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DeepMesh: Differentiable Iso-Surface Extraction

Benoı̂t Guillard, Edoardo Remelli, Artem Lukoianov, Pierre Yvernay, Stephan R. Richter, Timur

Bagautdinov, Pierre Baque, Pascal Fua, Fellow, IEEE

Abstract—Geometric Deep Learning has recently made striking progress with the advent of continuous deep implicit fields. They allow

for detailed modeling of watertight surfaces of arbitrary topology while not relying on a 3D Euclidean grid, resulting in a learnable

parameterization that is unlimited in resolution. Unfortunately, these methods are often unsuitable for applications that require an

explicit mesh-based surface representation because converting an implicit field to such a representation relies on the Marching Cubes

algorithm, which cannot be differentiated with respect to the underlying implicit field. In this work, we remove this limitation and

introduce a differentiable way to produce explicit surface mesh representations from Deep Implicit Fields. Our key insight is that by

reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface

samples with respect to the underlying deep implicit field. We exploit this to define DeepMesh — an end-to-end differentiable mesh

representation that can vary its topology. We validate our theoretical insight through several applications: Single view 3D

Reconstruction via Differentiable Rendering, Physically-Driven Shape Optimization, Full Scene 3D Reconstruction from Scans and

End-to-End Training. In all cases our end-to-end differentiable parameterization gives us an edge over state-of-the-art algorithms.

✦

1 INTRODUCTION

Geometric Deep Learning has recently witnessed a breakthrough

with the advent of Deep Implicit Fields (DIFs) [1], [2], [3]. These

enable detailed modeling of watertight surfaces without relying on

a 3D Euclidean grid or meshes with fixed topology, resulting in a

learnable surface parameterization that is not limited in resolution.

However, a number of important applications require explicit

surface representations, such as triangulated meshes or 3D point

clouds. Computational Fluid Dynamics (CFD) simulations and

the associated learning-based surrogate methods used for shape

design in many engineering fields [4], [5] are a good example

of this where 3D meshes serve as boundary conditions for the

Navier-Stokes equations. Similarly, many advanced physically-

based rendering engines require surface meshes to model the

complex interactions of light and physical surfaces efficiently [6],

[7].

Making explicit representations benefit from the power of deep

implicit fields requires converting the implicit surface parameter-

ization to an explicit one, which typically relies on one of the

many variants of the Marching Cubes algorithm [8], [9]. However,

these approaches are not fully differentiable [10]. This makes it

difficult to use continuous deep implicit fields to parameterize

explicit surface meshes.

The non-differentiability of Marching Cubes has been ad-

dressed by learning differentiable approximations of it [10],

[13]. These techniques, however, remain limited to low-resolution

meshes [10] or fixed topologies [13]. An alternative approach is

to reformulate downstream tasks, such as differentiable render-

ing [14], [15] or surface reconstruction [16], directly in terms

of implicit functions, so that explicit surface representations are
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no longer needed. However, doing so is not easy and may even

not be possible for more complex tasks, such as solving CFD

optimization problems.

By contrast, we show that it is possible to use implicit

functions, be they signed distance functions or occupancy maps,

to produce explicit surface representations while preserving dif-

ferentiability. Our key insight is that 3D surface samples can be

differentiated with respect to the underlying deep implicit field,

which is in the spirit of implicit differentiation [17]. We prove

this formally by reasoning about how implicit field perturbations

impact 3D surface geometry locally. Specifically, we derive a

closed-form expression for the derivative of a surface sample with

respect to the underlying implicit field, which is independent of

the method used to compute the iso-surface. This lets us extract

the explicit surface using a non-differentiable algorithm, such as

Marching Cubes, and then perform the backward pass through the

extracted surface samples. This yields an end-to-end differentiable

surface parameterization that can describe arbitrary topology and

is not limited in resolution. We will refer to our approach as

DeepMesh. We first introduced it in a conference paper [18] that

focused on the 0-iso-surface of signed distance functions. We

extend it here to iso-surface of generic implicit functions, such as

occupancy fields by harnessing simple multivariate calculus tools.

We showcase the power and versatility of DeepMesh in several

applications.

