∇U ℓ

ε∥L1((0,t);L2(Rd))

≲ (εC)ℓ∥⟨D⟩ℓ+r∇U ℓ

ε∥L1((0,t);L2(Rd))

≲ (εC)ℓ⟨t⟩∥⟨D⟩ℓ+rf∥L1((0,t);L2(Rd)).

It remains to treat the case (⋆) = (III). Starting from (2.16) and (2.22), and recalling
κ1 = 1, we get the following equation for the corresponding difference,

∂2t

(
1 +

ℓ∑
l=2

κl(ε|∇|)l−1
)
v(III),ℓε

−∇ ·
( ℓ∑

n=1

(
κna+

n−1∑
l=1

κlb
n+1−l ⊙ ( ∇

|∇| )
n−l

)
(ε|∇|)n−1

)
∇v(III),ℓε

=

ℓ∑
l=2

κl(ε|∇|)l−1(f − ∂2tU
ℓ

ε)

+∇ ·
( ℓ∑

n=2

(
κna+

n−1∑
l=2

κlb
n+1−l ⊙ ( ∇

|∇| )
n−l

)
(ε|∇|)n−1

)
∇U ℓ

ε,

and thus, further using the equation for U ℓ

ε in the right-hand side, we get after reor-
ganizing the terms,

(2.36) ∂2t

(
1 +

ℓ∑
l=2

κl(ε|∇|)l−1
)
v(III),ℓε

−∇ ·
( ℓ∑

n=1

(
κna+

n−1∑
l=1

κlb
n+1−l ⊙ ( ∇

|∇| )
n−l

)
(ε|∇|)n−1

)
∇v(III),ℓε

= −∇ ·
( ℓ∑

l=2

ℓ∑
k=ℓ+2−l

κlb
k ⊙ (ε∇)k−1(ε|∇|)l−1

)
∇U ℓ

ε.
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Combining (2.30) and the a priori estimate of item (ii), together with the bounds
|bk| ⩽ Ck and κℓ ⩽ Cℓ, we get

∥⟨D⟩rv(III),ℓε ∥L2(Rd) ⩽ (εC)ℓ∥⟨D⟩2ℓ+r−2∇U ℓ

ε∥L1((0,t);L2(Rd))

⩽ (εC)ℓ⟨t⟩∥⟨D⟩2ℓ+r−2f∥L1((0,t);L2(Rd)),

and the conclusion follows. □

2.6. Proof of Theorem 1. — Let a be Q-periodic. We split the proof into three steps.
We first establish (1.6) for the energy norm, before turning to the L2-estimate, which
requires some additional care. We start by assuming that supp f̂ ⊂ R×BR for some
R ⩾ 1, and then conclude with the general case in the last step.

Step 1. Proof of (1.6) for the energy norm in case supp f̂ ⊂ R×BR with εR≪ 1

For simplicity, we start by assuming momentarily that the corrector estimates in
Lemma 2.8 hold uniformly in the sense of

∥(ψn, σn)∥W 1,∞(Q) ⩽ Cn,

and ∥(ζn,m, τn,m)∥W 1,∞(Q) ⩽ Cn+m+1, for all n,m ⩾ 0.(2.37)

As supp f̂ ⊂ R×BR with εR≪ 1, we can consider the solution U ℓ

ε of the formal effec-
tive equation (2.16) as given by Lemma 2.10(i). From Proposition 2.9 and Lemma B.1,
using the assumed uniform corrector estimate (2.37), we then obtain

∥D(utε − Sℓ
ε[U

ℓ;t

ε , f t])∥L2(Rd)

⩽ (εC)ℓ∥⟨D⟩2ℓf∥L1((0,t);L2(Rd)) + (εC)ℓ∥⟨D⟩2ℓDU ℓ

ε∥L1((0,t);L2(Rd)),

and thus, combining this with the a priori bounds of Lemma 2.10(i),

(2.38) ∥D(utε − Sℓ
ε[U

ℓ;t

ε , f t])∥L2(Rd) ⩽ (εC)ℓ⟨t⟩∥⟨D⟩2ℓf∥L1((0,t);L2(Rd)).

It remains to replace U ℓ

ε by u(⋆),ℓε in the left-hand side for (⋆) = (I), (II), or (III). For
that purpose, recalling the definition of the spectral two-scale expansion, cf. (2.14),
and using the assumed uniform corrector estimates (2.37), we note that

∥D(Sℓ
ε[u

(⋆),ℓ
ε , f ]− Sℓ

ε[U
ℓ

ε, f ])∥L2(Rd) ⩽ Cℓ∥⟨∇⟩ℓD(u(⋆),ℓε − U
ℓ

ε)∥L2(Rd),

hence, by Lemma 2.10(iii),

∥D(Sℓ
ε[u

(⋆),ℓ;t
ε , f t]− Sℓ

ε[U
ℓ;t

ε , f t])∥L2(Rd) ⩽ (εC)ℓ⟨t⟩∥⟨D⟩Cℓf∥L1((0,t);L2(Rd)).

Combined with (2.38), this proves the claim (1.6) for the energy norm in case supp f̂ ⊂
R×BR with εR≪ 1, provided that (2.37) holds.

It remains to treat the case when the uniform boundedness assumption (2.37) for
correctors is not satisfied. In that case, we rather appeal to the Sobolev embedding
to estimate products with correctors: for any periodic corrector or corrector gradi-
ent φ ∈ {ψn,∇ψn, σn,∇σn, ζn,m,∇ζn,m, τn,m,∇τn,m}n,m, we can estimate, for any
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function g,

∥φ(·/ε)g∥2L2(Rd) ⩽
ˆ
Rd

(  
Bε(x)

|φ(·/ε)|2
)(

sup
Bε(x)

|g|2
)
dx

≲ ∥φ∥2L2(Q)

ˆ
Rd

(
sup
Bε(x)

|g|2
)
dx

≲ ∥φ∥2L2(Q)∥g∥
2
Ha(Rd),(2.39)

provided a > d/2. Up to a fixed loss of derivatives in the estimates, we may then
appeal to the L2 corrector estimates in Lemma 2.8, and the above proof of (1.6) for
the energy norm is adapted directly.

Step 2. Proof of (1.6) for the L2-norm in case supp f̂ ⊂ BR with εR≪ 1

As in Step 1, we aim to apply Proposition 2.9 and Lemma B.1, together with
corrector estimates. However, the following terms are a priori problematic in the right-
hand side of the equation for the spectral two-scale expansion given by Proposition 2.9,

(2.40) T ℓ
ε := −εℓσℓ

i1...iℓ
(·/ε) : γℓ(ε∇)∇2∇ℓ

i1...iℓ
U

ℓ

ε

+

ℓ∑
n=1

ℓ+1∑
k=ℓ+2−n

εn+k−2ψn
i1...in(·/ε)b

k−1

in+1...in+k−2
: γℓ(ε∇)∇2∇n+k−2

i1...in+k−2
U

ℓ

ε.

Indeed, these terms are not total derivatives and involve U
ℓ

ε itself: when applying
Lemma B.1 to estimate the L2-norm of the two-scale expansion error, these terms
would therefore contribute like

(εC)ℓ⟨t⟩2∥⟨D⟩Cℓf∥L1((0,t);L2(Rd))

with a prefactor ⟨t⟩2 instead of ⟨t⟩. In order to improve on this, we shall reformulate T ℓ
ε

as a total time-derivative up to terms that depend only locally on f . Using the short-
hand notation

L
ℓ

ε := −∇ ·
(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)
∇,

the effective equation for U ℓ

ε entails

L
ℓ

ε∇2U
ℓ

ε = −∂2t∇2U
ℓ

ε +∇2f.

As in the proof of Lemma 2.10(i), cf. (2.26), the assumption εR ≪ 1 precisely en-
sures that the operator L

ℓ

ε : L2(Rd) → Ḣ−2(Rd) can be inverted when restricted to
functions with spatial Fourier transform supported in BR. As by definition both U

ℓ

ε

and f have spatial Fourier transform supported in BR, we may then write

(2.41) ∇2U
ℓ

ε = −∂2t (L
ℓ

ε)
−1∇2U

ℓ

ε + (L
ℓ

ε)
−1∇2f.

By uniform ellipticity (2.26), we have for any function g with supp ĝ ⊂ BR,

(2.42) ∥(Lℓ

ε)
−1∇2g∥L2(Rd) ≲ ∥g∥L2(Rd).
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Now using (2.41) to reformulate T ℓ
ε , cf. (2.40), we get

T ℓ
ε = εℓ∂2t

(
σℓ
i1...iℓ

(·/ε) : γℓ(ε∇)∇ℓ
i1...iℓ

(L
ℓ

ε)
−1∇2U

ℓ

ε

)
−

ℓ∑
n=1

ℓ+1∑
k=ℓ+2−n

εn+k−2∂2t

(
ψn
i1...in(·/ε)b

k−1

in+1...in+k−2
: γℓ(ε∇)∇n+k−2

i1...in+k−2
(L

ℓ

ε)
−1∇2U

ℓ

ε

)
− εℓσℓ

i1...iℓ
(·/ε) : γℓ(ε∇)∇ℓ

i1...iℓ
(L

ℓ

ε)
−1∇2f

+

ℓ∑
n=1

ℓ+1∑
k=ℓ+2−n

εn+k−2ψn
i1...in(·/ε)b

k−1

in+1...in+k−2
: γℓ(ε∇)∇n+k−2

i1...in+k−2
(L

ℓ

ε)
−1∇2f.

Using this to replace the corresponding terms in the equation for the two-scale expan-
sion error in Proposition 2.9, appealing to Lemma B.1 to estimate its L2-norm, using
the corrector estimates of Lemma 2.8, using the Sobolev embedding to estimate prod-
ucts with correctors as in (2.39), and using (2.42), we get for a > d/2,

∥utε − Sℓ
ε[U

ℓ;t

ε , f t]∥L2(Rd)

⩽ (εC)ℓ⟨t⟩∥⟨D⟩2ℓ+af∥L1((0,t);L2(Rd)) + (εC)ℓ∥⟨D⟩2ℓ+aDU
ℓ

ε∥L1((0,t);L2(Rd)),

and thus, by the a priori estimate of Lemma 2.10(i),

(2.43) ∥utε − Sℓ
ε[U

ℓ;t

ε , f t]∥L2(Rd) ⩽ (εC)ℓ⟨t⟩∥⟨D⟩2ℓ+af∥L1((0,t);L2(Rd)).

It remains to argue as in Step 1 to replace U ℓ

ε by u
(⋆),ℓ
ε in the left-hand side. For

that purpose, recalling the definition of the spectral two-scale expansion, cf. (2.14),
and using again the corrector estimates of Lemma 2.8 together with the Sobolev
embedding as in (2.39), we note that for a > d/2,

∥Sℓ
ε[u

(⋆),ℓ
ε , f ]− Sℓ

ε[U
ℓ

ε, f ]∥L2(Rd) ⩽ Cℓ∥⟨∇⟩ℓ+a(u(⋆),ℓε − U
ℓ

ε)∥L2(Rd),

hence, by Lemma 2.10(iii),

∥Sℓ
ε[u

(⋆),ℓ;t
ε , f t]− Sℓ

ε[U
ℓ;t

ε , f t]∥L2(Rd) ⩽ (εC)ℓ⟨t⟩∥⟨D⟩Cℓf∥L1((0,t);L2(Rd)).

Combined with (2.43), this proves the claim (1.6) for the L2-norm in case supp f̂ ⊂ BR

with εR≪ 1.

