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Abstract— In this paper, the challenge of asymptotically
rejecting sinusoidal disturbances with unknown time-varying
frequency and bounded rate is explored. A novel data-driven
approach for designing linear parameter-varying (LPV) con-
trollers is introduced, leveraging only frequency domain data
from a Linear Time Invariant (LTI) Multi-input Multi-output
(MIMO) system, eliminating the need for a parametric model.
A two-step iterative algorithm is proposed involving convex
optimization problems in the frequency domain. Closed-loop
stability is ensured using Integral Quadratic Constraints (IQC)
that characterize the bounded rate variation of the LPV
controller’s scheduling parameters. Experimental validation is
provided through results obtained on a hybrid micro-vibration
damping (MIVIDA) platform tailored for space applications.

I. INTRODUCTION

Disturbance rejection plays a crucial role in control system
design, as the presence of noise or external perturbations
can significantly impact control performance. Various ap-
plications, including active suspension systems [1], optical
stabilization [2], control of robotic systems [3], vibration
suppression in machinery [4], and active noise-canceling sys-
tems [5], [6], heavily rely on effective disturbance rejection
strategies. In case the disturbance model is known, control
design methods based on the internal model principle (IMP)
can be applied. Some non-stationary disturbances can be
modeled as a linear parameter-varying (LPV) system with
an appropriate scheduling parameter [6] and be integrated
into an LPV controller. For practical applications, an upper
bound on the variation rate of the scheduling parameter is
oftentimes known due to physical limitations of the system.

Model-based control approaches necessitate the availabil-
ity of an accurate parametric plant model, which typically
requires system identification. This system identification step
can be time-consuming and consequently expensive, partic-
ularly for complex systems. As a result, data-driven control
design techniques are gaining prominence in industrial ap-
plications, thanks to recent technological developments that
provide increased computational power and enhanced sensor
technologies. These techniques enable the direct minimiza-
tion of a control criterion based on measured input-output
data, offering a significant advantage in situations where a
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parametric plant model is either unavailable or challenging
to identify.

Frequency response data proves to be effective for the
analysis and synthesis of linear control systems, as it can be
readily computed from time-domain input-output data, avoid-
ing any modeling errors. The industry widely employs such
methods, exemplified by the classic loop shaping technique.
Given that most control performance and robust stability con-
ditions can be represented in the frequency domain, recent
data-driven methods leverage only frequency-domain data
and convex optimization programming to compute LPV con-
trollers [7]–[9]. These methods involve multimodel control
optimisation where for a number of selected operating points,
a model is generated for frozen scheduling parameters.

The IQC framework, introduced by Megretski and Rantzer
[10], offers a versatile mathematical framework for the
representation and analysis of various nonlinearities and
uncertainties. This includes parametric uncertainties, rate-
bounded uncertainties, time-delays, and norm and sector-
bounded nonlinearities. The IQC framework enables the es-
tablishment of sufficient stability conditions in the frequency
domain and allows the analysis of systems with multiple
uncertainty types through a single composite IQC.

Data-driven methods combining robust stability and per-
formance analysis within an IQC-based optimization have
been explored for designing Multiple-Input Multiple-Output
(MIMO) LPV controllers directly from frequency-domain
data [8]. This approach has been applied to design LPV
controllers for control moment gyroscopes (CMG) in [11].
It is important to note that all presented LPV control design
approaches only offer local stability guarantees for frozen
scheduling parameters at selected operating points, and sta-
bility guarantees for variations in the scheduling parameter
are not strictly provided.

In a model-based framework, IQCs have been proposed to
guarantee stability for fast and slowly time-varying parame-
ters. Frequency-domain conditions using IQC can be derived
to bound the derivative of a time-varying parameter using
upper bounds on the structured singular value which can be
represented by an LMI in convex optimisation problems [12].
A number of multiplier matrices Π for rate-bounded time-
varying real scalars are proposed in the literature [10], [13].
A stability analysis for linear systems with rate-bounded
parameters can also be performed using the swapping lemma
presented in [14]. The swapping lemma was used to verify
the stability of linear systems with slowly varying uncertain-
ties [15]. A similar development was made to analyse linear
time-varying parametric rate-bounded uncertainties in [16].
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Fig. 1. Basic feedback configuration

In a data-driven framework, A novel LPV controller
design approach with stability guarantee for arbitrarily fast
variation of scheduling parameters is presented in [17]. The
objective of the method is to effectively reject unknown
frequency-varying sinusoidal disturbances while ensuring
closed-loop stability. The controller is computed from ex-
perimental input/output data and no parametric plant model
is required. The control system is composed of three main
components: an online disturbance frequency estimator using
sliding discrete Fourier transform (SDFT), a fixed-structure
LPV control part consisting of a time-varying filter, and a
stabilising LTI controller. The scheduling parameters of the
LPV control part are the harmonic disturbance frequencies
estimated with the SDFT algorithm. The method uses the
Integral Quadratic Constraint (IQC) framework and convex
optimization techniques to design the LPV controller.

