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A recent trend in Non-Rigid Structure-from-Motion (NRSfM) is to express local, differential constraints between pairs of
images, from which the surface normal at any point can be obtained by solving a system of polynomial equations. While
this approach is more successful than its counterparts relying on global constraints, the resulting methods face two
main problems: First, most of the equation systems they formulate are of high degree and must be solved using
computationally expensive polynomial solvers. Some methods use polynomial reduction strategies to simplify the
system, but this adds some phantom solutions. In any event, an additional mechanism is employed to pick the best
solution, which adds to the computation without any guarantees on the reliability of the solution. Second, these methods
formulate constraints between a pair of images. Even if there is enough motion between them, they may suffer from
local degeneracies that make the resulting estimates unreliable without any warning mechanism.
In this paper, we solve these problems for isometric/conformal NRSfM. We show that, under widely applicable
assumptions, we can derive a new system of equations in terms of the surface normals, whose two solutions can be
obtained in closed-form and can easily be disambiguated locally. Our formalism also allows us to assess how reliable
the estimated local normals are and to discard them if they are not. Our experiments show that our reconstructions,
obtained from two or more views, are significantly more accurate than those of state-of-the-art methods, while also
being faster.

✦

1 INTRODUCTION

Reconstructing the 3D shape of deformable objects from monoc-
ular image sequences is known as Non-Rigid Structure-from-
Motion (NRSfM) and has applications in domains ranging from
entertainment [35] to medicine [26]. Early methods relied on low-
rank representations of the surfaces [4], [7], [10], [12], [17], [23],
[25], [28], [49], while more recent ones exploit local surface prop-
erties to derive constraints and can handle larger deformations [8],
[9], [20], [47], [50], [51]. Unfortunately, these constraints have
to be enforced jointly on the entire set of reconstructed points
for a whole sequence. Hence, the computational cost increases
non-linearly with the number of images and quickly becomes
prohibitive. Furthermore, a globally optimal solution is obtained
using an iterative refinement, which is prone to getting trapped in
local minima and adds to the computation if the initialization is not
close to the actual solution. Finally, most of these global methods
cannot handle missing data. In [13], [34], this is done by iteratively
updating the missing entries, which adds to the computational
complexity. We refer the interested reader to [19] for a detailed
review of global methods.

In earlier work [37], [38], [39], we have shown that local
methods constitute a powerful alternative. Expressing isometry,
conformality, or equiareality constraints in terms of differential
properties makes the number of local variables remain fixed.
Unfortunately, the systems of equations that arise in these com-
putations are bivariate of high degree. They can have up to
five real solutions. In theory, a unique solution can be obtained
from 3 images, but this requires either a complicated sum-of-
squares formulation [37], [38] or reduction methodologies that
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add phantom solutions [36], [39]. Hence, in practice, it takes more
than 3 images to produce reliable estimates. Furthermore, when
the motion between the frames is too small, the system becomes
ill-posed and the estimates unreliable, without any mechanism to
flag such situations as problematic.

In this paper, we introduce a new local method. Instead
of inferring the depth derivatives, we estimate surface normals.
More specifically, given a 2D warp between two images, we
consider tangent planes at corresponding points. For each pair of
points, we compute the homography relating the two planes and
decompose it to compute the normals by solving local differential
constraints [37], [38]. This has two solutions, instead of five in
our earlier approaches [36]. For each plane, we pick the right one
by enforcing an easy-to-compute measure of local smoothness.
Furthermore, our formulation lets us assess how well-conditioned
the problem is and, hence, how usable the resulting normals are.
In other words, we can derive from an image pair, a set of reliable
normals and discard the others.

We will demonstrate on both synthetic and real data that
we outperform state-of-the-art local and global methods at a
fraction of the computational cost. Our contribution is therefore an
approach to NRSfM that relies on solving in closed form a set of
equations relating surface normals at corresponding points. Being
entirely local, the computation is both fast and reliable. Although
our solution is designed for isometric or conformal deformations,
it yields good results for generic ones.

2 RELATED WORK

NRSfM was introduced in [7] and the ill-posedness of the problem
was handled by constraining the deformations to lie on a low-
dimensional manifold. Later variants introduced additional con-
straints for efficient low-rank factorization [4], [11], [12], [17],
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TABLE 1: Summary of the local methods we developed in earlier work.

[18], [48] or performed additional optimization [10], [14], [23],
[24], [28], [33], [52] to improve the statistical modeling. Learning-
based techniques have been used to tune the dimensionality of the
deformation space [16], [22], [40] using a large amount of an-
notated data for supervision. [31], [44] formulated learning-based
techniques in an unsupervised setting to reconstruct from sparse
and dense data, respectively. However, this does not overcome
the fundamental limitation of approaches relying on low-rank
assumptions: they cannot model complex deformations. Further-
more, they do not naturally handle missing data and occlusions,
and complex formulations [15] are required to overcome this. As
a result, these methods have been limited to objects that deform in
a relatively predictable way, such as human faces. Recently, these
limitations have been addressed by imposing constraints between
corresponding points across images in one of the following ways.