Step 3. Approximation argument: proof for general f . — For R ⩾ 1, consider the trun-
cated impulse

fR := χ((1/R)∇)f,

and let u
(⋆),ℓ
ε,R be the solution of the modified effective equations given by Lem-

ma 2.10(ii) with impulse f replaced by fR. Recalling the definition of the spectral
two-scale expansion, cf. (2.14), and using again corrector estimates, we then note
that for a > d/2,

∥D(Sℓ
ε[u

(⋆),ℓ
ε,R , fR]− Sℓ

ε[u
(⋆),ℓ
ε , f ])∥L2(Rd)

⩽ Cℓ∥⟨∇⟩ℓ+aD(u(⋆),ℓε − u
(⋆),ℓ
ε,R )∥L2(Rd) + Cℓ∥⟨D⟩ℓ+a(f − fR)∥L2(Rd),
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and thus, by linearity and by the a priori estimates of Lemma 2.10(ii),

∥D(Sℓ
ε[u

(⋆),ℓ;t
ε,R , f tR]− Sℓ

ε[u
(⋆),ℓ;t
ε , f t])∥L2(Rd) ⩽ Cℓ∥⟨D⟩Cℓ(f − fR)∥L1((0,t);L2(Rd)).

By definition of fR, as in (2.35), the right-hand side can now be estimated as follows,
for any k ⩾ 0,

∥D(Sℓ
ε[u

(⋆),ℓ;t
ε,R , f tR]− Sℓ

ε[u
(⋆),ℓ;t
ε , f t])∥L2(Rd) ⩽ R−kCℓ∥⟨D⟩Cℓ+kf∥L1((0,t);L2(Rd)).

Combining this with the results of Steps 1 and 2, the conclusion follows for instance
with the choice R = ε−1/2 and k = 2ℓ. □

2.7. Proof of Corollary 1. — The bound (1.7) is obtained along the same line as
Theorem 1 (using a straightforward adaptation of Lemma B.1), and it remains to
deduce (1.8). For that purpose, we note that (1.8) would actually follow from (1.7)
together with the bound

(2.44)
ˆ t

−∞
(t− s)∥⟨D⟩Cℓfs∥L2(Rd) ds ⩽ Cℓ

f ,

in favor of which we presently argue. Recall that we assume here f t(x) = f1(t)f2(x),
where f1 has a smooth and compactly supported Fourier transform on R and where f2
has a compactly supported Fourier transform on Rd. The assumption on f2 entails
∥⟨∇⟩Cℓf2∥L2(Rd) ⩽ Cℓ

f2
, while the assumption on f1 yields for s ⩽ 0,

∥⟨∂t⟩Cℓf1∥L1((−∞,s)) ≲ ⟨s⟩−2∥⟨·⟩3⟨∂t⟩Cℓf1∥L∞((−∞,s))

⩽ ⟨s⟩−2Cℓ∥⟨·⟩Cℓ⟨∂⟩3f̂1∥L∞((−∞,s))

⩽ ⟨s⟩−2Cℓ
f1 ,

where f̂1 stands for the temporal Fourier transform of f1. The claim (2.44) follows. □

2.8. Proof of Theorem 3. — We briefly explain how the above proof of Theorem 1
is adapted to the random setting. As for Theorem 1, we may assume supp f̂ ⊂ R×BR

with εR ≪ 1, and the general conclusion follows by approximation. As explained in
Appendix A, the only difference with respect to the periodic setting is that only a
finite number ℓ∗ = ⌈β∧d

2 ⌉ of correctors can be defined with stationary gradient, and
the highest-order corrector has a nontrivial sublinear growth. Using Proposition 2.9 in
combination with Lemma B.1 to estimate the energy norm of the two-scale expansion
error of order ℓ ⩽ ℓ∗, and using the corrector estimates of Appendix A and the Sobolev
embedding, we find for a > d/2,

∥D(utε − Sℓ
ε[U

ℓ;t

ε , f t])∥Lq(Ω;L2(Rd))

≲ εℓ∥µ∗
ℓ (·/ε)γ(ε∇)⟨D⟩2ℓ+af∥L1((0,t);L2(Rd))

+ εℓ∥µ∗
ℓ (·/ε)γ(ε∇)⟨D⟩2ℓ+aDU

ℓ

ε∥L1((0,t);L2(Rd)),

where the weight µ∗
ℓ originates in the growth of correctors and is defined in (A.1).

A novelty with respect to the proof of Theorem 1 is that we now need weighted energy
estimates for U ℓ

ε with sublinear weight µ∗
ℓ . For that purpose, as the homogenized
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equation (2.16) has constant coefficients, we note that U ℓ

ε displays ballistic transport,
and therefore

∥µ∗
ℓ (·/ε)γ(ε∇)⟨D⟩2ℓ+aDU

ℓ;t

ε ∥L2(Rd) ≲ µ∗
ℓ ((1/ε)⟨t⟩) ∥⟨·⟩γ(ε∇)⟨D⟩Cf∥L1((0,t);L2(Rd))

≲ µ∗
ℓ ((1/ε)⟨t⟩) ∥⟨·⟩⟨D⟩Cf∥L1((0,t);L2(Rd)).

This is easily obtained by interpolation, using that the weight x corresponds to a
derivative in Fourier space and using the Duhamel formula for U ℓ

ε; see e.g. [5, Proof
of Prop. 3] for the details. The above then becomes

∥D(utε − Sℓ
ε[U

ℓ;t

ε , f t])∥Lq(Ω;L2(Rd)) ≲ εℓ⟨t⟩µ∗
ℓ ((1/ε)⟨t⟩) ∥⟨·⟩⟨D⟩Cf∥L1((0,t);L2(Rd)).

Note that the error estimate for ℓ = ℓ∗ − 1 is occasionally better than the one for
ℓ = ℓ∗. Optimizing between the results for ℓ = ℓ∗ and for ℓ = ℓ∗−1, we easily conclude

∥D(utε − Sℓ∗
ε [U

ℓ∗;t

ε , f t])∥Lq(Ω;L2(Rd))

≲ εℓ∗⟨t⟩
(
µ∗
ℓ∗((1/ε)⟨t⟩) ∧ (1/ε)

)
∥⟨·⟩⟨D⟩Cf∥L1((0,t);L2(Rd)).

As in the proof of Theorem 1, we can replace U ℓ∗
ε in the left-hand side by the solution

of any well-posed modification of the formal homogenized equation, and we can derive
a similar estimate for the L2-norm. □

3. Geometric approach and hyperbolic two-scale expansion

This section is devoted to the definition of hyperbolic correctors and to the proof of
Theorem 2, including the well-posedness of the formal homogenized equation (1.10).
This essentially constitutes a rewriting of [3, 24, 1] and is needed to rigorously relate
those works to the spectral two-scale expansion, cf. Section 4.

3.1. Definition of hyperbolic correctors. — We start with the definition of the
hyperbolic correctors {ϕn,m}n,m and of the homogenized tensors {an,m}n,m, as mo-
tivated in Section 1.5.

Definition 3.1 (Hyperbolic correctors). — In the periodic setting, the hyperbolic
correctors {ϕn,m}n,m⩾0, homogenized tensors {an,m}n⩾1,m⩾0, and fluxes {qn,m}n,m⩾0

are inductively defined as follows:
– We set ϕ0,0 := 1 and ϕ0,m := 0 for m ⩾ 1, while for n ⩾ 1 and m ⩾ 0 we define

ϕn,m := (ϕn,mj1...jn
)1⩽j1,...,jn⩽d with ϕn,mj1...jn

∈ H1
per(Q) the periodic scalar field that has

vanishing average E
[
ϕn,mj1...jn

]
= 0 and satisfies

−∇ · a∇ϕn,mj1...jn
= ∇ ·

(
aϕn−1,m

j1...jn−1
ejn

)
+ ejn · qn−1,m

j1...jn−1
.

– For n ⩾ 1 and m ⩾ 0, we define an,m := (an,m
j1...jn−1

)1⩽j1,...,jn−1⩽d as the matrix-
valued (n− 1)th-order tensor given by

an,m
j1...jn−1

ej := E
[
a
(
∇ϕn,mj1...jn−1j

+ ϕn−1,m
j1...jn−1

ej
)]
.
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– For n,m ⩾ 0, we define qn,m := (qn,mj1...jn
)1⩽j1,...,jn⩽d with qn,mj1...jn

∈ L2
per(Q)d the

periodic vector field given by

qn,mj1...jn
:= a

(
∇ϕn,mj1...jn

+ ϕn−1,m
j1...jn−1

ejn
)
− ϕn+1,m−2

j1...jnj
ej − an,m

j1...jn−1
ejn ,

where the definition of an,m ensures E [qn,m] = 0.
In particular, there holds ϕn,m = 0, an,m = 0, and qn,m = 0 whenever m is an odd
integer.(3) ♢

For all n, we note that ϕn,0 coincides with the elliptic corrector of order n, cf. [6].
As is common in the elliptic setting, it is useful to further introduce suitable flux
correctors, which indeed allow us to refine error estimates and slightly improve on
the result of [3]. More precisely, flux correctors are designed to allow a direct optimal
exploitation of cancellations due to fluxes having vanishing average E

[
qn,m

]
= 0.

We start with the definition of flux correctors for m ⩾ 1.

Definition 3.2 (Hyperbolic flux correctors). — For n ⩾ 0 and m ⩾ 1, we define the
hyperbolic flux corrector σn,m := (σn,m

j1...jn
)1⩽j1,...,jn⩽d by

σn,m
j1...jn

= (∇Φn,m
j1...jn

)′,

where Φn,m
j1...jn

∈ H1
per(Q)d is the periodic vector field that satisfies E

[
Φn,m

j1...jn

]
= 0 and

−△Φn,m
j1...jn

= qn,mj1...jn
. ♢

In case m = 0, as correctors ϕn,0 coincide with elliptic correctors, they display
more structure than general hyperbolic correctors. We recall how this structure can
be exploited to construct a suitable flux corrector σn,0 that is skew-symmetric: the
following lemma is essentially borrowed from [15].

Lemma 3.3 (Elliptic correctors and flux correctors). — Up to symmetrization of in-
dices, the elliptic correctors {ϕn,0}n⩾0 and homogenized tensors {an,0}n⩾1 coincide
with the modified families {ϕ̃n,0}n⩾0 and {ãn,0}n⩾1 defined via the following cell prob-
lems:

– We set ϕ̃0,0 := 1 and for n ⩾ 1 we define ϕ̃n,0 := (ϕ̃n,0j1...jn
)1⩽j1,...jn,⩽d with

ϕ̃n,0j1...jn
∈ H1

per(Q) the periodic scalar field that has vanishing average E
[
ϕ̃n,0j1...jn

]
= 0

and satisfies

−∇ · a∇ϕ̃n,0j1...jn
= ∇ ·

(
aϕ̃n−1,0

j1...jn−1
ejn

)
+ ejn · q̃n−1,0

j1...jn−1
.

– For n ⩾ 1, we define ãn,0 := (ãn,0
j1...jn−1

)1⩽j1,...,jn−1⩽d with ãn,0
j1...jn−1

the matrix
given by

ãn,0
j1...jn−1

ej := E
[
a
(
∇ϕ̃n,0j1...jn−1j

+ ϕ̃n−1,0
j1...jn−1

ej
)]
.