This paper is an extension of the work presented in [17]
allowing to relax the constraints over stability guarantees
for arbitrarily fast time-varying scheduling parameters by
including rate bounds in the controller design algorithm. The
method is then applied for adaptive disturbance rejection
of a hybrid active-passive micro-vibration damping platform
(MIVIDA) and achieves much larger variation bounds for the
disturbance frequency than the method in [17]. The MIVIDA
is a demonstrator for a spaceborne system that was designed
to actively isolate a sensitive payload from vibrations present
on board of the spacecraft.

The remainder of the paper is organised as follows:
First, the notations and the preliminaries are introduced in
(Section II). Then, an iterative LPV control design algorithm
is presented using constraints on the rate bound of the
scheduling parameters to maximize the frequency variation
bound in (Section III). The effictiveness of the algorithm is
demonstrated by the experimental results in (Section IV).
Finally, (Section V) gives some concluding remarks.

II. PRELIMINARIES

Notations: The set of real rational stable transfer func-
tions with bounded infinity norm is denoted by RH∞.
A ≻ (⪰)B indicates that A−B is a positive (semi-) definite
matrix and A ≺ (⪯)B indicates A−B is negative (semi-)
definite. The zero and identity matrices of appropriate size
are denoted 0 and I respectively. The transpose of a matrix
A is denoted by AT and its conjugate transpose by A∗. Right
inverse of A is denoted as AR := A∗(AA∗)−1, and its left
inverse is denoted as AL := (A∗A)−1A∗.

A. Integral Quadratic Constraints

In the developments that follow, only discrete-time sys-
tems are considered. Two discrete-time signals p and q are
said to satisfy the IQC defined by a multiplier Π, if [16]∫

Ω

[
P (ejω)
Q(ejω)

]∗
Π(ejω)

[
P (ejω)
Q(ejω)

]
dω ≥ 0 (1)

where P (ejω) and Q(ejω) are the Fourier transform of the
signals p and q respectively and Ω := [−π/Ts, π/Ts) with
Ts the sampling time. From [10, Theorem 1], the feedback
connection between H ∈ RH∞ and a bounded causal
operator Δ (see Fig. 1) is stable if,

1) the interconnection of H and τΔ is well-posed for all
τ ∈ [0, 1];

2) τΔ satisfies the IQC defined by Π for all τ ∈ [0, 1];
3) The following inequality is satisfied:[

H(ejω)
I

]∗
Π(ejω)

[
H(ejω)

I

]
≺ 0 ∀ω ∈ Ω (2)

Remark 1: If the upper left corner of Π is positive semi-
definite and the lower right corner is negative semi-definite,
then using [10, Remark 2], τΔ satisfies the IQC defined by
Π for all τ ∈ [0, 1] if and only if Δ satisfies the IQC.

Numerous forms of multiplier matrices Π(ejω) for differ-
ent uncertainty types have been proposed in the literature
[10]. Methods to directly integrate rate bounds in IQC
are proposed allowing to obtain convex frequency-domain
constraints which can be used for control design [10], [14],
[18]. A way to present the problem of rate-bounded time-
varying parameter, is to define the bounded rate as a new
time-varying real scalar parameter. For rate-bounded time-
varying scalar uncertainties, i.e.

Δ(k) = δ(k)I, |δ(k)| ≤ η, |δ(k)− δ(k − 1)| ≤ ζ ≤ 2η,

where η, ζ > 0 ∀k ∈ R+, a stationary multiplier Π can be
defined as [13]:

Π =


η2D 0 E 0
0 ζ2D̄ 0 Ē
ET 0 −D 0
0 ĒT 0 −D̄

 , (3)

where D = DT ⪰ 0, D̄ = D̄T ⪰ 0, E = −ET , Ē = −ĒT .
For a given system H(ejω),2 can be used to compute Π

satisfying the constraint. From (3), the numerical values of
η and ζ can be identified allowing to compute the bounds on
the uncertainty block Δ(k). Similarly, the obtained IQC can
be used as a control design constraint to guarantee robustness
for desired fixed upper bounds η and ζ.

B. Control design for LFT systems

A method to design fixed-structure frequency-domain con-
troller based on linear fractional transform (LFT) represen-
tation is presented in [19]. A convex optimisation problem
using LMIs is proposed to obtain an LTI controller with
a fixed-structure parametrization. Since this method will be
used in this paper, a summary of the main results is presented
in this section.
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Fig. 2. LFT interconnection between generalized system and controller

The FRF of a generalized system G with exogenous signals
d ∈ Rnd , control inputs u ∈ Rnu , measurements y ∈ Rny

and performance channels z ∈ Rnz can be presented as:[
z
y

]
=

[
G11 G12

G21 G22

] [
d
u

]
.