1) Given a model trained to map latent vectors to SDFs, we

use our approach to triangulate the SDF fields and write

image-based losses that yield improved 3D reconstruc-

tions from single images, as shown in Fig. 1(a).

2) Similarly, we use the surface triangulations to compute

the aerodynamic properties of 3D shapes and refine them,

as shown in Fig. 1(b).

3) We use our paradigm in conjunction with DIF-based

methods to improve their performance in a plug-and-play

fashion by adding loss terms that can be computed on

the meshes. This highlights the importance to be able to

handle both SDFs and occupancy grids.
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the results.

2.2 Converting Implicit Functions to Surface Meshes

The Marching Cube (MC) algorithm [8], [9], [41] is a popular way

to convert implicit functions to surface meshes. The algorithm

proceeds by sampling the field on a discrete 3D grid, detect-

ing zero-crossing of the field along grid edges, and building a

surface mesh using a lookup table. Unfortunately, the process of

determining the position of vertices on grid edges involves linear

interpolation, which does not allow for topology changes through

backpropagation [10], as illustrated in Fig. 2(a). Because this is a

central motivation for this work, we provide a more detailed anal-

ysis of this shortcoming in the supplementary material. In what

follows, we discuss two classes of methods that tackle the non-

differentiability issue. The first one emulates iso-surface extraction

with deep neural networks, while the second one avoids the need

for mesh representations by formulating objectives directly in the

implicit domain.

2.2.1 Emulating Iso-Surface Extraction

In [10] Deep Marching Cubes maps voxelized point clouds to

a probabilistic topology distribution and vertex locations defined

over a discrete 3D Euclidean grid through a 3D CNN. While

this allows changes to surface topology through backpropagation,

the probabilistic modeling requires keeping track of all possible

topologies at the same time, which, in practice, limits resulting

surfaces to low resolutions. Voxel2mesh [13] deforms a mesh

primitive and adaptively increases its resolution. While this makes

it possible to represent high resolution meshes, it prevents changes

of topology.

2.2.2 Writing Objective Functions in terms of Implicit Fields

In [16], variational analysis is used to re-formulate standard

surface mesh priors, such as those that enforce smoothness, in

terms of implicit fields. Although elegant, this technique requires

carrying out complex derivations for each new loss function and

can only operate on an Euclidean grid of fixed resolution. The

differentiable renderers of [14], [42], [43] rely on sphere tracing

and operate directly in terms of implicit fields. Unfortunately,

since it is computationally intractable to densely sample the

underlying volume, these approaches either define implicit fields

over a low-resolution Euclidean grid [14] or rely on heuristics to

accelerate ray-tracing [42], while reducing accuracy. 3D volume

sampling efficiency can be improved by introducing a sparse set

of anchor points when performing ray-tracing [15]. However, this

requires reformulating standard surface mesh regularizers in terms

of implicit fields using computationally intensive finite differ-

ences. Furthermore, these approaches are tailored to differentiable

rendering, and are not directly applicable to different settings

that require explicit surface modeling, such as computational

fluid dynamics. This also applies to [37], [38] that use implicit

differentiation for implicit surface rendering. Both can be seen as

special cases of the gradients we derive where surface points only

move along the viewing direction.

3 METHOD

Tasks such as Single view 3D Reconstruction (SVR) [44], [45] or

shape design in the context of CFD [4] are commonly performed

by deforming the shape of a 3D surface mesh M = (V, F ), where

V = {v1,v2, ...} denotes vertex positions in R
3 and F facets,

to minimize a task-specific loss function Ltask(M). Ltask can be,

e.g., an image-based loss defined on the output of a differentiable

renderer for SVR or a measure of aerodynamic performance for

CFD.

To perform surface mesh optimization robustly, a common

practice is to rely on low-dimensional parameterizations that are

either learned [1], [46], [47] or hand-crafted [4], [5], [48]. In that

setting, a differentiable function maps a low-dimensional set of

parameters z to vertex coordinates V , implying a fixed topology.

Allowing changes of topology, an implicit surface representation

would pose a compelling alternative but conversely require a

differentiable conversion to explicit representations in order to

backpropagate gradients of Ltask.