(3)This is natural as time derivatives should always come in even numbers in view of equa-
tion (1.2).
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– For n ⩾ 0, we define q̃n,0 := (q̃n,0j1...jn
)1⩽j1,...,jn⩽d with q̃n,0j1...jn

∈ L2
per(Q)d the

periodic vector field given by

q̃n,0j1...jn
:= a

(
∇ϕ̃n,0j1...jn

+ ϕ̃n−1,0
j1...jn−1

ejn
)
− ãn,0

j1...jn−1
ejn − σn−1,0

j1...jn−1
ejn ,

where the definition of ãn,0 and σn−1,0 ensures E
[
q̃n,0

]
= 0 and ∇ · q̃n,0j1...jn

= 0.
– We set σ0,0 := 0 and we define the flux corrector σn,0 := (σn,0

j1...jn
)1⩽j1,...,jn⩽d for

n ⩾ 1 with σn,0
j1...jn

∈ H1
per(Q)d×d the periodic skew-symmetric matrix field that has

vanishing average E
[
σn,0
j1...jn

]
= 0 and satisfies

−△σn,0
j1...jn

= ∇× q̃n,0j1...jn
, ∇ · σn,0

j1...jn
= q̃n,0j1...jn

,

where we use the vector notation (∇× F )ij := ∇iFj −∇jFi for a vector field F .
More precisely, these modified correctors coincide with {ϕn,0}n⩾0 in the sense that we
have for all n ⩾ 0 and ξ ∈ Rd,

ϕn,0 ⊙ ξ⊗n = ϕ̃n,0 ⊙ ξn, (an,0 ⊙ ξ⊗(n−1))ξ = (ãn,0 ⊙ ξ⊗(n−1))ξ. ♢

Proof. — We refer to [17] or [15] for the construction of the skew-symmetric flux
corrector σn,0, based on the compatibility condition ∇ · q̃n,0j1...jn

= 0, and we now turn
to the equivalence of ϕn,0 and ϕ̃n,0. Setting

(3.1) q̂n,0j1...jn
:= a

(
∇ϕn,0j1...jn

+ ϕn−1,0
j1...jn−1

ejn
)
− an,0

j1...jn−1
ejn − σn−1,0

j1...jn−1
ejn ,

the equation for ϕn,0 in Definition 3.1 for n ⩾ 1 can be written as

(3.2) −∇ · a∇ϕn,0j1...jn
= ∇ ·

(
aϕn−1,0

j1...jn−1
ejn

)
+ ejn ·

(
q̂n−1,0
j1...jn−1

+ σn−2,0
j1...jn−2

ejn−1

)
.

Symmetrizing indices j1, . . . , jn, the skew-symmetry of σn−2,0 allows us to drop the
corresponding right-hand side term, and we may conclude by induction that ϕn,0
coincides with its modified version ϕ̃n,0 up to symmetrization as stated. □

An iterative use of the Poincaré inequality on the unit cell Q ensures the well-
posedness of the above objects and further provides the following a priori estimates.

Lemma 3.4. — In the periodic setting, the above quantities {ϕn,m, σn,m,an,m)n,m are
uniquely defined and satisfy for all n,m ⩾ 0,

∥(ϕn,m, σn,m)∥H1(Q) + |an,m| ⩽ Cn+m. ♢

We conclude this paragraph with some important vanishing property of the higher-
order hyperbolic homogenized coefficients, which extends the corresponding elliptic
result [15, Lem. 2.3]; see also [5, Prop. 1], [3, Th. 2.13], and [1, Th. 3.5]. The proof is
postponed to Section 3.5.

Proposition 3.5 (Symmetry of homogenized coefficients). — For all n ⩾ 1 and m ⩾ 0,
there holds for any j1, . . . , jn+1,

ejn+1 · a
n,m
j1...jn−1

ejn = (−1)n+1ej1 · a
n,m
jn+1...j3

ej2 .

In particular, whenever n is even, we have

ξ · (an,m ⊙ ξ⊗(n−1))ξ = 0, for all ξ ∈ Rd. ♢
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3.2. Geometric two-scale expansion. — Given a smooth function w, we consider
its two-scale expansion associated with the above-defined hyperbolic correctors, as
in (1.36),

(3.3) Hℓ
ε [w] :=

ℓ∑
n=0

ℓ−n∑
m=0

εn+mϕn,m(·/ε)⊙∇n∂mt w,

and we show that it is well-adapted to describe the local behavior of the solution
to the hyperbolic equation in the following sense: as explained in (1.38), the het-
erogeneous hyperbolic operator applied to Hℓ

ε [w] is equivalent to some higher-order
effective operator applied to w (up to O(εℓ) error terms). The proof is postponed to
Section 3.6.

Proposition 3.6 (Geometric two-scale expansion). — Let ℓ ⩾ 1, ε > 0, and let w, f
be smooth functions satisfying

(3.4) ∂2tw −∇ ·
( ℓ∑

n=1

ℓ−n∑
m=0

an,m ⊙ (ε∇)n−1(ε∂t)
m
)
∇w = f.

Then, the associated geometric two-scale expansion of order ℓ, defined in (3.3), satis-
fies the following relation in the distributional sense in R× Rd,(
∂2t −∇ · a(·/ε)∇

)
Hℓ

ε [w]

= f − εℓ
ℓ∑

n=0

∇ ·
((

aϕn,ℓ−n
j1...jn

− σn,ℓ−n
j1...jn

)
(·/ε)∇∇n

j1...jn∂
ℓ−n
t w

)
+ εℓ

ℓ∑
n=1

∂t

(
ϕn,ℓ−n(·/ε)⊙∇n∂ℓ+1−n

t w − σn−1,ℓ+1−n
j1...jn−1

(·/ε) : ∇2∇n−1
j1...jn−1

∂ℓ−n
t w

)
. ♢

Remark 3.7. — Note that the last two right-hand side terms in the above equation
for the two-scale expansion Hℓ

ε [w] are total derivatives (with respect to time or space):
this is not a trivial fact for the last term, as it is based on the possibility of constructing
skew-symmetric flux correctors {σn,0}n. This happens to be crucial when applying
Lemma B.1 in order to deduce an optimal L2 error estimate. This slightly refines the
analysis of [3]. ♢

3.3. Homogenized equations and secular growth problem. — As motivated in
Proposition 3.6, cf. (3.4), we consider the following formal homogenized equation, for
ℓ ⩾ 1,

(3.5)
{
∂2tW

ℓ

ε −∇ ·
(∑ℓ

n=1

∑ℓ−n
m=0 a

n,m ⊙ (ε∇)n−1(ε∂t)
m
)
∇W ℓ

ε = f, in R× Rd,

W ℓ
ε = f = 0, for t < 0.

However, this equation mixes higher-order space and time derivatives, and its well-
posedness is problematic. To avoid the secular growth problem described in Sec-
tion 1.3, we follow [3] and first show that the differential operator in (3.5) can be
rewritten in such a way that it does no longer mix space and time derivatives. This is
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achieved by iteratively using the equation to eliminate time derivatives up to higher-
order terms, which is referred to as the ‘criminal method’ in [3]. The proof is postponed
to Section 3.7. Note that the new homogenized coefficients {bn}n in this reformulation
automatically coincide with the coefficients given by the spectral approach: this can
for instance be deduced a posteriori by comparing the corresponding homogenization
results, Theorems 1 and 2; this allows us to use already here the same notation {bn}n
as for spectral homogenized coefficients. Note that by definition b1 = a1,0 = a.

Lemma 3.8 (Revamped homogenized equation). — Given ℓ ⩾ 1 and ε > 0, if W ℓ
ε, f

are smooth and satisfy the formal homogenized equation (3.5), then we have

∂2tW
ℓ
ε −∇ ·

( ℓ∑
n=1

bn ⊙ (ε∇)n−1
)
∇W ℓ

ε = f + ε2∇ ·
( ℓ−2∑

n=1

cn ⊙ (εD)n−1
)
∇f +∇ · Eℓ

ε,

where the coefficients {bn, cn}n and the remainder Eℓ
ε are as follows:

– We define the matrix-valued symmetric tensor bp := (bpj1...jp−1
)1⩽j1,...,jp−1⩽d for

p ⩾ 1 such that for all ξ ∈ Rd,

ξ · (bp ⊙ ξ⊗(p−1))ξ :=
∑
k⩾1

∑
(m1,...,mk)∈Ik

∑
n1,...,nk⩾1
k+|n|=p+1

k∏
j=1

ξ ·
(
anj ,mj ⊙ ξ⊗(nj−1)

)
ξ,

in terms of the index set

Ik :=
{
m = (m1, . . . ,mk) : mj ⩾ 0 ∀j,

s∑
j=1

mj ⩾ 2s ∀s < k, |m| = 2(k − 1)
}
.

– We define the matrix-valued symmetric tensor cp := (cpj1...jp−1
)0⩽j1,...,jp−1⩽d for

all p ⩾ 1 such that for all ξ̂ = (ξ0, ξ) ∈ R× Rd,

ξ ·(cp⊙ξ̂⊗(p−1))ξ :=
∑
k⩾1

∑
(m1,...,mk)∈Jk

∑
n1,...,nk⩾1

|n|+|m|=p+k+1

ξ
|m|−2k
0

k∏
j=1

ξ ·
(
anj ,mj⊙ξ⊗(nj−1)

)
ξ,

in terms of the index set

Jk :=
{
m = (m1, . . . ,mk) : mj ⩾ 0 ∀j,

s∑
j=1

mj ⩾ 2s ∀s ⩽ k
}
.

– For ε≪ 1 small enough, the error term Eℓ
ε satisfies pointwise, for all r ⩾ 0,

|⟨D⟩rEℓ
ε| ⩽ (εCℓ)ℓ

(∣∣⟨D⟩r+ℓ⟨εCD⟩ℓ
2

DW ℓ
ε

∣∣+ ∣∣⟨D⟩r+ℓ−1⟨εCD⟩ℓ
2

f
∣∣).

In particular, Lemma 3.4 implies for all p ⩾ 1,

(3.6) |bp|+ |cp| ⩽ Cp,

and Proposition 3.5 entails, whenever p is an even integer,

ξ · (bp ⊙ ξ⊗(p−1))ξ = 0, for all ξ ∈ Rd. ♢
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The above thus leads us to considering the following modified version of the formal
effective equation (3.5),

(3.7)


∂2t V

ℓ

ε −∇ ·
(
a+

∑ℓ
k=2 b

k ⊙ (ε∇)k−1
)
∇V ℓ

ε

= f + ε2∇ ·
(∑ℓ−2

k=1 c
k ⊙ (εD)k−1

)
∇f, in R× Rd,

V
ℓ

ε = f = 0, for t < 0.

As with the spectral approach, the symbol of the operator

−∇ ·
(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)
∇

lacks positivity, so this equation is ill-posed in general. To cure this issue, we argue
exactly as in Section 2.3: we can consider several well-posed higher-order modifications
of this equation, either by high-frequency filtering, by higher-order regularization,
or by the Boussinesq trick, and we denote by v

(I),ℓ
ε , v

(II),ℓ
ε , v

(III),ℓ
ε the corresponding

solutions, respectively. We refer to Lemma 2.10 for the details (up to replacing the
impulse f in (2.16) by the specific right-hand side in (3.7)).

Next, we show that the above modification procedure W ℓ
ε 7→ V

ℓ

ε for the formal
effective equation can be inverted: more precisely, the solution v

(⋆),ℓ
ε of any of the

well-posed modifications of (3.7) is an approximate solution of the formal effective
equation (3.5) up to an O(εℓ) error.

Lemma 3.9 (Inversion procedure). — Given ℓ ⩾ 1 and ε > 0, if v(⋆),ℓε is the solution
of one of the well-posed modifications of equation (3.7) as given by Lemma 2.10, then
we have

∂2t v
(⋆),ℓ
ε −∇ ·

( ℓ∑
n=1

ℓ−n∑
m=0

an,m ⊙ (ε∇)n−1(ε∂t)
m
)
∇v(⋆),ℓε = f +∇ · F (⋆),ℓ

ε ,

where the error ∇ · F (⋆),ℓ
ε satisfies for all r ⩾ 0,

∥⟨D⟩rF (⋆),ℓ;t
ε ∥L2(Rd) ⩽ (εCℓ)ℓ∥⟨D⟩r+Cℓ⟨εCD⟩ℓ

2

f∥L1((0,t);L2(Rd)),

where the constant C further depends on the choice of α in case (⋆) = (I). ♢

3.4. Proof of Theorem 2. — Applying Proposition 3.6 with w = v
(⋆),ℓ
ε , appealing

to Lemma 3.9, and comparing with the solution uε of the heterogeneous wave equa-
tion (1.2), we find(
∂2t −∇ · a(·/ε)∇

)
(uε −Hℓ

ε [v
(⋆),ℓ
ε ]) = −∇ · F (⋆),ℓ

ε

+ εℓ
ℓ+1∑
n=1

∇ ·
((

aϕn−1,ℓ−n+1
j1...jn−1

− σn−1,ℓ−n+1
j1...jn−1

)
(·/ε)∇∇n−1

j1...jn−1
∂ℓ−n+1
t v(⋆),ℓε

)
− εℓ

ℓ∑
n=0

∂t

((
ϕn+1,ℓ−n−1
j1...jn−1ji

ej ⊗ ei − σn−1,ℓ−n+1
j1...jn−1

)
(·/ε) : ∇2∇n−1

j1...jn−1
∂ℓ−n
t v(⋆),ℓε

)
.