Modeling Global Deformations. Several methods seek to enforce
physical properties on the deformation, such as isometry that
preserves local distances on the deforming surface. They approx-
imate isometry by inextensibility [9], [20], piece-wise inextensi-
bility [41], [42], [51], local or piece-wise rigidity [8], [25], [47],
[50]. A globally optimal solution is then found by jointly solving
over all corresponding points. This requires a computationally
expensive optimization, which makes this approach impractical
for handling large numbers of images. To handle non-isometric
surfaces, a mechanics-based approach is proposed in [1], [2], [3],
introducing the forces required to compute the resulting shape.
In any event, all these methods require an initialization, usually
obtained using standard rigid-body reconstruction techniques. Fur-
thermore, they are often inaccurate.

Modeling Local Deformations. In earlier works, we have pro-
posed methods that rely on formulating local deformation con-
straints in terms of algebraic expressions. This makes it possible
to reconstruct each surface point independently by solving alge-
braic equations, which reduces the computation cost. Being local,
these methods inherently handle missing data and occlusions.
In [37], we treated surfaces as locally planar (LP) and formulated
local isometric constraints using metric tensors and connections
representing the rate of change of metric tensors. In [38], we
extended this deformation modeling to conformal and equiareal
deformations by assuming the deformation to be locally linear
(LL). For each pair of images, we obtained two cubic equations
in two variables related to local depth derivatives with 9 possible
solutions. In practice, up to 5 of them can be real. We found
a unique solution by minimizing sum-of-squares of residuals
over multiple images. In [36], we proposed two fast solutions
to the equations of isometric NRSfM [37]. Using substitution
and resultants, we converted the original bivariate equations to

Fig. 1: A 2-view model for NRSfM. Assuming ψ to be locally
isometric/conformal, our goal is to find ϕ, ϕ given that η is known.

univariate ones that can be solved efficiently. However, this comes
at the cost of adding phantom solutions that cannot be identified.
We picked the solution that yields the smallest residual of the
isometry constraints on the entire image set. In [39], we proposed
an NRSfM solution for generic deformations. It uses only connec-
tions to formulate constraints to enforce surface smoothness.

Table 1 summarizes the characteristics of these local methods.
As in [37], [38], [39], we use the metric tensors and connections to
jointly formulate isometric and conformal deformation constraints.
However, we formulate these constraints directly in terms of
the surface normals rather than of the depth derivatives. As
a consequence, the problem is significantly simplified, and we
obtain a closed-form solution. By contrast, the approach of [37],
[38] relies on a computationally expensive solver while that
of [39] requires complex polynomial reduction techniques that
add phantom solutions. Furthermore, while existing local methods
tend to perform significantly better than their global counterparts
but suffer from one key drawback: The local constraints are
not always well-posed, leading to many-fold ambiguities or even
degenerate solutions, without any mechanism for telling when this
happens. In this paper, we address this problem by identifying and
discarding the degenerate cases where all of these methods yield
an unreliable estimate. This significantly boosts performance over
earlier approaches.

3 FORMALISM AND ASSUMPTIONS

At the heart of our approach is the fact that the normals at two
different instants at a point on a deforming 3D surface can be
computed given the point’s projections in two images and a 2D
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warp between these images, under the sole assumptions of local
surface planarity and deformation local linearity. In this section,
we first introduce the NRSfM setup we will use in the rest of
this paper, which is similar to the one of [38]. We then explain
what our assumptions mean and why they are widely applicable.
Finally, we formulate the constraints we will use for reconstruction
purposes.

3.1 Setup
Fig. 1 depicts our setup when using only two images, I and
I , acquired by a calibrated camera. In each one, we denote the
deforming surface as S and S , respectively, and model it in terms
of functions ϕ, ϕ : R2 → R3 that associate an image point
to a surface point. Let us assume that we are given an image
registration function η : R2 → R2 that associates points in the first
image to points in the second. This is often referred to as a warp.
In practice, it can be computed using standard image matching
techniques, such as optical flow [45], [46] or SIFT [29]. These
functions can be composed to create a mapping ψ : R3 → R3

between 3D surface points seen in the two images. We use a
parametric representation of η and ϕ with B-splines [6], which
allows us to accurately obtain first- and second-order derivatives
of these functions. A finite-difference approach could also be used.

Given a point x = (u, v) on I and its corresponding 3D point
X = ϕ(x) on S , we write ϕ(x) = 1

β(u,v)

(
u v 1

)⊤
, where β

represents the inverse of the depth. The Jacobian of ϕ is given by

Jϕ =
1

β(u, v)

1− uk1 −uk2
−vk1 1− vk2
−k1 −k2

 , (1)

where k1 = ∂uβ
β , k2 = ∂vβ

β express the surface depth derivatives.
u, v, ϕ, k1, and k2 are defined similarly in I .

3.2 Local Planarity and Linearity
In this work, we assume local planarity of the 3D surfaces and
local linearity of the deformations as described in [21], [27]. We
now describe these two assumptions and argue that they are weak
ones that are generally applicable.
Surface Local Planarity. Let x0 be an image point with surface
normal n at ϕ(x0). All points x = (u, v) sufficiently close to x0

can be accurately described as lying on the tangent plane. Hence,
they satisfy n⊤ϕ(x) + d = 0, where d is a scalar, which we can
rewrite as β = −n⊤

d

(
u v 1

)⊤
. Therefore the inverse depth β

that appears in Eq. 1 is a linear function of x even though ϕ is not.
Nevertheless, all higher-order derivatives of ϕ can be expressed in
terms of β and its first-order derivatives. This is widely viewed
as a weak assumption that applies to most smooth manifolds [27].
For example, our planet is a sphere that can be treated as locally
planar.
Deformation Local Linearity. According to [21], every non-
linear function can be approximated with an infinite number of
linear functions. This assumption has been successfully used in
shape-matching [32]. We assume the deformation ψ that relates
locally two planes to be smooth enough to be well described
locally by its first-order approximation, so that we can ignore its
second derivatives. In other words, we use a first-order approxi-
mation for the local deformations but a second-order one for the
surface depth to allow for globally non-planar shapes. This is a
looser set of assumptions than what is normally used in NRSfM.