In the remainder of this section, we first recapitulate neural

implicit surface representations that underpin our approach. We

then introduce our main contribution, a differentiable approach to

computing surface samples and updating their 3D coordinates to

optimize Ltask. Finally, we present DeepMesh, a fully differen-

tiable surface mesh parameterization that can represent arbitrary

topologies.

3.1 Deep Implicit Field Representation

In this work, we represent a generic watertight surface S implicitly

by a function s : R
3 → R. Typical choices for s include the

Signed Distance Function (SDF) where s(x) is d(x, S) if x is

outside S and −d(x, S) if it is inside, where d is the Euclidean

distance; and Occupancy Maps with s(x) = 1 inside and s(x) =
0 outside.

Given a dataset of watertight surfaces D, such as
ShapeNet [49], we train a Multi-Layer Perceptron (MLP) fΘ
as in [50] to approximate s over such set of surfaces D by
minimizing

Limp({zS}S∈D,Θ) = Ldata({zS}S∈D,Θ) + λreg

∑

S∈D

‖zS‖
2
2 , (1)

where zS ∈ R
Z is the Z-dimensional encoding of surface S,

Θ denotes network parameters, Ldata is a data term that measures

how similar fΘ is to the ground-truth function s corresponding

to each sample surface, and λreg is a weight term balancing the

contribution of reconstruction and regularization in the overall

loss.

In practice when s is a signed distance, we take Ldata to be the

L1 loss

Ldata =
∑

S∈D

1

|XS |
∑

x∈XS

|fΘ(zS ,x)− s(x)| , (2)

where XS denotes sample 3D points on the surface S and around

it. When s is an occupancy map, we take Ldata to be the binary

cross entropy loss

Ldata = −
∑

S∈D

1

|XS |
∑

x∈XS

s(x) log(fΘ(zS ,x)) (3)

+ (1− s(x)) log(1− fΘ(zS ,x)) .

Once trained, s is approximated by fΘ which is by construc-

tion continuous and differentiable almost everywhere for all stan-

dard activation functions (ReLU, sigmoid, tanh...). Consequently,

S can be taken to be a level-set of {x ∈ R
3, fΘ(zS ,x) = α},

when α is zero for SDFs and typically 0.5 for occupancy grids.

Since fΘ is defined up to a constant, we will refer to zero-

crossings in the rest of the paper for simplicity.



4

3.2 Differentiable Iso-Surface Extraction

Once the weights Θ of Eq. 1 have been learned, fΘ maps a latent

vector z to a signed distance or occupancy field and the surface

of interest is its zero level set. Recall that our goal is to minimize

the objective function Ltask introduced at the beginning of this

section. As it takes as input a mesh defined in terms of its vertices

and facets, evaluating it and its derivatives requires a differentiable

conversion from an implicit field to a set of vertices and facets,

something that Marching Cubes does not provide, as depicted by

Fig. 2(a). More formally, we need to evaluate

∂Ltask

∂c
=

∑

x∈V

∂Ltask

∂x

∂x

∂c
, (4)

where the x are mesh vertices and therefore on the surface. c

stands for either the latent z vector if we wish to optimize Ltask

with respect to z only or for the concatenation of the latent vector

and the network weights [z|Θ] if we wish to optimize with respect

to both the latent vectors and the network weights. Note that we

compute ∂Ltask/∂c by summing over the mesh vertices but we

could use any other sampling of the surface.

3.2.1 Differentiating the Loss Function

In this work, we take inspiration from classical functional anal-

ysis [51] and reason about the continuous zero-crossing of the

implicit function s rather than focusing on how vertex coordinates

depend on the implicit field fΘ when sampled by the marching

cubes algorithm. Some of the same ideas have been explored for

implicit differentiation in neural networks [17], [52]. To this end,

we prove below the following theorem.

Theorem 1. If the gradient of fΘ at point x located on the surface

does not vanish, then ∂x
∂c

= − n

‖n‖2

∂fΘ(z,x)
∂c

where n = ∇fΘ(x)
is the normal to the surface at x.