By the a priori estimates of Lemma B.1, using corrector estimates of Lemma 3.4, and
using the Sobolev embedding to estimate products with correctors as in (2.39), we get
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for a > d/2,

∥utε −Hℓ
ε [v

(⋆),ℓ;t
ε ]∥L2(Rd) + ∥D(utε −Hℓ

ε [v
(⋆),ℓ;t
ε ])∥L2(Rd)

≲ ∥⟨D⟩F (⋆),ℓ
ε ∥L1((0,t);L2(Rd)) + (εC)ℓ∥⟨D⟩ℓ+a+1Dv(⋆),ℓε ∥L1((0,t);L2(Rd)).

Combining this bound with the estimate of Lemma 3.9 on the remainder F ℓ
ε , and

with the a priori estimates of Lemma 2.10(ii) for v(⋆),ℓε , the conclusion follows. □

3.5. Proof of Proposition 3.5. — We split the proof into two steps.

Step 1. Migration process. — Proof that for all n,m, p, q ⩾ 0,

(3.8) E
[(
∇ϕp,qj1...jp

· a∇ϕn,mi1...in
− ϕp−1,q

j1...jp−1
ejp · aϕn−1,m

i1...in−1
ein

)]
= −E

[(
∇ϕp+1,q

j1...jpin
· a∇ϕn−1,m

i1...in−1
− ϕp,qj1...jp

ein · aϕn−2,m
i1...in−2

ein−1

)]
− E

[(
ϕp,qj1...jp

ϕn,m−2
i1...in

+ ϕp+1,q−2
j1...jpin

ϕn−1,m
i1...in−1

)]
,

and in addition, for all n,m, q ⩾ 0,

(3.9)
n∑

k=1

(−1)kE
[
ϕk,qjin...in−k+2

ϕn−k+1,m
i1...in−k+1

]
=

n∑
k=1

(−1)kE
[
ϕk,q+2
jin...in−k+2

ϕn−k+1,m−2
i1...in−k+1

]
+ (−1)nE

[
∇ϕn,q+2

jin...i2
· a∇ϕ0,mei1 + ϕn−1,q+2

jin...i3
ei2 · aϕ0,mei1

]
.

The equation for ϕn,m in Definition 3.1 yields

E
[
∇ϕp,qj1...jp

· a∇ϕn,mi1...in

]
= −E

[
∇ϕp,qj1...jp

· aϕn−1,m
i1...in−1

ein

]
+ E

[
ϕp,qj1...jp

ein · a
(
∇ϕn−1,m

i1...in−1
+ ϕn−2,m

i1...in−2
ein−1

)]
− E

[
ϕp,qj1...jp

ϕn,m−2
i1...in

]
,

while the equation for ϕp+1,q leads to

E
[
ϕp,qj1...jp

ein · a∇ϕn−1,m
i1...in−1

]
= −E

[
∇ϕp+1,q

j1...jpin
· a∇ϕn−1,m

i1...in−1

]
+ E

[(
∇ϕp,qj1...jp

+ ϕp−1,q
j1...jp−1

ejp
)
· aϕn−1,m

i1...in−1
ein

]
− E

[
ϕp+1,q−2
j1...jpin

ϕn−1,m
i1...in−1

]
.

Summing these two identities, the claim (3.8) easily follows. Next, using (3.8) in form
of

E
[
ϕk,qjin...in−k+2

ϕn−k+1,m
i1...in−k+1

]
= −E

[
ϕk−1,q+2
jin...in−k+3

ϕn−k+2,m−2
i1...in−k+2

]
− E

[(
∇ϕk−1,q+2

jin...in−k+3
· a∇ϕn−k+2,m

i1...in−k+2
− ϕk−2,q+2

jin...jn−k+4
ejn−k+3

· aϕn−k+1,m
i1...in−k+1

ein−k+2

)]
− E

[(
∇ϕk,q+2

jin...in−k+2
· a∇ϕn−k+1,m

i1...in−k+1
− ϕk−1,q+2

jin...in−k+3
ein−k+2

· aϕn−k,m
i1...in−k

ein−k+1

)]
,
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and summing this identity for 1 ⩽ k ⩽ n, we find after straightforward simplifications

n∑
k=1

(−1)kE
[
ϕk,qjin...in−k+2

ϕn−k+1,m
i1...in−k+1

]
= −

n∑
k=1

(−1)kE
[
ϕk−1,q+2
jin...in−k+3

ϕn−k+2,m−2
i1...in−k+2

]
− (−1)nE

[(
∇ϕn,q+2

jin...i2
· a∇ϕ1,mi1

− ϕn−1,q+2
jin...i3

ei2 · aϕ0,mei1
)]
.

Using the equation for ϕ1,m, the second claim (3.9) easily follows.

Step 2. Conclusion. — For n ⩾ 1 and m ⩾ 0, the definition of an,m and the equation
for ϕ1,0 yield

ej · an,m
i1...in−1

ein = −E
[(
∇ϕ1,0j · a∇ϕn,mi1...in

− ej · aϕn−1,m
i1...in−1

ein
)]
.

Iterating identity (3.8) then leads to

ej · an,m
i1...in−1

ein = (−1)nE
[(
∇ϕn,0jin...i2

· a∇ϕ1,mi1
− ϕn−1,0

jin...i3
ei2 · aϕ0,mei1

)]
−

n−1∑
k=1

(−1)kE
[
ϕk,0jin...in−k+2

ϕn−k+1,m−2
i1...in−k+1

]
,

hence, using the equation for ϕ1,m,

(3.10) ej · an,m
i1...in−1

ein = (−1)n+1E
[(
∇ϕn,0jin...i2

+ ϕn−1,0
jin...i3

ei2
)
· aϕ0,mei1

]
−

n∑
k=1

(−1)kE
[
ϕk,0jin...in−k+2

ϕn−k+1,m−2
i1...in−k+1

]
.

For m = 0, this already yields the conclusion

ej ·an,0
i1...in−1

ein = (−1)n+1E
[(
∇ϕn,0jin...i2

+ ϕn−1,0
jin...i3

ei2
)
· aei1

]
= (−1)n+1ei1 ·a

n,0
jin...i3

ei2 .

For m ⩾ 2, identity (3.10) rather takes the form

(3.11) ej · an,m
i1...in−1

ein = −
n∑

k=1

(−1)kE
[
ϕk,0jin...in−k+2

ϕn−k+1,m−2
i1...in−k+1

]
,

which we shall combine with an iterative use of identity (3.9). More precisely, in case
m = 4m′ + 2 with an integer m′ ⩾ 0, iterating identity (3.9) (starting from q = 0

with m replaced by m− 2 = 4m′), and recalling ϕ0,l = 0 for l ⩾ 1, we find
n∑

k=1

(−1)kE
[
ϕk,0jin...in−k+2

ϕn−k+1,m−2
i1...in−k+1

]
=

n∑
k=1

(−1)kE
[
ϕk,2m

′

jin...in−k+2
ϕn−k+1,2m′

i1...in−k+1

]
,

and thus, combining this with (3.11), and replacing k by n− k + 1 in the sum,

ej · an,m
i1...in−1

ein = −
n∑

k=1

(−1)kE
[
ϕk,2m

′

jin...in−k+2
ϕn−k+1,2m′

i1...in−k+1

]
= (−1)n+1ei1 · a

n,m
jin...i3

ei2 .
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Similarly, in the case m = 4m′ with integer m′ ⩾ 1, we find

ej · an,m
i1...in−1

ein = −
n∑

k=1

(−1)kE
[
ϕk,2m

′

jin...in−k+2
ϕn−k+1,2m′−2
i1...in−k+1

]
= −

n∑
k=1

(−1)kE
[
ϕk,2m

′−2
jin...in−k+2

ϕn−k+1,2m′

i1...in−k+1

]
= (−1)n+1ei1 · a

n,m
jin...i3

ei2 ,

and the conclusion follows. □

3.6. Proof of Proposition 3.6. — We focus on the case ε = 1 and drop it from all
subscripts in the notation, while the final result is obtained after ε-rescaling. Since the
correctors ϕn,mj1...jn

do not depend on time, a direct calculation yields for all n,m ⩾ 0,

(∂2t −∇ · a∇)
(
ϕn,m ⊙∇n∂mt w

)
= ϕn,m ⊙∇n∂m+2

t w

+ (−∇ · a∇ϕn,mj1...jn
)∇n

j1...jn∂
m
t w −∇ · (aϕn,mj1...jn

ejn+1)∇n+1
j1...jn+1

∂mt w

− (ejn+1
· a∇ϕn,mj1...jn

)∇n+1
j1...jn+1

∂mt w − (ejn+2
· aϕn,mj1...jn

ejn+1
)∇n+2

j1...jn+2
∂mt w.

Inserting the defining equation for the hyperbolic corrector ϕn,m, cf. Definition 3.1,
we get for all n ⩾ 1 and m ⩾ 0,

(∂2t −∇ · a∇)
(
ϕn,m ⊙∇n∂mt w

)
= ϕn,m ⊙∇n∂m+2

t w − ϕn,m−2 ⊙∇n∂mt w

+∇ · (aϕn−1,m
j1...jn−1

ejn)∇n
j1...jn∂

m
t w −∇ · (aϕn,mj1...jn

ejn+1
)∇n+1

j1...jn+1
∂mt w

+ (ejn · a∇ϕn−1,m
j1...jn−1

)∇n
j1...jn∂

m
t w − (ejn+1

· a∇ϕn,mj1...jn
)∇n+1

j1...jn+1
∂mt w

+ (ejn · aϕn−2,m
j1...jn−2

ejn−1)∇n
j1...jn∂

m
t w − (ejn+2 · aϕ

n,m
j1...jn

ejn+1)∇n+2
j1...jn+2

∂mt w

− an−1,m
j1...jn−2

: ∇2∇n−2
j1...jn−2

∂mt w,

and thus, after summation over 1 ⩽ n ⩽ ℓ and 0 ⩽ m ⩽ ℓ − n, recalling the defini-
tion (3.3) of the geometric two-scale expansion, and using ϕ0,0 = 1 and ϕ0,m = 0 for
m > 0,

(∂2t −∇ · a∇)Hℓ[w] = ∂2tw −
ℓ∑

n=1

ℓ−n∑
m=0

an−1,m
j1...jn−2

: ∇2∇n−2
j1...jn−2

∂mt w

+

ℓ∑
n=1

(
ϕn,ℓ−n−1 ⊙∇n∂ℓ+1−n

t w + ϕn,ℓ−n ⊙∇n∂ℓ+2−n
t w

)
−

ℓ∑
n=1

(
∇ · (aϕn,ℓ−n

j1...jn
ejn+1

) + ejn+1
· a∇ϕn,ℓ−n

j1...jn

)
∇n+1

j1...jn+1
∂ℓ−n
t w

−
ℓ∑

n=1

(
(ejn+1

·aϕn−1,ℓ−n
j1...jn−1

ejn)∇n+1
j1...jn+1

∂ℓ−n
t w+(ejn+2

·aϕn,ℓ−n
j1...jn

ejn+1
)∇n+2

j1...jn+2
∂ℓ−n
t w

)
.
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As a0,m = 0 for all m ⩾ 0, the second right-hand side term can be rewritten as

ℓ∑
n=1

ℓ−n∑
m=0

an−1,m
j1...jn−2

: ∇2∇n−2
j1...jn−2

∂mt w =

ℓ−1∑
n=1

ℓ−1−n∑
m=0

an,m
j1...jn−1

: ∇2∇n−1
j1...jn−1

∂mt w

=

ℓ∑
n=1

ℓ−n∑
m=0

∇ · (an,m ⊙∇n−1∂mt )∇w −
ℓ∑

n=1

an,ℓ−n
j1...jn−1

: ∇2∇n−1
j1...jn−1

∂ℓ−n
t w.