For example, [10], [28] and other low-rank methods assume the
deformation space to be small; physics-based methods that use
inextensibility [9], [51] or piecewise-rigidity [47], [50] make a
much stronger assumption.

Under the assumption of local planarity, we have X and X
lying on a planar surface. A generic transformation between these
two surfaces, which defines the deformation ψ, can be expressed
as X = SRX+T, where R and T are rotation and translation and
S is a scaling matrix. If S happens to be a purely diagonal matrix
with equal entries, ψ is a planar homography, and the resulting
deformation is purely isometric or conformal. Nevertheless, ψ is
linear. Therefore, local planarity of surfaces implies local linearity
of deformations. However, the reverse is not true.

3.3 Differential Constraints across Images
To express constraints between quantities computed in I and I ,
we define metric tensors and connections as described in [27].
Metric Tensors.

The metric tensors g in I and g in I are first-order differential
quantities that capture local distances and angles. They can be
written as

g = J⊤
ϕ Jϕ and g = J⊤

ϕ
Jϕ , (2)

where Jϕ and Jϕ are local surface jacobians computed according
to Eq. 1. These tensors can be used to impose isometry, confor-
mality, and equiareality constraints by forcing the scalars k1 and
k2 of Eq. 1 to satisfy one of the three conditions below:

g=J⊤
η gJη, Isometry

g=λ2J⊤
η gJη,λ

2∈R+−{1}, Conformality√
det(g)=

√
det(J⊤

η gJη), Equiareality
(3)

where Jη is the Jacobian of the warp η.
Linear Relation between Surface Derivatives.

Given Jϕ, a local reference frame on the surfaces can be
expressed with the column vectors as tangents and their cross
product as normal. Connections are second-order differential
quantities that express the rate of change of this local frame.
Using connections under the assumption of local linearity as stated
above, it can be shown [38] that(

k1
k2

)
= J⊤

η

(
k1
k2

)
−
(
0 1
1 0

)
J−1
η

∂2η

∂uv
, (4)

where
∂2η

∂uv
are the second-order derivatives of the warp. Solutions

to isometric, conformal and equiareal NRSfM can be obtained by
solving the metric tensor preservation equations in Eq. 3 under the
constraints of Eq. 4.

3.4 Method Overview
Our method, described in the remainder of the paper, is orga-
nized as follows. In Section 4, we reformulate the metric tensor
preservation constraints for isometric and conformal deformations
(Eq. (3)), as well as the linear relation between surface derivatives
(Eq. (4)), in terms of normals. Using these two relations derived
from an image pair, we define isometric/conformal NRSfM as a
system of quadratic equations in two variables. These quadratic
equations yield two normals at each point on each image. We use
a simple heuristic to obtain a unique solution. Furthermore, for a
given image pair, our formulation allows us to assess how well-
conditioned the derived NRSfM constraints are. We discuss the
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image transformations that lead to ill-conditioned or degenerate
data and devise strategies to identify them. Finally, Section 5
proposes an algorithm that uses multiple image pairs to obtain
reliable normals from the well-conditioned data only.

4 COMPUTING NORMALS FROM TWO IMAGES

In earlier approaches [38], the NRSfM problem was addressed by
solving the system of Eq. 3 under the isometry, conformality, and
equiareality constraints of Eq. 3 with respect to the variables k1
and k2 of Eq. 1. Here, we solve this system of equations directly in
terms of the surface normals. We will show that, not only can this
be done in closed form, but it also allows us to identify degenerate
situations that result in unreliable estimates.
Differentiating the Warp.

Let us consider a point x = (u, v)T in I and its corresponding
point (u, v)T = η(u, v) in I , with corresponding points on
surfaces X and X. Assuming the surfaces to be locally planar
means that there is a 3× 3 homography matrix H = [hij ]1≤i,j≤3

such that X = λHX. Since we assume a perspective projection
for the camera, we write

x =
1

s
Hx =⇒

uv
1

=
1

s

h11 h12 h13
h21 h22 h23
h31 h32 h33

uv
1

 , (5)

where s = h31u+ h32v + h33. The first- and second-order
derivatives of η can be computed as

Jη =

(
∂η

∂u

∂η

∂v

)
=

1

s

(
h11−h31u h12−h32u
h21−h31v h22−h32v

)
,(

∂2η

∂u2
∂2η

∂uv

∂2η

∂v2

)
= −1

s
Jη

(
2h31 h32 0
0 h31 2h32

)
. (6)

Image Embedding and Local Normal.
The unit normal n at x is the cross product of the columns of

the matrix Jϕ from Eq. 1. This lets us write

n =
1

β2
√
detg

 k1
k2

1−uk1−vk2

 (7)

=
1

β2
√
detg

(
I2×2 0
−x⊤ 1

)k1k2
1

.
⇒

k1k2
1

 =β2
√
detg

(
I2×2 0
x⊤ 1

)
n. (8)

Given the normal n of Eq. 7, we rewrite the matrix Jϕ of Eq. 1 as

Jϕ=
1

β

 0 uk1+vk2−1 k2
1−uk1−vk2 0 −k1

−k2 k1 0

 0 1
−1 0
v −u


=β
√
detg[n]×E. (9)

We can now rewrite the differential constraints across images
introduced in Section 3.3 in terms of the normals.
Linear Relation between Surface Normals.