Injecting this expression of ∂x/∂c into Eq. 4 yields

∂Ltask

∂c
= −

∑

x∈V

∂Ltask

∂x

∇fΘ

‖∇fΘ‖2
∂fΘ
∂c

. (5)

Note that when s is an SDF, ‖∇s‖ = 1 and therefore ‖∇fΘ‖ ≈ 1.

The ‖∇fΘ‖2 numerator from Eq. 5 can then be ignored, which is

consistent with the result we presented in [18]. This scaling factor

is not 1 for other implicit fields. However, it does not affect the

direction of the gradients only their magnitude, which often gets

rescaled by optimizers [53], [54] anyway.

Proof of Theorem 1. We start by stating the Implicit Function

Theorem (IFT), which we later use in our proof.

Theorem 2 (Implicit Function Theorem - IFT). Let F : Rm ×
R
n → R

n and c0 ∈ R
m,p0 ∈ R

n such that:

1) F (c0,p0) = 0 ;

2) F is continuously differentiable in a neighborhood of

(c0,p0) ;

3) the partial Jacobian ∂pF (c0,p0) ∈ R
n×n is non-

singular.

Then there exists a unique differentiable function p∗ : Rm → R
n

such that:

1) p0 = p∗(c0) ;

2) F (c, p∗(c)) = 0 for all c in the above mentioned

neighborhood of c0 ;

3) ∂p∗(c0) = − [∂pF (c0,p0)]
−1

∂cF (c0,p0), that is, a

matrix in R
n×m.

Intuitively, p∗ returns the solutions of a system of n
equations—the n output values of F—with n unknowns. For our

purposes, c ∈ R
m can be either the shape code and the network

weights jointly or the shape code only, as discussed above.

To apply the IFT to our problem, let us rewrite fΘ as a function

M : Rm × R
3 → R that maps c ∈ R

m and a point in p ∈ R
3 to

a scalar value M(c,p) ∈ R. The IFT does not directly apply to

M because it operates from R
m × R

3 into R instead of into R
3.

Hence, we must add two more dimensions to the output space of

M .

To this end, let c0 ∈ R
m; p0 ∈ R

3 such that M(c0,p0) = 0,

meaning that p0 is on the implicit surface defined by parameter c0;

and u ∈ R
3 and v ∈ R

3 such that (u,v) is a basis of the tangent

plane to the surface {M(c0, ·) = 0} at p0. Let n = ∂pM(c0,p0)
be the normal vector to the surface at p0. This lets us define the

function F : Rm × R
3 → R

3 as

F (c,p) 7→
(

M(c,p)
(p−p0)·u
(p−p0)·v

)

, (6)

By construction, we have n · u = n · v = 0 and F (c0,p0) = 0.

Note that the first value of the F (c,p) vector is zero when

the point p is on the surface defined by c while the other two

are equal to zero when (p − p0) is perpendicular to the surface

defined by c0. By zeroing all three, p∗ returns a point p that is on

the surface for c 6= c0 and such that (p − p0) is perpendicular

to the surface. A geometric interpretation is that p0 is the point

on the surface defined by c0 that is the closest to p∗(c). This is

illustrated on Fig. 2(b).

Given the IFT applied to F, there is a mapping p∗ : Rm → R
3

such that

1) p0 = p∗(c0) ;

2) F (c, p∗(c)) =

(

0
0
0

)

for all c in a neighborhood of c0 .

3) ∂p∗(c0) = − [∂pF (c0,p0)]
−1

∂cF (c0,p0).

We have

∂cF (c0,p0) =

(

∂cM(c0,p0)
0
0

)

∈ R
3×m , (7)

∂pF (c0,p0) =

(

n

u

v

)

∈ R
3×3 (8)

Given that the last two rows of ∂cF (c0,p0) are zero, to compute

∂p∗(c0) according to the IFT, we only need to evaluate the first

column of [∂pF (c0,p0)]
−1

. As the two last rows of ∂pF (c0,p0)
are u and v that are unit vectors such that u·v = n·u = n·v = 0,

that first column has to be n/‖n‖2. Hence, we have

∂p∗(c0) = − [∂pF (c0,p0)]
−1

∂cF (c0,p0) , (9)

= − n

‖n‖2 ∂cF (c0,p0) ∈ R
3×m .