Further rearranging the terms, and noting that

∇ · (aϕn,ℓ−n
j1...jn

ejn+1
)∇n+1

j1...jn+1
∂ℓ−n
t w + (ejn+2

· aϕn,ℓ−n
j1...jn

ejn+1
)∇n+2

j1...jn+2
∂ℓ−n
t w

= ∇ ·
(
aϕn,ℓ−n

j1...jn
∇∇n

j1...jn∂
ℓ−n
t w

)
,

we are led to

(3.12) (∂2t −∇ · a∇)Hℓ[w] = ∂2tw −
ℓ∑

n=1

ℓ−n∑
m=0

∇ · (an,m ⊙∇n−1∂mt )∇w

+

ℓ∑
n=1

(
ϕn,ℓ−n−1 ⊙∇n∂ℓ+1−n

t w + ϕn,ℓ−n ⊙∇n∂ℓ+2−n
t w

)
−

ℓ∑
n=1

∇ ·
(
aϕn,ℓ−n

j1...jn
∇∇n

j1...jn∂
ℓ−n
t w

)
−

ℓ∑
n=1

(
a
(
∇ϕn,ℓ−n

j1...jn
+ ϕn−1,ℓ−n

j1...jn−1
ejn

)
− an,ℓ−n

j1...jn−1
ejn

)
· ∇∇n

j1...jn∂
ℓ−n
t w.

The last right-hand side terms can be reformulated in terms of fluxes, cf. Definition 3.1,

ℓ∑
n=1

(
a
(
∇ϕn,ℓ−n

j1...jn
+ ϕn−1,ℓ−n

j1...jn−1
ejn

)
− an,ℓ−n

j1...jn−1
ejn

)
· ∇∇n

j1...jn∂
ℓ−n
t w

=

ℓ∑
n=1

qn,ℓ−n
j1...jn

· ∇∇n
j1...jn∂

ℓ−n
t w +

ℓ−1∑
n=1

ϕn+1,ℓ−n−2 ⊙∇n+1∂ℓ−n
t w.

Further noting that we can write

qℓ,0j1...jℓ
· ∇∇ℓ

j1...jℓ
w = q̃ℓ,0j1...jℓ

· ∇∇ℓ
j1...jℓ

w,

in terms of the modified fluxes of Lemma 3.3, and then inserting the definition of
hyperbolic flux correctors and using the skew-symmetry of σℓ,0

j1...jℓ
, cf. Definition 3.2

and Lemma 3.3, we deduce

ℓ∑
n=1

(
a
(
∇ϕn,ℓ−n

j1...jn
+ ϕn−1,ℓ−n

j1...jn−1
ejn

)
− an,ℓ−n

j1...jn−1
ejn

)
· ∇∇n

j1...jn∂
ℓ−n
t w

= −
ℓ∑

n=0

∇j(σ
n,ℓ−n
j1...jn

)jjn+1
∇n+1

j1...jn+1
∂ℓ−n
t w +

ℓ−1∑
n=0

ϕn+1,ℓ−n−2 ⊙∇n+1∂ℓ−n
t w.
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Rearranging the terms and further using the skew-symmetry of σℓ,0
j1...jℓ

, we get

ℓ∑
n=1

(
a
(
∇ϕn,ℓ−n

j1...jn
+ ϕn−1,ℓ−n

j1...jn−1
ejn

)
− an,ℓ−n

j1...jn−1
ejn

)
· ∇∇n

j1...jn∂
ℓ−n
t w

= −
ℓ∑

n=0

∇ ·
(
σn,ℓ−n
j1...jn

∇∇n
j1...jn∂

ℓ−n
t w

)
+

ℓ−1∑
n=0

σn,ℓ−n
j1...jn

: ∇2∇n
j1...jn∂

ℓ−n
t w

+

ℓ−1∑
n=0

ϕn+1,ℓ−n−2 ⊙∇n+1∂ℓ−n
t w.

Inserting this into (3.12) yields the conclusion. □

3.7. Proof of Lemma 3.8. — We split the proof into three steps.

Step 1. — Proof that for all p ⩾ 1 there holds

(3.13) ∂2tW
ℓ

ε −
p∑

k=1

ε2(k−1)
∑

n∈[ℓ]k

∑
m∈In

k

( k∏
j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
W

ℓ

ε

= f +

p−1∑
k=1

∑
n∈[ℓ]k

∑
m∈Jn

k

ε|m|
( k∏

j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
∂
|m|−2k
t f

+
∑

n∈[ℓ]p

∑
m∈Jn

p

ε|m|
( p∏

j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
∂
|m|−2(p−1)
t W

ℓ

ε,

where we have defined the following sets of indices, for all k ⩾ 1 and n = (n1, . . . , nk) ∈
[ℓ]k := {1, . . . , ℓ}k,

Ink =
{
m = (m1, . . . ,mk) : 0 ⩽ mj ⩽ ℓ− nj ∀j,

s∑
j=1

mj ⩾ 2s ∀s < k, |m|=2(k − 1)
}
,

Jn
k =

{
m = (m1, . . . ,mk) : 0 ⩽ mj ⩽ ℓ− nj ∀j,

s∑
j=1

mj ⩾ 2s ∀s ⩽ k
}
.

We argue by induction. For p = 1, the stated identity (3.13) reduces to

∂2tW
ℓ

ε−∇·
( ℓ∑

n=1

an,0⊙(ε∇)n−1
)
∇W ℓ

ε = f+∇·
( ℓ∑

n=1

ℓ−n∑
m=2

an,m⊙(ε∇)n−1(ε∂t)
m
)
∇W ℓ

ε,

which is a simple reformulation of (3.5), keeping in mind that an,m = 0 whenever m
is odd, cf. Definition 3.1. Next, we assume that the claim (3.13) holds for some p ⩾ 1

and we prove that it then also holds at level p + 1. Let n ∈ [ℓ]p and m ∈ Jn
p be

momentarily fixed. As by definition |m| ⩾ 2p, we may use (3.5) in the form

∂
|m|−2(p−1)
t W

ℓ

ε = ∂
|m|−2p
t

(
f +∇ ·

( ℓ∑
n′=1

ℓ−n′∑
m′=0

an′,m′
⊙ (ε∇)n

′−1(ε∂t)
m′

)
∇W ℓ

ε

)
.
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Note that for 1 ⩽ n′ ⩽ ℓ and 0 ⩽ m′ ⩽ ℓ− n′ we have the equivalences

(m,m′) ∈

{
I
(n,n′)
p+1 ⇐⇒ |m| = 2p, m′ = 0,

J
(n,n′)
p+1 ⇐⇒ |m|+m′ ⩾ 2(p+ 1).

Using these observations, the last term in (3.13) can be decomposed as∑
n∈[ℓ]p

∑
m∈Jn

p

ε|m|
( p∏

j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
∂
|m|−2(p−1)
t W

ℓ

ε

=
∑

n∈[ℓ]p

∑
m∈Jn

p

ε|m|
( p∏

j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
∂
|m|−2p
t f

+ ε2p
∑

n∈[ℓ]p+1

∑
m∈In

p+1

( p+1∏
j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
W

ℓ

ε

+
∑

n∈[ℓ]p+1

∑
m∈Jn

p+1

ε|m|
( p+1∏

j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
∂
|m|−2p
t W

ℓ

ε.

Inserting this expression into the induction assumption (3.13) yields the conclusion.

Step 2. Reformulation. — The definition of the coefficients {bn}n in the statement
leads to

∇ ·
( ℓ∑

n=1

bn ⊙ (ε∇)n−1
)
∇ =

ℓ∑
r=1

⌈r/2⌉∑
k=1

ε2(k−1)
∑

n∈[ℓ]k

k+|n|=r+1

∑
m∈In

k

k∏
j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇

=

⌈ℓ/2⌉∑
k=1

ε2(k−1)
∑

n∈[ℓ]k

|n|⩽ℓ−k+1

∑
m∈In

k

k∏
j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇.

(Here we have used the following observation: for m = (m1, . . . ,mk) and n =

(n1, . . . , nk) with mj ⩾ 0 and nj ⩾ 1 for all j, the restrictions |m| = 2(k − 1) and
k+ |n| = r+1 entail mj +nj ⩽ r, thus showing that the index set Ik in the definition
of the coefficients {bn}n is indeed interchangeable with Ink here.) Choosing p := ⌈ℓ/2⌉
in (3.13) and inserting the above, we find

(3.14) ∂2tW
ℓ

ε −∇ ·
( ℓ∑

n=1

bn ⊙ (ε∇)n−1
)
∇W ℓ

ε = ∇ ·Qℓ
ε

+ f +

p−1∑
k=1

∑
n∈[ℓ]k

∑
m∈Jn

k

ε|m|
( k∏

j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
∂
|m|−2k
t f,

where the remainder ∇ ·Qℓ
ε is given by

Qℓ
ε :=

∑
n∈[ℓ]p

∑
m∈Jn

p

ε|m|(an1,m1 ⊙ (ε∇)n1−1
)

×∇
( p∏

j=2

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
∂
|m|−2(p−1)
t W

ℓ

ε

+

p∑
k=1

ε2(k−1)
∑

n∈[ℓ]k

|n|⩾ℓ−k+2

∑
m∈In

k

(
an1,m1⊙(ε∇)n1−1

)
∇
( k∏

j=2

∇·
(
anj ,mj⊙(ε∇)nj−1

)
∇
)
W

ℓ

ε.
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(We use the standard convention
∏k

j=l = 1 if l > k.) In order to estimate the remain-
der Qℓ

ε, let us first examine the ε-scaling and the number of derivatives of W ℓ
ε appear-

ing in each of the two contributions in its definition:
– In the first contribution in the definition of Qℓ

ε, the terms have scaling ε|n|+|m|−p

and involve |n| + |m| − p + 1 space-time derivatives of W ℓ
ε, while the condition on

m,n in the sum ensures the lower bound |n|+ |m| − p ⩾ |m| ⩾ 2p ⩾ ℓ and the upper
bound |n|+ |m| − p ⩽ |n|+ pℓ− |n| − p = p(ℓ− 1) = ⌈ℓ/2⌉(ℓ− 1) ⩽ ℓ2.

– In the second contribution in the definition of Qℓ
ε, the terms have scaling ε|n|+k−2

and involve |n| + k − 1 derivatives, while the condition on n,m in the sum ensures
the lower bound |n| + k − 2 ⩾ ℓ and the upper bound |n| + k − 2 ⩽ kℓ + k − 2 =

⌈ℓ/2⌉(ℓ+ 1)− 2 ⩽ ℓ2.
Hence, in view of Lemma 3.4, we deduce for ε≪ 1, for all r ⩾ 0,

|⟨D⟩rQℓ
ε| ≲ (εCℓ)ℓ|⟨D⟩r+ℓ⟨εCD⟩ℓ

2

DW ℓ
ε|.

Likewise, the definition of {cn}n in the statement leads to

ε2∇ ·
( ℓ−2∑

n=1

cn ⊙ (εD)n−1
)
∇

=

⌈ℓ/2⌉−1∑
k=1

∑
n∈[ℓ]k

∑
m∈Jn

k

|n|+|m|⩽ℓ+k−1

ε|m|
( k∏

j=1

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
∂
|m|−2k
t ,

which, inserted into (3.14), yields

∂2tW
ℓ

ε−∇·
( ℓ∑

n=1

bn⊙(ε∇)n−1
)
∇W ℓ

ε = f+ε2∇·
( ℓ−2∑

n=1

cn⊙(εD)n−1
)
∇f+∇·(Qℓ

ε+R
ℓ
ε),

where the additional remainder ∇ ·Rℓ
ε (which is not zero only for ℓ ⩾ 3) is given by

Rℓ
ε =

p−1∑
k=1

∑
n∈[ℓ]k

∑
m∈Jn

k

|n|+|m|⩾ℓ+k

ε|m|(an1,m1 ⊙ (ε∇)n1−1
)

×∇
( k∏

j=2

∇ ·
(
anj ,mj ⊙ (ε∇)nj−1

)
∇
)
∂
|m|−2k
t f.