Given the η derivatives from Eq. 6, the linear relation of Eq. 4
becomes (

k1
k2

)
=J⊤

η

(
k1
k2

)
+
1

s

(
h31
h32

)
. (10)

Defining m =
1

s

(
h31
h32

)
lets us rewrite the above equation as

k1k2
1

 =

(
J⊤
η m
0 1

)k1k2
1

. (11)

Using Eq. 8, we reformulate the above expression as

n=
β2

β
2

√
detg

detg
Tn

=
β2

β
2

√
detg

detg

(
I2×2 0
−x⊤ 1

)(
J⊤
η m
0 1

)(
I2×2 0
x⊤ 1

)
n

=
β2

sβ
2

√
detg

detg

(
I2×2 0
−x⊤ 1

)h11 h21 h31
h12 h22 h32
su sv s

n

=
β2

sβ
2

√
detg

detg
H⊤n , (12)

which directly relates the two normals.
Metric Tensor.

As shown in Fig. 1, we can write ϕ = ψ◦ϕ◦η. Differentiating
this expression and multiplying it by its transpose yields

g = J⊤
ϕ
Jϕ = J⊤

η J
⊤
ϕ J

⊤
ψJψJϕJη. (13)

Using Eq 9, we write JϕJη = β
√
det g[n]×EJη . Given the

η derivatives of Eq. 6, we simplify EJη to 1
s

(
h1 × x̂ h2 × x̂

)
,

where h1,h2 are the first two columns of the homography matrix
H, and x̂ =

(
u v 1

)⊤
. By writing z1 = n × (h1 × x̂) and

z2 = n× (h2 × x̂), Eq. 3 reduces to
g= λ2β2 det(g)

s2

(
z⊤1 z1 z⊤1 z2
z⊤1 z2 z⊤2 z2

)
,√

det(g)=
√
det(J⊤

η gJη).

(14)

NRSfM from Isometric/Conformal Constraints.
So far, we have expressed the metric preservation conditions

in terms of the normals of the two surfaces under consideration.
The only unknown left in the system is therefore n. We now show
that this unknown can in fact be computed in closed form.

Given the multiplicative nature of the cross product, the
constraints on the normals of Eq. 12 imply that

[n]× =
β2

sβ
2

√
detg

detg
det(H⊤)H−1[n]×H

−⊤ . (15)

This lets us rewrite the matrix Jϕ of Eq. 9 as

Jϕ=
β2

β

√
detgH−1[n]×

(
detH⊤

s
H−⊤E

)

=
β2
√
detg

β
H−1[n]×

(
h1×x̂ h2×x̂

)
(16)

=
β2
√
detg

β
H−1

(
z1 z2

)
.

Injecting this expression into the isometric/conformal metric ten-
sor preservation relation of Eq. 14 yields(

z⊤1 H
−⊤H−1z1 z⊤1 H

−⊤H−1z2
z⊤1 H

−⊤H−1z2 z⊤2 H
−⊤H−1z2

)
=

λ2β
2

s2β2

(
z⊤1 z1 z⊤1 z2
z⊤1 z2 z⊤2 z2

)
,
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Fig. 2: Two images with ill-conditioned data shown in red. The
estimated normals are highly erroneous in this region. To compute
the normals in this region, third image is considered.

⇒ z⊤i

(
H

⊤
H− λ2β

2

s2β2
I3×3

)
zj = 0, ∀i, j ∈ {1, 2}, (17)

where H = H−1. Assuming H to be normalized, that is, its
second singular value to be 1, the relation between a 3D point
observed in the two input images is given by ϕ(x) = Hϕ(x).
Using Eq. 5 yields β = βs. By writing zi = [n]×[hi]×x̂, the
above constraints further simplify to

[n]⊤×(H
⊤
H− λ2I3×3)[n]× = 0. (18)

Since H ∼ αH, we divide the above expression by λ2 and, with a
slight abuse of notation, write 1

λH as H. This simplifies the above
expressions to

[n]⊤×(H
⊤
H− I3×3)[n]× = [n]⊤×S[n]× = 0. (19)