Recall that p∗ maps a code c in the neighborhood of c0 to a

3D point such that M(c, p∗(c)) = fΘ(p
∗(c), z) = 0. In other

words, p0 = p∗(c0) is a point on the implicit surface defined by

fΘ when c = c0 and we have

∂p0

∂c
= − n

‖n‖2 ∂cF (c0,p0) , (10)

= − n

‖n‖2

∂fΘ(z,p0)

∂c
(11)
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si > 0

sj < 0

p

px = si

si−sj

{M(c0, ·) = 0}

{M(c, ·) = 0}

p0 = p∗(c0)

n

p∗(c)

(a) (b)

Fig. 2. Marching Cubes differentiation vs Iso-surface differentiation. (a) Marching Cubes determines the position px of a vertex p along an
edge via linear interpolation. This does not allow for effective back-propagation when topology changes because its behavior is degenerate when
si = sj as shown in [10]. (b) Instead, we adopt a continuous model expressed in terms of how implicit function perturbations locally impact surface
geometry. Here, we depict the geometric relation between implicit parameter perturbation c0 →֒ c and local surface change p0 →֒ p∗(c), which we

exploit to compute
∂p∗(c)

∂c
even when the topology changes.

where c either stands for the latent vector z or the concatenation

of the latent vector and the network weights [z|Θ]. �

In the above proof, the Implicit Function Theorem requires

additional constraints to be introduced for the gradients to be well

defined. Enforcing those of Eq. 6 results in points being mapped

to their closest neighbor on the infinitesimally deformed surface.

Our gradients stem from this choice.

3.2.2 Forward and Backward Passes

Recall that the goal of our forward pass is to extract surface mesh

M = (V, F ) from an underlying neural implicit field fΘ. Because

sampling a DIF on a dense Euclidean Grid is computationally

intensive, we use a hierarchical approach to reduce the total

number of evaluations during the forward and backward passes

summarized by Algorithms 1 and 2.

We start by evaluating fΘ on a low resolution grid, and then

iteratively subdivide each voxel and re-evaluate the DIF only

where needed until we reach a desired grid resolution, as in [2],

[55]. When our DIF is a signed distance function, we subdivide

voxels if the field absolute value on any of the voxel corners

{|fΘ(xi)|}8i=1 is smaller than the voxel diagonal
√
2∆x, where

∆x denotes voxel size. When it is an occupancy map, we only split

voxels when the occupancy map does not have the same value at

all corners. For this to work well, we have to start from a grid

that roughly captures the object topology to make hierarchical

iso-surface extraction converge. In practice, we have found that

starting with a 323 grid is enough.

In this way, we can quickly obtain a high resolution DIF grid

without needless computation far away from the surface. Once

the grid has been assembled, we use a GPU-accelerated marching

cubes algorithm [56] to extract the vertices v and vertex normals

n needed to perform the backward pass. The backward pass then

performs the computation of Eq. 5. This requires computing the

values of fΘ(z,v) and its derivatives
∂fΘ
∂c

(z,v) at the newly

found vertices v. We show that the resulting overhead is small in

the results section.

In Algorithm 2, we use the mesh normals n instead of the nor-

malized field gradients
∇fΘ

‖∇fΘ‖2 of Eq. 5. Preliminary experiments

revealed that computing mesh normals is more computationally

efficient compared to backpropagating through the network to

obtain ∇fΘ using automatic differentiation. We observed an

average angle difference of less than 1.5◦ between n and ∇fΘ,

and no discernible difference in behavior when using the former

as a substitute for the latter.