Again, in order to estimate this remainder, we first check the ε-scaling and the number
of derivatives of f : the terms have scaling ε|n|+|m|−k and involve |n|+|m|−k−1 deriva-
tives, while the condition on n,m in the sum ensures the lower bound |n|+ |m| − k ⩾ ℓ

and the upper bound |n|+ |m|−k ⩽ k(ℓ−1) ⩽ (⌈ℓ/2⌉−1)(ℓ−1) ⩽ ℓ2. Hence, in view
of Lemma 3.4, we deduce for ε≪ 1, for all r ⩾ 0,

|⟨D⟩rRℓ
ε| ≲ (εCℓ)ℓ|⟨D⟩r+ℓ−1⟨εCD⟩ℓ

2

f |.

The conclusion with the remainder estimate follows upon setting Eℓ
ε = Qℓ

ε +Rℓ
ε.
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Step 3. Growth of the revamped coefficients: proof of (3.6). — We focus on bp, while the
estimation of cp is obtained similarly. By definition of bp in the statement, together
with Lemma 3.4, we find

|bp| ⩽
∑
k⩾1

∑
(m1,...,mk)∈Ik

∑
n1,...,nk⩾1
k+|n|=p+1

C |n|+|m|.

For all admissible indices in the above sum, we have |n| ⩾ k, and thus p + 1 =

k + |n| ⩾ 2k, hence k ⩽ (p+ 1)/2. Moreover, any m ∈ Ik satisfies |m| = 2(k − 1),
hence p + 1 = k + |n| = |n| + |m| − k + 2. The upper bound for k then yields
|n|+ |m| ⩽ (3p− 1)/2, which leads us to the bound

|bp| ⩽ Cp ♯
{
r ∈ Np+1 : |r| ⩽ (3p− 1)/2

}
,

and the conclusion |bp| ⩽ Cp follows from a simple counting argument with the balls
in bins formula. □

3.8. Proof of Lemma 3.9. — Let v(⋆),ℓε be the solution of a well-posed modification
of (3.7). In terms of

(3.15) f (⋆),ℓε (x) := ∂2t v
(⋆),ℓ
ε −∇ ·

( ℓ∑
n=1

ℓ−n∑
m=0

an,m ⊙ (ε∇)n−1(ε∂t)
m
)
∇v(⋆),ℓε ,

we aim to decompose f (⋆),ℓε = f +∇ · F (⋆),ℓ
ε for some remainder F (⋆),ℓ

ε satisfying the
claimed estimates. We split the proof into three steps, separately considering the cases
(⋆) = (I), (II), (III).

Step 1. High-order filtering: (⋆) = (I). — Applying Lemma 3.8 to (3.15), we find

∂2t v
(I),ℓ
ε −∇ ·

(
a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)
∇v(I),ℓ

ε

= f (I),ℓ
ε + ε2∇ ·

( ℓ−2∑
n=1

cn ⊙ (εD)n−1
)
∇f (I),ℓ

ε +∇ · E(I),ℓ
ε ,

where the remainder satisfies for ε≪ 1, for all r ⩾ 0,
(3.16) |⟨D⟩rE(I),ℓ

ε | ⩽ (εCℓ)ℓ
(
|⟨D⟩r+ℓ⟨εCD⟩ℓ

2

Dv(I),ℓ
ε |+ |⟨D⟩r+ℓ−1⟨εCD⟩ℓ

2

f (I),ℓ
ε |

)
.

As v(I),ℓ
ε is the solution of the well-posed modification of (3.7) obtained by high-order

filtering in the sense of Lemma 2.10, we deduce

χ(εα∇)

(
f + ε2∇ ·

( ℓ−2∑
n=1

cn ⊙ (εD)n−1
)
∇f

)
= f (I),ℓ

ε + ε2∇ ·
( ℓ−2∑

n=1

cn ⊙ (εD)n−1
)
∇f (I),ℓ

ε +∇ · E(I),ℓ
ε ,

or equivalently,

(3.17) f (I),ℓ
ε + ε2∇ ·

( ℓ−2∑
n=1

cn ⊙ (εD)n−1
)
∇f (I),ℓ

ε

= f + ε2∇ ·
( ℓ−2∑

n=1

cn ⊙ (εD)n−1
)
∇f +∇ · Ê(I),ℓ

ε ,
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with modified remainder

(3.18) Ê(I),ℓ
ε := −E(I),ℓ

ε − (1− χ(εα∇))△−1∇
(
f + ε2∇ ·

( ℓ−2∑
n=1

cn ⊙ (εD)n−1
)
∇f

)
.

In order to estimate f (I),ℓ
ε , it remains to invert the differential operator

(3.19) 1 + ε2∇ ·
( ℓ−2∑

n=1

cn ⊙ (εD)n−1
)
∇

in the left-hand side of (3.17). Although it is not invertible in general, we may invert
it approximately using a Neumann series truncated at order O(εℓ). More precisely,
we set

Oℓ
ε := 1 +

⌊ℓ/2⌋∑
k=1

(−ε2)k
∑

n∈[ℓ−2]k

|n|⩽ℓ−k

k∏
j=1

(
∇ ·

(
cnj ⊙ (εD)nj−1

)
∇
)
.

By a simple counting argument with the balls in bins formula, the number of terms
in this sum defining Oℓ

ε can be bounded by
⌊ℓ/2⌋∑
k=1

♯{n ∈ [ℓ− 2]k : |n| ⩽ ℓ− k} ⩽ Cℓ,

and therefore, combining this cardinality bound with the bound |cn| ⩽ Cn, we easily
deduce for any function g, for all r ⩾ 0,

(3.20) |⟨D⟩rOℓ
εg| ⩽ Cℓ|⟨D⟩r⟨εCD⟩ℓg|.

Next, we check that Oℓ
ε is indeed an approximate inverse for the differential operator

in (3.19): by definition of Oℓ
ε, working out cancellations, we find for any function g,

Oℓ
ε

(
1 + ε2∇ ·

( ℓ−2∑
n=1

cn ⊙ (εD)n−1
)
∇
)
g = g +∇ ·Hℓ

εg,

where the remainder is explicitly given by

∇ ·Hℓ
εg :=−

⌊ℓ/2⌋∑
k=2

(−ε2)k
∑

n∈[ℓ−2]k

ℓ+1−k⩽|n|⩽nk+ℓ+1−k

k∏
j=1

(
∇ ·

(
cnj ⊙ (εD)nj−1

)
∇
)
g

− (−ε2)⌊ℓ/2⌋+1
∑

n∈[ℓ−2]⌊ℓ/2⌋+1

|n|⩽nk+ℓ−⌊ℓ/2⌋

⌊ℓ/2⌋+1∏
j=1

(
∇ ·

(
cnj ⊙ (εD)nj−1

)
∇
)
g,

and can be estimated as follows: for all r ⩾ 0, using |cn| ⩽ Cn, we have that

(3.21) |⟨D⟩rHℓ
εg| ⩽ (εC)ℓ|⟨D⟩r+2ℓg|.

Applying Oℓ
ε to both sides of (3.17), we then get

f (I),ℓ
ε = f +∇ · F (I),ℓ

ε , F (I),ℓ
ε := Hℓ

ε(f − f (I),ℓ
ε ) + Oℓ

εÊ
(I),ℓ
ε ,
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and the desired remainder estimate follows by combining (3.15), (3.16), (3.18), (3.20),
and (3.21), together with the a priori estimate of Lemma 2.10(ii) for v(I),ℓ

ε . Note that
the remainder term that is local with respect to f can also be bounded with an
L1(0, t)-norm instead of an L∞(0, t)-norm up to loosing a time derivative.

Step 2. Higher-order regularization: (⋆) = (II). — As v(II),ℓ
ε is the solution of the well-

posed modification of (3.7) obtained by higher-order regularization in the sense of
Lemma 2.10, we get instead of (3.17),

f (II),ℓ
ε + ε2∇ ·

( ℓ−2∑
n=1

cn ⊙ (εD)n−1
)
∇f (II),ℓ

ε

= f + ε2∇ ·
( ℓ−2∑

n=1

cn ⊙ (εD)n−1
)
∇f +∇ · Ê(II),ℓ

ε ,

with remainder
Ê(II),ℓ

ε := −E(II),ℓ
ε + κℓ(ε|∇|)ℓ∇v(II),ℓ

ε ,

where E(II),ℓ
ε satisfies the corresponding estimate (3.16). Now applying the same ap-

proximate inverse operator Oℓ
ε to both sides of this identity, we get

f (II),ℓ
ε = f +∇ · F (II),ℓ

ε , F (II),ℓ
ε := Hℓ

ε(f − f (II),ℓ
ε ) + Oℓ

εÊ
(II),ℓ
ε ,

and the desired remainder estimate follows similarly.

Step 3. Boussinesq trick: (⋆) = (III). — By definition, v(III),ℓ
ε is the solution of the well-

posed modification of (3.7) obtained by Boussinesq trick in the sense of Lemma 2.10,
that is,

(3.22) ∂2t

(
1 +

ℓ∑
l=2

κl(ε|∇|)l−1
)
v(III),ℓ
ε

−∇ ·
( ℓ∑

n=1

(
κna+

n−1∑
l=1

κlb
n+1−l ⊙ ( ∇

|∇| )
n−l

)
(ε|∇|)n−1

)
∇v(III),ℓ

ε

=
(
1 +

ℓ∑
l=2

κl(ε|∇|)l−1
)(

f + ε2∇ ·
( ℓ−2∑

k=1

ck ⊙ (εD)k−1
)
∇f

)
,

with v(III),ℓ
ε = f = 0 for t ⩽ 0. We recall that the coefficients {κl}l are defined in (2.21)

and that well-posedness is indeed ensured by Lemma 2.10(ii). Using the identity
ℓ∑

n=1

(
κna+

n−1∑
l=1

κlb
n+1−l ⊙ ( ∇

|∇| )
n−l

)
(ε|∇|)n−1

=
(
1 +

ℓ∑
l=2

κl(ε|∇|)l−1
)(

a+

ℓ∑
k=2

bk ⊙ (ε∇)k−1
)

−
2ℓ−1∑
n=ℓ+1

( ℓ∑
l=n+1−ℓ

κlb
n+1−l ⊙ ( ∇

|∇| )
n−l

)
(ε|∇|)n−1,

the above equation (3.22) can be alternatively written as

∂2t v
(III),ℓ
ε −∇·

(
a+

ℓ∑
k=2

bk⊙(ε∇)k−1
)
∇v(III),ℓ

ε = f+ε2∇·
( ℓ−2∑

k=1

ck⊙(εD)k−1
)
∇f−∇·Gℓ

ε,

J.É.P. — M., 2024, tome 11



Long-time homogenization of the wave equation 579

in terms of

Gℓ
ε :=

2ℓ−1∑
n=ℓ+1

( ℓ∑
l=n+1−ℓ

κlb
n+1−l⊙ ( ∇

|∇| )
n−l

)
(ε|∇|)n−1

(
1+

ℓ∑
l=2

κl(ε|∇|)l−1
)−1

∇v(III),ℓ
ε ,

where the inverse operator is obviously well-defined as κl ⩾ 0 for all l. We then get,
instead of (3.17),

f (III),ℓ
ε + ε2∇ ·

( ℓ−2∑
n=1

cn ⊙ (εD)n−1
)
∇f (III),ℓ

ε

= f + ε2∇ ·
( ℓ−2∑

k=1

ck ⊙ (εD)k−1
)
∇f +∇ · Ê(III),ℓ

ε ,

with remainder
Ê(III),ℓ

ε := −E(III),ℓ
ε −Gℓ

ε,

where E(III),ℓ
ε satisfies the corresponding estimate (3.16). The conclusion then follows

similarly as in the first two steps. □

4. Relating spectral to hyperbolic correctors

This last section is devoted to the proof of (1.12). It relies on an algorithmic
procedure to relate spectral and hyperbolic correctors. We split the proof into two
steps.