Degenerate Cases. The system of Eq. 19 holds as long as S

is a non-null matrix, which means H
⊤
H ̸= I3×3. Therefore,

H should not be an orthogonal matrix. H will be orthogonal if
the relative transformation between the two images is 1) non-
existent (zero relative motion); 2) purely translational; 3) purely
rotational; or 4) purely reflective. Therefore, given two distinct
images, reconstruction is not possible if one of them is a rotated,
translated or flipped version of the other. In a local framework,
each point correspondence must avoid these four traps to yield
a normal. The chances of facing degenerate data are therefore
much higher for local methods than for global ones. For example,
consider the first two images in Fig. 2. While these images are
globally distinct, the central portions (shown in red) are very close
to being related by a pure translation. The normals computed
in this region by other local methods [36], [38], [39] are thus
unreliable. We classify this region to be degenerate and ignore
the computed normals. However, when each of these images are
paired with the third image, there are no degeneracies encountered.
Therefore, the normals in red regions can be reconstructed by
considering the third image.
Affine Stability. Under affine imaging conditions, h31 = h32 =
0, and h33 = 1. In this case, zi and S remain non-null, and thus
the system in Eq. 19 does not become degenerate, and we can still
compute the normal.
Solution. The solution to the system in Eq. 19 can be obtained
by homography decomposition [30]. We give an overview of the
solution here but recommend reading [30] for more detail.

S = {sij} is a symmetric matrix expressed in terms of
H. It can be numerically computed using η and image obser-
vations (x,x). Specifically, Eq. 12 gives the closed-form def-

inition H⊤ =

(
I2×2 0
−x⊤ 1

)(
J⊤
η m
0 1

)(
I2×2 0
x⊤ 1

)
. Let us write

n =
(
n1 n2 n3

)⊤
. Since n3 ̸= 0, we define y1 = n1

n3
and

y2 = n2

n3
and expand the system in Eq. 19 accordingly. This yields

6 constraints, out of which only 3 are unique. They are given by

s33y
2
2 − 2s23y2 + s22 = 0 ,

s33y
2
1 − 2s13y1 + s11 = 0 ,

s22y
2
1 − 2s12y1y2 + s11y

2
2 = 0 . (20)

By solving the first two, we obtain y1 =
s13 ±

√
s213 − s33s11
s33

and y2 =
s23 ±

√
s223 − s33s22
s33

. We use the third expression to

disambiguate the solutions. Ultimately, this gives us closed-form
expressions for the two potential solutions for the normal, written
as

na =
(
s13 + s

√
s213 − s33s11 s23 +

√
s223 − s33s22 s33

)⊤
,

nb =
(
s13 − s

√
s213 − s33s11 s23 −

√
s223 − s33s22 s33

)⊤
,

where s = sign(s23s13 − s12s33). (21)

Normal Validation. The normals thus obtained must be visible
to the camera. Given the analytical normal in Eq. 7, na and nb
are visible if s33

1−uk1−vk2 > 0, i.e., they have a similar orientation
towards the camera. We discard the normals that do not meet the
visibility constraint.
Normal Selection. Using Eq. 8, the local depth derivatives
(k1, k2) at X are given by ki = ni

un1+vn2+n3
. From the solution

in Eq. 21, we thus obtain two possible solutions for the local depth
derivatives (k1a, k2a) and (k1b, k2b). We pick the normal that
minimizes the corresponding sum of squares of depth derivatives.
That is, we compute the normal n as

n =

{
na if k21a + k22a ≤ k21b + k22b,

nb otherwise.
(22)

Following Eq. 5, n is then obtained as H⊤n.
Measure of Degeneracy. In degenerate situations, the singular
values (σ1, σ2, σ3) of H are all one. We use the ratio σ1

σ3
to

quantify the degeneracy. Thus, we only reconstruct from S if
σ1

σ3
> τ , and we set τ = 1.05.

Surface Reconstruction. We consider a planar surface and bend
it to match the normals obtained using the homography decom-
position mentioned above, as opposed to [36], [38], [39] which
integrate the normals on each surface. The upside of surface bend-
ing is that it does not require to set a smoothness parameter, which
needs to be tuned for the normal integration. Furthermore, surface
bending is much faster than its normal integration counterpart in
the presence of dense data. It is also less affected by the noise in
the normals corresponding to high-perspective image regions.

5 NORMALS FROM MULTIPLE IMAGES

Methods such as those of [36], [38], [39] pick a reference image
and formulate reconstruction constraints between it and the other
images, which are then solved by solving a least-squares problem
over the entire set of images. We use the same strategy, except
that we reconstruct from all image pairs, with each image acting
in turn as the reference image for the other ones. Therefore, given
N images, for each reference image, we obtainN−1 estimates for
the reference image and 1 estimate for each of the non-reference
images. By considering all image pairs, we obtain 2(N − 1)
estimates for the normals on each image. In other words, the use
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of multiple image pairs yields more estimates for each normals,
which in turns allows us to obtain more reliable estimates, partic-
ularly in degenerate regions such as those highlighted in Fig. 2.

More formally, let {xij}, i ∈ [1,M ], j ∈ [1, N ], be a set
of N point correspondences between M images. Our goal is to
find the 3D point Xi

j and the normal nij corresponding to each
xij . Using Eq. 12, we write the local homography for each point
correspondence Hik

j between image pairs (i, k) ∈ [1,M ], i ̸= k,
using the warp η. Each local homography Hik

j is normalized by
dividing it by its second singular value. We compute Hcikj given
by the ratio of the first and third singular value, and the normals
for each local homography Hik

j using Eq. 21. We then pick a
unique solution using Eq. 22. The solution on the reference and
non-reference image is given by nkkj and nkij , respectively. For
non-degenerate cases, where σ1

σ3
≥ 1.05, we compute the normal

nij by taking the median of the nikj s computed over k reference
images. We obtain a 3D surface by bending a planar surface to
match the obtained normals on each surface.