Algorithm 1 DeepMesh Forward

1: input: latent code z, DIF weights Θ
2: output: surface mesh M = (V, F )
3: assemble coarse 3D grid G
4: sample field on grid S = fΘ(z, G)
5: while G has not reached target resolution:

6: Gs = split(G)

7: S = S + fΘ(z, Gs)
8: G = G + Gs

9: extract iso-surface (V, F ) = MC(S)
10: Return M = (V, F )

Algorithm 2 DeepMesh Backward

1: input: upstream gradient ∂L
∂v

for v ∈ V
2: output: downstream gradient ∂L

∂c

3:
∂L
∂fΘ

(v) = −∂L
∂v

n

‖n‖2 for v ∈ V

4: extra pass on samples
∂fΘ
∂c

(z,v)

5: Return ∂L
∂c

=
∑

v∈V
∂L
∂fΘ

(v)∂fΘ
∂c

(v)

4 EXPERIMENTS

We first use synthetic examples to show that, unlike marching

cubes, our approach allows for differentiable topology changes.

We then demonstrate that we can exploit surface mesh differen-

tiability to outperform state-of-the-art approaches on three very

different tasks, Single view 3D Reconstruction, Aerodynamic

Shape Optimization, Structural Shape Optimization, and Full

Scene 3D Reconstruction from Scans. In these experiments, we

use Theorem 1 with c = z, that is, we only optimize with

respect to shape codes while keeping the network weights fixed.

In the final subsection, we discuss an application in which we take

c = Θ, that is, we optimize with respect to the network weights.

4.1 Differentiable Topology Changes

In the experiment depicted by Fig. 3 we train two separate net-

works fΘ1
and fΘ2

that implement the approximate implicit field

of Eq. 1. fΘ1
is a deep occupancy network trained to minimize

the loss of Eq. 3 on two models of a cow and a rubber duck.

They are of genus 0 and 1, respectively. fΘ2
is a deep signed

distance function network trained to minimize the loss of Eq. 2

on four different articles of clothing, a t-shirt, a pair of pants,

a dress, and a sweater. Note that the clothes are represented as
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TABLE 1
Comparison to Implicit Field Differentiable Rendering. To fit a 2D silhouette, rendering the implicit field with sphere tracing [42] is slower and

less effective than extracting an explicit mesh with our method and rendering it with an off-the-shelf mesh rasterizer [11].

Method 103 · l2 silhouette distance ↓ # network queries ↓ run time [s] ↓

Sphere Tracing [42] [most efficient settings, 5122 pixel renderings] 5.97 898k 1.24
DeepMesh [isosurface at 2563, 5122 pixel renderings] 4.63 266k 0.29

4.2 Single view 3D Reconstruction

Single view 3D Reconstruction (SVR) has emerged as a standard-

ized benchmark to evaluate 3D shape representations [2], [3], [24],

[31], [32], [33], [64], [65], [66], [67], [68]. We demonstrate that

it is straightforward to apply our approach to this task on two

standard datasets, ShapeNet [49] and Pix3D [69].

4.2.1 Differentiable Meshes for SVR.

As in [2], [3], we condition our deep implicit field architecture on

the input images via a residual image encoder [70], which maps

input images to latent code vectors z. These latent codes are then

used to condition the architecture of Sec. 3.1 and compute the

value of deep implicit function fΘ. Finally, we minimize Limp

(Eq. 1) wrt. Θ on a training set of image-surface pairs generated

on the ShapeNet Core [49] dataset for the cars and chairs object

classes. Each object class is split into 1210 training and 112 testing

shapes, each of which is paired with the renderings provided

in [33]. 3D supervision points are generated according to the

procedure of [1]. To showcase that our differentiability results

work with any implicit representation, we train networks that

output either signed distance fields or occupancy fields. To this

end, we minimize the loss functions Eqs. 2 and 3, respectively.