Step 1. Reformulation of the hyperbolic two-scale expansion. — For ε≪ 1, we have for
all ℓ ⩾ 1,

(4.1)
∥∥∥∥Hℓ

ε [v
(I),ℓ;t
ε ]−

ℓ∑
n=0

εnψ̊n
ℓ (·/ε)⊙∇nu(I),ℓ;t

ε

− ε3
ℓ−3∑
n=0

ℓ−n−3∑
2m=0

εn+2mζ̊n,2mℓ (·/ε)⊙∇n+1∂2mt f t
∥∥∥∥
H1(Rd)

⩽ (εC)ℓ∥⟨D⟩Cℓf∥L1((0,t);L2(Rd)),

where for each n,m the correctors ψ̊n
ℓ and ζ̊n,mℓ are suitable linear combinations of

hyperbolic correctors {ϕn′,m′}n′,m′ with coefficients involving ℓ and {bn′
, cn

′
}n′ .

Comparing the effective equation in the spectral and in the geometric approach,
cf. (2.16) and (3.7), and using the well-posed modification by high-order filtering, we
get

(4.2) v(I),ℓ
ε = u(I),ℓ

ε + ε2∇ ·
( ℓ−2∑

k=1

ck ⊙ (εD)k−1
)
∇u(I),ℓ

ε .

Inserting this into the definition (3.3) of the geometric two-scale expansion Hℓ
ε [v

(I),ℓ
ε ],

and rearranging terms, we get

(4.3) Hℓ
ε [v

(I),ℓ
ε ] =

ℓ∑
n=0

ℓ−n∑
m=0

εn+mzn,mℓ (·/ε)⊙∇n∂mt u
(I),ℓ
ε +Rℓ

ε,1[u
(I),ℓ
ε ],
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where for each n,m the corrector zn,mℓ is some linear combination of hyperbolic correc-
tors {ϕn′,m′}n′,m′ with coefficients involving ℓ and {cn

′
}n′ , and where the remainder

term is given by

Rℓ
ε,1[u

(I),ℓ
ε ] :=

ℓ∑
n=0

ℓ−n∑
m=0

ℓ−2∑
k=1

1n+m+k⩾ℓ ε
n+m+k+1ϕn,mj1...jn

(·/ε)(ck ⊙Dk−1) : ∇2∇n
j1...jn∂

m
t u

(I),ℓ
ε .

By construction, we note that z0,0ℓ = ϕ0,0 = 1, z0,mℓ = ϕ0,m = 0 for all m ⩾ 1, and
that zn,mℓ does not depend on ℓ provided n +m < ℓ. We emphasize that the zn,mℓ ’s
do a priori not have vanishing average. Using Lemma 3.4 together with (3.6), and
using the Sobolev embedding in form of (2.39) to bound products with correctors,
the remainder can be estimated as follows, for a > d/2,

∥Rℓ
ε,1[u

(I),ℓ
ε ]∥H1(Rd) ⩽ (εC)ℓ∥⟨D⟩2ℓ+a−1Du(I),ℓ

ε ∥L2(Rd),

and thus, by the a priori estimate of Lemma 2.10(ii),

(4.4) ∥Rℓ
ε,1[u

(I),ℓ;t
ε ]∥H1(Rd) ⩽ (εC)ℓ∥⟨D⟩2ℓ+a−1f∥L1((0,t);L2(Rd)).

Next, using the equation (2.16) for u(I),ℓ
ε , we shall proceed to remove the time

derivatives appearing in the geometric two-scale expansion (4.3). For that purpose,
arguing by induction and successively separating terms of order εℓ+1 or higher,
we show that the equation for u(I),ℓ

ε yields for all m ⩾ 1,

(4.5) ∂2mt u(I),ℓ
ε −

∑
1⩽β1,...,βm⩽ℓ

|β|⩽m+ℓ

ε|β|−mB
β
(∇)u(I),ℓ

ε

= χ(εα∇)∂
2(m−1)
t f + χ(εα∇)

m−1∑
k=1

∑
1⩽β1,...,βk⩽ℓ

|β|⩽k+ℓ

ε|β|−kB
β
(∇)∂

2(m−k−1)
t f

+

m∑
k=2

∑
β∈Lk

ε|β|−kB
β
(∇)∂

2(m−k)
t u(I),ℓ

ε ,

in terms of the index sets

Lk :=
{
β = (β1, . . . , βk) : 1 ⩽ βj ⩽ ℓ ∀j,

s∑
j=1

βj ⩽ s+ ℓ ∀s < k, |β| > k + ℓ
}
,

where for all k ⩾ 1 and β = (β1, . . . , βk) we use the short-hand notation

(4.6) B
β
(∇) :=

k∏
j=1

∇ · (bβj ⊙∇βj−1)∇.

We prove identity (4.5) by induction. First, for m = 1, it simply coincides with
(the filtered version of) equation (2.16) for u(I),ℓ

ε . Next, assuming that (4.5) holds for
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some m ⩾ 1, applying ∂2t to both sides of the identity, and using the equation for
u

(I),ℓ
ε to replace ∂2t u

(I),ℓ
ε in the left-hand side, we find

∂
2(m+1)
t uℓε −

∑
1⩽β1,...,βm⩽ℓ

|β|⩽m+ℓ

ε|β|−mB
β
(∇)

( ℓ∑
n=1

εn−1∇ · (bn ⊙∇n−1)∇
)
uℓε

= χ(εα∇)∂2mt f + χ(εα∇)

m∑
k=1

∑
1⩽β1,...,βk⩽ℓ

|β|⩽k+ℓ

ε|β|−kB
β
(∇)∂

2(m−k)
t f

+

m∑
k=2

∑
β∈Lk

ε|β|−kB
β
(∇)∂

2(m−k+1)
t uℓε.

After suitably splitting powers of ε in the left-hand side, this indeed proves iden-
tity (4.5) with m replaced by m+ 1.

Now inserting (4.5) into the two-scale expansion (4.3) in order to replace time
derivatives, and again separating terms of order εℓ+1 or higher, we are led to

(4.7) Hℓ
ε [v

(I),ℓ
ε ] =

ℓ∑
n=0

εnzn,0ℓ (·/ε)⊙∇nu(I),ℓ
ε

+

ℓ∑
n=0

ℓ−n∑
2m=2

∑
1⩽β1,...,βm⩽ℓ
n+m+|β|⩽ℓ

εn+m+|β|zn,2mℓ (·/ε)⊙B
β
(∇)∇nu(I),ℓ

ε

+

ℓ∑
n=0

ℓ−n∑
2m=2

εn+2mzn,2mℓ (·/ε)⊙ χ(εα∇)∇n∂
2(m−1)
t f

+

ℓ∑
n=0

ℓ−n∑
2m=2

m−1∑
j=1

∑
1⩽β1,...,βj⩽ℓ

n+2m+|β|⩽j+ℓ

εn+2m+|β|−jzn,2mℓ (·/ε)⊙ χ(εα∇)B
β
(∇)∇n∂

2(m−j−1)
t f

+Rℓ
ε,1[u

(I),ℓ
ε ] +Rℓ

ε,2[u
(I),ℓ
ε ] +Rℓ

ε,3[f ],

where the last two remainder terms take the form

Rℓ
ε,2[u

(I),ℓ
ε ] :=

ℓ∑
n=0

ℓ−n∑
2m=2

m∑
j=2

∑
β∈Lj

εn+2m+|β|−jzn,2mℓ (·/ε)⊙B
β
(∇)∇n∂

2(m−j)
t u(I),ℓ

ε

+

ℓ∑
n=0

ℓ−n∑
2m=2

∑
1⩽β1,...,βm⩽ℓ

|β|⩽m+ℓ,n+m+|β|>ℓ

εn+m+|β|zn,2mℓ (·/ε)⊙B
β
(∇)∇nu(I),ℓ

ε ,

Rℓ
ε,3[f ] :=

ℓ∑
n=0

ℓ−n∑
2m=2

m−1∑
j=1

∑
1⩽β1,...,βj⩽ℓ

|β|⩽j+ℓ, n+2m+|β|>j+ℓ

εn+2m+|β|−jzn,2mℓ (·/ε)

⊙ χ(εα∇)B
β
(∇)∇n∂

2(m−j−1)
t f.
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Equivalently, in view of (4.6), this can be reformulated as

(4.8) Hℓ
ε [v

(I),ℓ
ε ] =

ℓ∑
n=0

εnψ̊n
ℓ (·/ε)⊙∇nu(I),ℓ

ε + ε3
ℓ−3∑
n=0

ℓ−n−3∑
2m=0

εn+2mζ̊n,2mℓ (·/ε)⊙ χ(εα∇)∇n+1∂2mt f

+Rℓ
ε,1[u

ℓ
ε] +Rℓ

ε,2[u
ℓ
ε] +Rℓ

ε,3[f ],

where for each n,m the correctors ψ̊n
ℓ and ζ̊n,2mℓ are suitable linear combinations of

{zn′,2m′}n′,m′ with coefficients involving ℓ and {bn′}n′ . We emphasize that ψ̊n
ℓ and

ζ̊n,2mℓ do a priori not have vanishing average.
We turn to the estimation of the last two remainder terms in (4.8). Recalling the

way that zn,2m depends on {ϕn′,m′}n′,m′ and on {cn′}n′ , using Lemma 3.4 together
with (3.6), and using again the Sobolev embedding in form of (2.39) to bound products
with correctors, we find for ε≪ 1 and a > d/2,

∥Rℓ
ε,2[u

(I),ℓ
ε ]∥H1(Rd) ⩽ (εC)ℓ∥⟨D⟩3ℓ+a−1Duℓε∥L2(Rd),

and thus, further combining this with the a priori estimate of Lemma 2.10(ii),

∥Rℓ
ε,2[u

(I),ℓ;t
ε ]∥H1(Rd) ⩽ (εC)ℓ∥⟨D⟩3ℓ+a−1f∥L1((0,t);L2(Rd)).

Similarly, we find for ε≪ 1 and a > d/2,

∥Rℓ
ε,3[f ]∥H1(Rd) ⩽ (εC)ℓ∥⟨D⟩2ℓ+a−1f∥L2(Rd).

Finally, we recall that the cut-off χ(εα∇) can be removed in the right-hand side
of (4.8) up to higher-order errors: for a > d/2,

∥∥∥∥ε3 ℓ−3∑
n=0

ℓ−n−3∑
2m=0

εn+2mζ̊n,2mℓ (·/ε)⊙ (1− χ(εα∇))∇n+1∂2mt f

∥∥∥∥
H1(Rd)

⩽ ε3Cℓ∥(1− χ(εα∇))⟨D⟩ℓ+a−1f∥L2(Rd) ⩽ (εC)ℓ∥⟨D⟩ℓ+⌈ ℓ
α ⌉+a−1f∥L2(Rd)

⩽ (εC)ℓ∥⟨D⟩ℓ+⌈ ℓ
α ⌉+af∥L1((0,t);L2(Rd)).

Inserting these bounds together with (4.4) into (4.8), the claim (4.1) follows.

Step 2. Conclusion. — In view of (4.1), the result of Theorem 2 yields

∥∥∥∥utε − ℓ∑
n=0

εnψ̊n
ℓ (·/ε)⊙∇nu(I),ℓ;t

ε − ε3
ℓ−3∑
n=0

ℓ−n−3∑
2m=0

εn+2mζ̊n,2mℓ (·/ε)⊙∇n+1∂2mt f t
∥∥∥∥
H1(Rd)

≲ (εCℓ)ℓ⟨t⟩∥⟨D⟩Cℓ2f∥L1((0,t);L2(Rd)).