We summarize our complete pipeline in Algorithm 1.

Algorithm 1: Our NRSfM Algorithm

Data: xij ,Hik
j and Hcikj

Result: nij
σ1

σ3
= 1.05;

for each reference image k = [1,M ] do
for each point j = [1, N ] do

for images i = [1,M ], i ̸= k do
if Hcikj > σ1

σ3
then

Compute normals using (21);
Pick a solution nkkj using (22);
Write nikj = (Hcikj )⊤nkkj ;

else
Set nikj ,n

kk
j to zero;

end
end

end
end
for each point j = [1, N ] do

for images i = [1,M ] do
Obtain nij by as the median of the non-zero nikj s;

end
end

6 EXPERIMENTS

We compare our method against state-of-the-art ones on both
synthetic and real datasets with available ground truth.

6.1 Datasets

Our datasets include the ones we used in our previous work, the
one of [44] and the NRSfM challenge dataset [19]. Note that
Kinect, 3D scanners, and 3D reconstruction toolboxes provide
noisy depth observations which cannot be corrected, even manu-
ally, beyond a limited extent. The performance on these dataset is
therefore slightly approximative. The NRSfM Challenge Dataset
has been synthetically created using 3D creation software such as
Blender and is thus accurate. Therefore, the relative performance

of the methods evaluated on our datasets (and the ones of [44])
can be slightly different than on the NRSfM Challenge Dataset.
Synthetic Datasets. We created 3 smooth surfaces: a plane,
a cylindrical surface and a stretched surface with 400 tracked
correspondences, as shown in Figure 3.
Real Datasets from our Previous Work.

These include the Paper [43], Rug [37] and Tshirt [8]
datasets. Paper comprises 191 images from a video of a deforming
sheet of paper with 1500 point correspondences. Rug comprises
159 images from a video of a deforming rug with 3900 point
correspondences. Tshirt has 10 wide-baseline images with 85
point correspondences. The correspondences in the Paper dataset
were obtained using SIFT with a manual supervision of accuracy
and are thus highly accurate. By contrast, those in the Rug dataset
were computed using the dense optical flow method of [14] and
contain errors due to optical drift and regional mismatches due to
the lack of texture. The correspondences in Tshirt were computed
manually. The ground truth for Paper and Rug was obtained
using a kinect, and is thus very noisy, jittery and contains large,
inconsistent depth variations. We manually checked each frame
for inaccuracies, and used B-spline warps to fit a smooth surface
onto the noisy data and obtained a surface representation of the
ground truth. The ground truth for Tshirt was computed using
rigid reconstruction of each image from multiple views.
NRSfM Challenge Dataset [19]. It consists of 5 image sequences
depicted by Fig. 6. They feature 5 kinds of non-rigid motions:
articulated (piecewise-rigid) with 207 images and 69 point corre-
spondences, balloon (conformal) with 51 images and 211 point
correspondences, paper bending (isometric) with 40 images and
153 point correspondences, rubber (elastic) with 40 images and
481 point correspondences, and paper being torn with 432 images
and 405 point correspondences. The dataset features images from
6 different camera motions and provides image points captured
assuming both a perspective and an orthographic projection. It
provides only one ground-truth surface for each of the sequences.
The correspondences are sparse and not well-distributed across the
images.
Datasets used by [44]. [44] released the Paper, Tshirt, Actor
and Expressions datasets, which have been widely used by many
physics-based and low-rank constraints based methods. The Paper
images are the same as the one used by us. [44] uses 60K dense
correspondences computed using optical flow [14] and the raw
depth data from the kinect is considered as the ground truth.
The Tshirt data has 300 images with 70K dense correspondences
computed using [14], with the kinect raw depth data as ground
truth. To deal with the inconsistent depth variations of the raw
kinect data, [44] refines the raw data and focuses on small
portions of theses datasets where the inconsistent depth variations
are minimal, as shown in Fig 4. Actor contains 100 images of
a deforming human face with 36K dense correspondences, and
Expressions includes 384 3D shapes of a deforming human faces
with 1000 point correspondences. The ground truth for both these
datasets is synthetic. Fig 4 shows some samples.

Additionally, [44] released Back, Owl and Heart video se-
quences with dense correspondences computed using [14]. The
ground truth for these datasets is not available. Back contains
150 images of large deformations of the back with 20K dense
correspondences. Owl contains 202 images of an owl with 20K
dense correspondences. Heart contains 80 images of a beating
heart under surgery with 68K dense correspondences.
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Fig. 3: Reconstructed normals. A synthetic deforming surface reconstructed in three different frames. The predicted normals are
shown in blue and the ground-truth ones in green.

Fig. 4: Datasets used by [44]. Sample images and region of interest used for depth computation for Paper, Tshirt and Actor sequences.
For Expressions, sample ground truth shape is shown.

Blue Sheet Dataset. Additionally, we recorded a video sequence
featuring a textureless blue sheet deforming isometrically using a
kinect. We used B-spline warps to fit a smooth surface onto the
ground truth. The sequence comprises 60 images and 7K point
correspondences that were tracked using dense optical flow [14].
Optical flow on textureless surfaces is prone to large errors, and
the flow we obtained confirms this.