We begin by using the differentiable nature of our mesh

representation to refine the output of an encoder, as depicted by

the top row of Fig. 1. As in many standard methods, we use

our encoder to predict an initial latent code z. Then, unlike in

standard methods, we refine the predicted shape M, that is, given

the camera pose associated to the image and the current value of

z, we project the reconstructed mesh back to the image plane so

that the projection matches the object silhouette S in the image

as well as possible. To this end, we define the task-specific loss

function Ltask to be minimized, as discussed in Section 3, in one

of two ways:

Ltask3 = ‖DRsilhouette(M(z))− T‖1 , (14)

Ltask4 =
∑

a∈A

min
b∈B

‖a− b‖2 +
∑

b∈B

min
a∈A

‖a− b‖2 . (15)

In Eq. 14, T denotes the silhouette of the target surface and

DRsilhouette is the differentiable rasterizer of [11] that produces a

binary mask from the mesh generated by the latent vector z. In

Eq. 15, A ⊂ [−1, 1]2 denotes the 2D coordinates of T ’s external

contour while B ⊂ [−1, 1]2 denotes those of the external contour

of M(z). We refer the interested reader to [71] for more details

on this objective function. Note that, unlike that of Ltask3, the

computation of Ltask4 does not require a differentiable rasterizer.

Recall that we can use either signed distance functions or

occupancy fields to model objects. To compare these two ap-

proaches, we ran 400 gradient descent iterations using Adam [53]

to minimize either Ltask3 or Ltask4 with respect to z. This yields

four possible combinations of model and loss function and we

TABLE 2
SVR ablation study on ShapeNet Core. We exploit end-to-end
differentiability to perform image-based refinement using either

occupancy maps (Model=Occ.) or signed distance functions
(Model=SDF). We report 3D Chamfer distance (Metric=CHD) and

normal consistency (Metric=NC) for raw reconstructions
(Refine=None), refinement via differentiable rendering (Refine=DR)

and contour matching (Refine=CHD).

Metric Model Refine car chair

CHD ·104 ↓

None 3.02 11.18
Occ. DR 2.86 (↓ 5.3%) 10.92 (↓ 2.3%)

CHD 2.65 (↓ 12.3%) 10.35 (↓ 7.4%)
None 2.96 9.07

SDF DR 2.73 (↓ 7.8%) 8.83 (↓ 2.6%)
CHD 2.56 (↓ 13.5%) 8.22 (↓ 9.4%)

NC % ↑

None 92.17 77.26
Occ. DR 92.07 (↓ 0.1%) 78.98 (↑ 2.2%)

CHD 92.36 (↑ 0.2%) 78.49 (↑ 1.6%)
None 92.29 78.74

SDF DR 92.22 (↓ 0.1%) 80.02 (↑ 1.6%)
CHD 92.56 (↑ 0.3%) 80.17 (↑ 1.8%)

report their respective performance in Tab. 2. They are expressed

in terms of two metrics:

• The 3D Chamfer distance for 10000 points on the re-

constructed and ground truth surfaces, in the original

ShapeNet Core scaling. The lower, the better.

• A normal consistency score in image space computed

by averaging cosine similarities between reconstructed

and ground truth rendered normal maps from 8 regularly

spaced viewpoints. The higher, the better.

All four configurations deliver an improvement in terms of both

metrics. However, the combination of using a signed distance field

and minimizing the 2D chamfer distance of Ltask4 delivers the

largest one. We will therefore refer to it as DeepMesh and use

it in the remainder of this section, unless otherwise specified.

We hypothesize that signed distance networks perform better

due to the 3D supervision points being generated according to

the procedure of [1], which might favor SDF networks over

Occupancies.

In Fig. 5 we show the Chamfer distance changing over the

400 refinement iterations of DeepMesh on both car and chair cat-

egories. We group the test shapes into quartiles according to their

initial Chamfer distance with their corresponding ground truth

mesh, and compute the average of each quartile. The Chamfer

distance is mostly improved for shapes that have a high initial

reconstruction error. For the 3 quartiles that have the best initial

reconstruction accuracy, the CHD decrease is smaller and mostly

takes place during the first iterations. Although the decrease is

small for the first quartile, there still is an improvement from 1.27
to 1.24 for cars, and from 2.65 to 2.35 for chairs.
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DeepMesh-SDF

PolyCube

FreeForm

pmax0pmin

0.597

0.852

0.889

optimized shapeinitial shape

Fig. 7. Drag minimization. Starting from an initial shape (left column), Ltask is minimized using three different parameterizations: FreeForm (top),
PolyCube (middle), and our DeepMesh (bottom). The middle column depicts the optimization process and the relative improvements in terms of
Ltask. The final result is shown in the right column. FreeForm and PolyCube lack a semantic prior, resulting in implausible details such as sheared
wheels (orange inset). By contrast, DeepMesh not only enforces such priors but can also effect topology changes (blue inset).