Now we compare this with the result of Theorem 1: using (2.7) to expand γℓ(ε∇)

in the spectral two-scale expansion (1.4), discarding terms of order O(εℓ), and using
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Lemma 2.10(ii) to estimate the latter, the result (1.6) of Theorem 1 leads us to
(4.9)∥∥∥∥ ℓ∑

n=0

εnψ̃n
ℓ (·/ε)⊙∇nu(I),ℓ;t

ε + ε3
ℓ−3∑
n=0

ℓ−n−3∑
2m=0

εn+2mζ̃n,2mℓ (·/ε)⊙∇n+1∂2mt f t
∥∥∥∥
H1(Rd)

≲ (εCℓ)ℓ⟨t⟩∥⟨D⟩Cℓ2f∥L1((0,t);L2(Rd)),

in terms of the corrector differences

ψ̃n
ℓ =

n∑
k=0

γkℓ ⊗s ψ
n−k − ψ̊n

ℓ , ζ̃n,2mℓ =

n∑
k=0

γkℓ ⊗s ζ
n−k,2m − ζ̊n,2mℓ ,

where ⊗s stands for symmetric tensor product. We claim that (4.9) entails ψ̃n
ℓ = 0

for all n ⩽ ℓ− 1, ζ̃n,2mℓ = 0 for all n+ 2m+ 3 ⩽ ℓ− 1, and ∇ψ̃ℓ
ℓ = 0 and ∇ζ̃n,2mℓ = 0

for n+ 2m+ 3 = ℓ. We argue by induction and prove:

(4.10)
{

for all j ⩽ ℓ− 1 : ψ̃j
ℓ = 0 and ζ̃n,2mℓ = 0 for n+ 2m+ 3 = j,

for j = ℓ : ∇ψ̃ℓ
ℓ = 0 and ∇ζ̃n,2mℓ = 0 for n+ 2m+ 3 = ℓ.

Assume that this result is known to hold for j < j0, given some j0 ⩽ ℓ − 1. Using
the a priori estimates of Lemma 2.10(ii), first note that we have u

(I),ℓ
ε → u in

C∞
loc(R;H∞(Rd)) as ε ↓ 0, where u is the solution of the standard homogenized wave

equation (1.3). Given h ∈ C∞
per(Q), multiplying the expression in the left-hand side

of (4.9) by ε−j0h( ·
ε ), and passing to the limit ε ↓ 0 in the L2-norm, we then get

E
[
hψ̃j0

ℓ

]
⊙∇j0u+

∑
n+2m+3=j0

E
[
hζ̃n,2mℓ

]
⊙∇n+1∂2mt f = 0.

As u satisfies the homogenized wave equation (1.3), applying the wave operator
∂2t −∇ · a∇ to this pointwise identity leads us to

E
[
hψ̃j0

ℓ

]
⊙∇j0f +

∑
n+2m+3=j0

E
[
hζ̃n,2mℓ

]
⊙∇n+1∂2mt (∂2t −∇ · a∇)f = 0.

Choosing for instance f t(x) = exp(−(t2 + |x|2)) for t ⩾ 1, it is easily deduced by
induction, by a linear independence argument, that E

[
hψ̃j0

ℓ

]
= 0 and E

[
hζ̃n,2mℓ

]
=0

for all n,m with n+ 2m+ 3 = j0. As h ∈ C∞
per(Q) is arbitrary, we deduce that the

claim (4.10) also holds for j=j0. The same argument can be adapted to the case j0=ℓ,
rather starting from the estimate on the H1-norm in (4.9). This ends the proof
of (4.10).

In other words, we have thus proved that, given ℓ ⩾ 1, for all j ⩽ ℓ− 1 and for all
n,m with n+m+ 3 ⩽ ℓ− 1, we have

ψ̊j
ℓ =

j∑
k=0

γkℓ ⊗s ψ
j−k, ζ̊n,2mℓ =

n∑
k=0

γkℓ ⊗s ζ
n−k,2m,

while for j = ℓ and for all n,m with n+m+ 3 = ℓ,

∇iψ̊
ℓ
ℓ =

ℓ∑
k=0

γkℓ ⊗s ∇iψ
ℓ−k, ∇iζ̊

n,2m
ℓ =

n∑
k=0

γkℓ ⊗s ∇iζ
n−k,2m.
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Inserting this back into (4.1), using (2.7) to reconstruct γℓ(ε∇), discarding terms of
order O(εℓ), and using Lemma 2.10(ii) to estimate the latter, we may then recognize
the definition (1.4) of the spectral two-scale expansion, to the effect of

∥Hℓ
ε [v

(I),ℓ;t
ε ]− Sℓ

ε[u
(I),ℓ;t
ε , f ]∥H1(Rd) ≲ (εC)ℓ∥⟨D⟩Cℓf∥L1((0,t);L2(Rd)).

Combined with the result (1.6) of Theorem 1, this yields the conclusion (1.12). □

Appendix A. Correctors in the random setting

This section is devoted to the definition and bounds on spectral and hyperbolic
correctors in the random setting. As in the elliptic case [18, 4, 21, 15], the main dif-
ference with the periodic setting is that only a finite number of correctors can be
defined, depending both on space dimension and on mixing properties of the coef-
ficient field. For simplicity, we focus on the Gaussian setting of Definition 1.3. The
corrector estimates below were first obtained in [19, 20, 18] for the first corrector in
the elliptic setting. A proof of the present statement follows from applying iteratively
the annealed Calderón-Zygmund estimates of [15, 11]; see in particular a similar argu-
ment in [15, Proof of Prop. 2.2]. Note that the present result corrects inaccuracies of
the corresponding statement given in [5, Prop. C.4] for spectral correctors.

Theorem A.1. — Let a be Gaussian with parameter β > 0 in the sense of Defini-
tion 1.3. We then define ℓ∗ := ⌈β∧d

2 ⌉ and

(A.1) µ∗
n(x) :=



1 : n < ℓ∗,

log(2 + |x|)1/2 : n = ℓ∗, β > d, d even,
or n = ℓ∗, β < d, β ∈ 2N,

log(2 + |x|) : n = ℓ∗, β = d, d even,
⟨x⟩1/2 : n = ℓ∗, β > d, d odd,
⟨x⟩1/2 log(2 + |x|)1/2 : n = ℓ∗, β = d, d odd,
⟨x⟩n−

β
2 : n = ℓ∗, β < d, β /∈ 2N.

(i) Spectral correctors: The correctors {ψn, σn}0⩽n<ℓ∗ and {ζn,m, τn,m}n+2m<ℓ∗−3

can be uniquely defined by the corrector equations of Section 2.1 as centered stationary
random fields, and in addition the correctors ψn, σn with n = ℓ∗ and ζn,m, τn,m with
n+2m = ℓ∗−3 can be uniquely defined as (non-stationary) random fields with centered
stationary gradient. The homogenized coefficient bn is well-defined for 0 ⩽ n ⩽ ℓ∗.
Moreover, the following moment bounds hold for all q <∞ and x ∈ Rd,∥∥∥(  

B(x)

|(ψn, σn)|2
)1/2∥∥∥

Lq(Ω)
≲q µ∗

n(x), for 0 ⩽ n ⩽ ℓ∗,∥∥∥( 
B(x)

|(∇ψn,∇σn)|2
)1/2∥∥∥

Lq(Ω)
≲q 1, for 0 ⩽ n ⩽ ℓ∗,∥∥∥(  

B(x)

|(ζn,m, τn,m)|2
)1/2∥∥∥

Lq(Ω)
≲q µ∗

n+2m+3(x), for n+ 2m ⩽ ℓ∗ − 3,∥∥∥( 
B(x)

|(∇ζn,m,∇τn,m)|2
)1/2∥∥∥

Lq(Ω)
≲q 1, for n+ 2m ⩽ ℓ∗ − 3.
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(ii) Hyperbolic correctors: The correctors {ϕn,m, σn,m}n+m<ℓ∗ can be uniquely
defined by the corrector equations of Section 3.1 as centered stationary random fields,
and in addition the correctors ϕn,m, σn,m with n+m = ℓ∗ can be uniquely defined as
(non-stationary) random fields with centered stationary gradient. The homogenized
coefficient an,m is well-defined for n + m ⩽ ℓ∗. Moreover, for n + m ⩽ ℓ∗, the
following moment bounds hold for all q <∞ and x ∈ Rd,∥∥∥( 

B(x)

|(ϕn,m, σn,m)|2
)1/2∥∥∥

Lq(Ω)
≲q µ∗

n+m(x),∥∥∥( 
B(x)

|(∇ϕn,m,∇σn,m)|2
)1/2∥∥∥

Lq(Ω)
≲q 1.

♢

Appendix B. A priori estimates for the wave equation

We state the following general a priori estimates for linear wave equations, which
are used throughout; a short proof is included for convenience. In contrast with the
situation in the elliptic setting, we emphasize that putting the impulse in divergence
form essentially only brings an improvement when estimating the L2-norm, and not
the energy norm.

Lemma B.1 (A priori estimates). — Let L be a self-adjoint operator on L2(Rd) sat-
isfying the bound −△ ⩽ L ⩽ −C0△ for some constant C0 < ∞. Given F1 ∈
L1
loc(R+; L2(Rd)) and F2, F3 ∈ W 1,1

loc (R+; L2(Rd)) with F2|t=0 = F3|t=0 = 0, let z
be the solution of the wave equation{

(∂2t + L)z = F1 +∇ · F2 + ∂tF3 in Rd,

z|t=0 = ∂tz|t=0 = 0.

Then, for all t ⩾ 0, we have

∥zt∥L2(Rd) ≲C0
t∥F1∥L1((0,t);L2(Rd)) + ∥(F2, F3)∥L1((0,t);L2(Rd)),

and
∥Dzt∥L2(Rd) ≲C0 ∥(F1, ∂tF2, ∂tF3)∥L1((0,t);L2(Rd)). ♢

Proof. — The assumption −△ ⩽ L ⩽ −C0△ entails that
√
L defines a bounded linear

operator L2(Rd) → Ḣ−1(Rd) with bounded inverse. We may therefore define F̃2 as the
solution of

√
LF̃2 = ∇ · F2, which satisfies ∥F̃2∥L2(Rd) ≲C0

∥F2∥L2(Rd). The solution z
of the wave equation can then be represented in terms of Duhamel’s formula,

zt =

ˆ t

0

sin((t− s)
√
L)√

L
(F s

1 + ∂sF
s
3 ) ds+

ˆ t

0

sin((t− s)
√
L) F̃ s

2 ds.

Integrating by parts in the integral for F3, with F3|t=0 = 0, this can be rewritten as

zt =

ˆ t

0

sin((t− s)
√
L)√

L
F s
1 ds+

ˆ t

0

sin((t− s)
√
L) F̃ s

2 ds+

ˆ t

0

cos((t− s)
√
L)F s

3 ds,
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and the stated L2-estimate follows from spectral calculus. For the energy estimate,
we rather use energy conservation in form of

1
2∂t

ˆ
Rd

(
|∂tz|2 + zLz + 2F2 · ∇z

)
=

ˆ
Rd

(∂tz) (∂
2
t + L)z + ∂t

ˆ
Rd

F2 · ∇z

=

ˆ
Rd

(∂tz)
(
F1 + ∂tF3 +∇ · F2

)
+ ∂t

ˆ
Rd

F2 · ∇z

=

ˆ
Rd

(∂tz)
(
F1 + ∂tF3

)
+

ˆ
Rd

∂tF2 · ∇z

⩽ ∥Dz∥L2(Rd)∥(F1, ∂tF2, ∂tF3)∥L2(Rd),

and the conclusion follows. □
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