6.2 Baselines and Metrics

We compare our method to local linearity-based diffeomorphic
NRSfM Pa20 [39], jointly solving isometric/conformal NRSfM
Pa19 [38], two fast solutions Pa21-R and Pa21-S [36] that
transform the original constraints to univariate polynomials, which
can be easily solved, and local and piecewise homography decom-
position, Ch14 [8] and Va09 [50], respectively. These are methods
that, like ours, reconstruct local/piecewise surface normals and
integrate them to obtain depth. Note that the solution to isometric
NRSfM in [37] is the same as the one in Pa19. Therefore, there is
no need for additional comparison.

We report errors in terms of accuracy of the normals En and
3D points Ed. En is computed as the average dot product between

TABLE 2: Synthetic experiments results. ’X’ indicates that the
method does not return a result because we are not using enough
images.

ground-truth and computed normals. The normal integration done
in the above methods yields a smooth reconstruction by enforcing
a local smoothness on the normals. As a consequence, it improves
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Fig. 5: Datasets used in our previous work. Reconstructed normals on three images. The ground-truth normals are shown in green,
the ones predicted by Ours in blue, and those by Pa21-R in black. Note that our normals are far less noisy.

the quality of the reconstructed normals. Therefore, we also report
En (s), which is the error between the smoothened and the ground-
truth normals. Ed is the mean RMSE between the ground-truth and
computed 3D points.

We also compare our approach against three of the best global
methods, Ch17 [9], Ji17 [20] and Lee16 [28], along with a dense
method, An17 [5]. They directly return 3D points. Hence, we only
report Ed for these methods.

While comparing on the datasets used by [44], we report Ed
as the mean 3D error, as computed in this method. Therefore,

Ed =
1

N

∑
t

||Precon − PGT ||2
||PGT ||2

, where Precon is the obtained

reconstruction, PGT is the ground truth and N is the number of
images in the dataset.

In the remainder of this section we will refer to the method
described in this paper as Ours.

6.3 Comparative Results

Results on Synthetic Data. Fig. 3 shows the generated surfaces.
The performance of all methods is averaged over 10 trials with
added gaussian noise with a 3 pixels standard deviation. As
Ours can reconstruct from two images only, we perform both
pairwise reconstructions and joint reconstruction from the image
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TABLE 3: (left) RMSE results on the datasets used in our
previous work. ’X’ indicates that the method does not evaluate
normals. ’—-’ indicates that method failed to return a result due
to its high computational complexity.

TABLE 4: Computation times as a function of the number of
images and points used.

triplet available for each surface. We report the results in Table 2.
For methods that perform normal integration, we report errors
of both computed and smoothened normals. The improvement
in the normals due to smoothing is huge for Ch14 and Va09,
substantial for Pa19, Pa20, Pa21-S and Pa21-R and minor for
our method. To truly compare the NRSfM techniques themselves,
we therefore report the accuracy of the computed normals rather
than the smoothed ones. We obtain a very accurate reconstruction
from 2 images only. Beside Ours, Va09 is the only baseline that
can reconstruct from 2 images. However, it does not perform well
on this data. Lee16 and An17 are designed for video sequences,
and thus need more than 3 images to perform effectively. The
remaining methods can operate on three images, but their accuracy
is lower than ours, especially in terms of normal accuracy. Since
we can discard the normals that have a low reliability, the accuracy
of our reconstruction is strengthened using multiple images. Fig. 3
further confirms the quality of our reconstructions by depicting the
normals we obtain without any smoothing.
Results on the Datasets used in our Previous Work. Be-
cause the computational complexity of the global baselines grows
rapidly with the number of correspondences, we evaluated all
methods on the full set of correspondences and on a subset of
350 correspondences on Paper and Rug. For example, Ch17,
Ji17 have a cubic complexity and hence they yield a very high
computation time when there are many correspondences. Their
Matlab implementation crashes when using all correspondences,
and using only 1000 correspondences still takes hours on a modern
CPU. Similarly Ch14 and Va09 take almost 1 hour to reconstruct
20 images and we therefore did not evaluate them on these
datasets. The Tshirt dataset has only 10 wide-baseline images.
Lee16 and An17 are not designed to work on wide-baseline data,
therefore we did not evaluate them on this dataset.

We report our quantitative results in Table 3, and Figure 5 de-
pict qualitative ones. We outperform all baselines in terms of Ed on
the Paper and Rug dataset with partial and full correspondences.
On the Tshirt dataset, Ch17 and Ji17 perform better. Crucially,
our performance is achieved at a much reduced computational
cost by solving a set of equations in closed form, as opposed to
invoking a complex solver. As a result, our approach is about 150
times faster than Ch17 on 350 correspondences and can handle
thousands whereas Ch17 cannot. Furthermore, our approach is
also 50 times faster than Pa19, the counterpart local approach
which uses expensive polynomial solvers, because we do not have
to derive a complicated formulation to obtain a unique solution for
each correspondence.

Table 4 provides a detailed analysis of the run-times of all
the methods on 350 and 1500 points. We assume that the input
point correspondences and their derivatives are pre-computed.
Therefore, the timings only encode the computation of the normals
or 3D points. Our approach yields the fastest run-times, seconded
by An17. Note, however, that An17 has a parallel implementation
and is computationally optimized. By contrast, our approach, as
all the other ones, is implemented in Matlab and not optimized for
speed.