TABLE 5
CFD-driven optimization.We minimize drag on car shapes comparing different surface parameterizations. Numbers in the table (avg ± std)

denote relative improvement of the objective function L%
task

= Ltask/L
t=0
task for the optimized shape, as obtained by CFD simulation in OpenFoam.

Parameterization None Scaling FreeForm [4] PolyCube [5] DeepMesh-SDF DeepMesh-OCC

Degrees of Freedom ∼ 100k 3 21 ∼ 332 256 256

Simulated L%
task ↓ not converged 0.931± 0.014 0.844± 0.171 0.841± 0.203 0.675 ± 0.167 0.721± 0.154

as a global optimization, and does not explicitly encourage the

optimized shape to adhere to the initial one. However, because of

the complex landscape of the latent space, different initializations

converge to different shapes, as visualized in the supplementary

material.

4.3.2 Comparative Results.

We compare our surface parameterizations to several baselines:

(1) vertex-wise optimization, that is, optimizing the objective

with respect to each vertex; (2) scaling the surface along its 3

principal axis; (3) using the FreeForm parameterization of [4],

which extends scaling to higher order terms as well as periodical

ones and (4) the PolyCube parameterization of [5] that deforms a

3D surface by moving a pre-defined set of control points.

We report quantitative results for the minimization of the

objective function of Eq. 16 for a subset of 8 randomly chosen cars

in Table 5, and show qualitative ones in Fig. 7. Not only does our

method deliver lower drag values than the others but, unlike them,

it allows for topology changes and produces semantically correct

surfaces as shown in Fig. 7(c). We provide additional results in the

supplementary material. As can be seen in Table 2, DeepMesh-

SDF slightly outperforms DeepMesh-OCC. We conjecture this is

due to our sampling strategy for supervision points, which follows

closely the one of [1] and might therefore favor SDF networks.

4.4 Structural Shape Optimization

We investigated another application of DeepMesh as a data-

driven parameterization for optimizing physical attributes of 3D

surfaces which can change their topology. More specifically, we

considered the optimization of cantilever beams with respect to

two conflicting objectives, minimizing the stress under load while

minimizing their volume, and thus their weight.

We procedurally generated N = 7000 3D beams of fixed

length, but with variable width and height, and a random

number—between 0 and 10—of circular holes, as shown in

Fig. 8(a). For each resulting surface Mi, we used the finite

element solver FINO [78] to compute its stress si when a load

of 1000 Newtons is attached to its right side. As for aerodynamic

shape optimization, the resulting training set {Mi, si}Ni=1 was

then used to train a Mesh Convolutional Neural Network [76] gβ
to predict the stress field on the surface s = gβ(M). We also use

our training set to learn the latent vector representation of Sec. 3.2

and train the network that implements fΘ of Eq. 1 and represents

the beams’ shapes in terms of a signed distance function.

As in the case of aerodynamic shape optimization case, shapes

can then be deformed to minimize the objective function

Ltask6(M) =

∫∫

M
gβ dM+ λLvolume(M) + Lreg(M) , (17)

with respect to the latent vector representing them. Here, the

integral term approximates the mean stress on the surface given

the predictions of the network gβ , Lvolume is a loss encouraging

the beams to have a small volume, λ is a scalar balancing the two

objectives, and Lreg is the regularization term of Eq. 16. Lvolume

penalizes low SDF values on a regular 3D grid G of query points.

We write it as

Lvolume(M) =
∑

x∈G

−fΘ(z,x) ,
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Initial Shape Vertex-vise Scaling

FreeForm PolyCube DeepMesh

Fig. 20. Preserving space for the driver and engine. We define a loss function Lconstraint that forces the reconstructed shape to contain the red
spheres. The spheres are shown overlaid on the initial shape and then on the various results. Because the constraints are soft, they can be slightly
violated.
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Fig. 23. DeepMesh aerodynamic optimizations.