The relative slowness of the other local method arises from
the local normal estimators of Pa19 and Pa20 having to minimize
the sum of squares of polynomials, which is expensive even if
it has linear complexity. Pa20 is further slowed down by having
to transform polynomials into univariate expressions. Pa21-S and
Pa21-R obtain analytical solutions but require a fairly expensive
disambiguation. By contrast, our local normal estimator is compu-
tationally cheap as it has a closed-form solution.

Testing validity of LP and LL.
Table 3 compares the performance of all methods on the Paper

and Rug datasets with full and partial data. While considering
the Paper dataset partially, we have uniformly sub-sampled 350
points, that is, ≈ 25% of the original data. The performance on the
full and partial data are (Ed=4.1, En=9.1) and (Ed=3.9, En=8.9),
respectively. The performance is quite similar, slightly better for
the partial data. This is because the uniformly sampled 350 points
(which are evenly spread across the sheet of paper) are sufficient
for the LP and LL assumptions to hold on a smooth object such
as a sheet of paper. The slight performance improvement can be
attributed to the smaller impact of noise on the partial data. The
main takeaway is that, for a smooth object, we do not need dense
data to achieve good results. However, with only 10% of the data
(150 points) chosen uniformly, the performance drops to (Ed=8.1,
En=16.3). This is a significant drop in performance, showing that
LP and LL do not hold on such sparsely sampled data.

We repeated the experiment with 10% − 90% of the data by
choosing points randomly. Since the points are chosen randomly,
some regions may not be well covered, which causes LP and LL
to be rather distant approximations. Table 5 shows the results.
The performance degrades significantly with less than 50% of the
data. This is because there are more chances that the LP and LL
approximations fail when we rely on sparse data chosen randomly.
Therefore, to obtain a good performance using Ours, a well-
distributed set of correspondences across the object of interest
should be used. However, dense data is not required.

Results on the NRSfM Challenge Dataset. Fig. 6 compares
the performance of Ours with that of other methods in terms
of Ed, measured in mm, with Best being the one that does best
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Fig. 6: NRSfM challenge dataset and some reconstructions using Ours. Green indicates the ground truth and blue indicates our
reconstruction.

TABLE 5: Performance of Ours on 10%−100% correspondences
chosen randomly from Paper dataset.

as reported in the benchmark statistics provided on the website.
The local methods show a significant performance improvement
compared to the other ones. Pa19 uses second-order derivatives
of the image registration η, which can be highly erroneous on this
dataset. It uses an expensive polynomial solver, which cannot han-
dle such large noise and fails on a large number of cases. Pa21-S
and Pa21-R find an analytical solution to the isometric/conformal
NRSfM posed in Pa19, which requires a non-linear refinement to
obtain a unique solution; they obtain decent results on this dataset.
Pa20 solves NRSfM using diffeomorphic constraints, which uses
only first-order derivatives of η, and is thus less impacted by the
sparsity of the data and performs better than Pa21-S and Pa21-R.
Ours requires second-order derivatives of the image registration,
but it is equipped with a measure to compute the well-conditioning
of the data. This lets us identify and discard the non-isometric/non-
conformal data and reconstruct from as-isometric(or conformal)-
as-possible data. As a result, Ours yields better results than Pa20.
Fig. 6 shows some reconstructions obtained with our method.
Results on the Blue Sheet Dataset and on the Datasets used
by [44]. These datasets are large in terms of the number of
either point correspondences or images they contain. We compare
the performance of Ours with An17, which is designed for
reconstructing dense objects, however, it takes several hours to
reconstruct. Additionally, we report the performance of our other
local methods Pa19, Pa21-S and Pa21-R. In this case, we report
the mean 3D error to be able to compare with the performance
of [44], which has demonstrated best results on these datasets.
Table 7 summarizes the results. Ours performs better than most
of the methods on these datasets. The Actor and Expressions
sequences are relatively simple, with small relative motion across
images. All local methods therefore perform similarly on these se-
quences. An17 performs better than Ours on the Actor sequence.
However, the visual performance is quite similar as the error

margin is very low, to the third decimal place. Fig. 9 shows some
reconstructions. Fig.s 7, 10 show the results on the Blue Sheet,
Paper and Tshirt datasets where Ours performs significantly
better than the compared methods.

We also evaluated our method on Back, Owl and Heart
datasets. Fig. 8 shows the reconstructed surfaces of some images
from these datasets.

7 CONCLUSION AND FUTURE WORKS

We have proposed an approach to NRSfM that can estimate
normals from image pairs given a 2D warp and point correspon-
dences between the two images. It does so in closed form from
individual correspondences and is therefore fast. Furthermore, it
can estimate if these normals are reliable given the motion from
one image to the next. When they are found to be, our experiments
show that they are indeed very accurate. As a result, our method
performs well with various deformation types and can reconstruct
large and small deformations at a low computational cost. Local
methods require the first and second order derivatives of the
image registration, which are computed using image warps. The
computation of second order derivatives through warps is com-
putationally expensive and can be adversely impacted by noise.
Furthermore, depth is computed by integrating local normals on
each surface, which is another expensive step. Our next goal will
be to remove the dependency on expensive methods to compute
warps and integrate normals so that a truly real-time application
can be developed.
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