The aim is to design an LTI controller K in order to
compensate for the effect of the exogenous disturbances
d on the performance channels z. The corresponding LFT
represented in Fig. 2 is given by

Tzd = G11 +G12K(I −G22K)−1G21. (4)

Assuming the closed-loop system is stable, the infinity norm
of Tzd can be expressed as

||Tzd||2∞ = sup
ω∈Ω

σ̄(T ∗
zd(e

jω)Tzd(e
jω))

where σ̄ is the maximum singular value. This can be eval-
uated if G(ejω), the FRF of G, ∀ω ∈ Ω is available. As an
example, an H∞ control design problem can be formulated
as the minimization of the spectral norm:

min
K,γ

γ

s.t. T ∗
zd(e

jω)Tzd(e
jω) ⪯ γI, ∀ω ∈ Ω

(5)

The controller K can be parameterized as K = Y −1X ,
where X and Y are both RH∞ matrix functions linear in
optimization variables. Assuming that G12 is full column
rank ∀ω ∈ Ω, the constraint on the spectral norm given by
T ∗
zdTzd ⪯ γI can be equivalently expressed as an LMI:[

γI − Λ (ΦG11 +XG21)
∗

(ΦG11 +XG21) ΦΦ∗

]
≻ 0, (6)

where Φ = (Y −XG22)G
L
12,Λ = (ΨG11)

∗(ΨG11) and
Ψ = I − G12G

L
12. This constraint is not convex and does

not guarantee the closed-loop stability. It is shown in [19]
that a convex lower-bound on the quadratic term ΦΦ∗ can
be obtained that ensure the closed-loop stability as well:

ΦΦ∗ ⪰ ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c (7)

where Φc = (Yc −XcG22)G
L
12, and Kc = Y −1

c Xc is an
initial stabilizing controller. In practice, Kc = 0 can be
chosen for open-loop stable plants. The optimisation problem
(5) can now be formulated as:

min
X,Y,γ

γ[
γI − Λ (ΦG11 +XG21)

∗

⋆ ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c

]
(ejω) ≻ 0 ∀ω ∈ Ω,

(8)

To solve the optimisation problem, a grid-based approach
can be employed for the frequency set Ω to obtain a finite
number of constraints. The results can be improved using
an iterative approach where the controller K is used as
the initial stabilising control for the next iteration. This
sequence of convex optimisation problems converges to a
local optimal solution of the original nonlinear problem. For
a more detailed explanation of the method, refer to [19].

III. MAIN RESULTS

A. Basic problem statement

The control system architecture is schematically presented
in Fig. 4. The system to be controlled is a multivariable linear
time-invariant (LTI-MIMO) plant P2 with nu input channels
and ny output channels. The FRF matrix can be acquired
from classical system identification experiments [20]. Given
nu sets of finite sampled input/output data which can be
acquired from nu open-loop identification experiments, the
corresponding discrete-time FRF can be estimated as:

P2(e
jω) =

[
M−1∑
k=0

Y(k)e−jωTsk

][
M−1∑
k=0

U(k)e−jωTsk

]−1

(9)
where M is the number of data points and each column
of U(k) and Y(k) represents respectively the inputs and
outputs at the time sample k at one experiment. It is assumed
that P2(e

jω) is bounded for all frequencies ω ∈ Ω. The
estimation errors can be considered as model uncertainty and
taken into account for the controller design, however, they
are neglected to focus on the main subject of this paper. In
addition, a stationary perturbation model P1(e

jω) is used to
model the propagation of an exogenous perturbation signal d
to the measurement y. The disturbance signal d is assumed
to be a sinusoidal signal having an unknown time-varying
harmonic frequency ρ(k) with a bounded rate. The objective
is to design a stabilizing controller that reject asymptotically
the effect of the disturbance at the output.

B. Controller structure for harmonic disturbance rejection

As the harmonic frequency of the disturbance signal is
non-stationary, P2 shall be controlled by an LPV controller
with the harmonic frequency as scheduling parameter. The
LPV controller is chosen as the multiplication of an LTI
controller K(z) and a time-varying filter N(z, θ(k)):

KN (z, θ(k)) = K(z)N(z, θ(k)),

where θ(k) ∈ Θ is the scheduling parameter. The time-
invariant part of the controller is parameterised by K(z) =
Y (z)−1X(z) and is computed by a convex optimisation
problem to guarantee closed-loop stability for all the vari-
ations in the scheduling parameter θ(k). A sliding discrete
Fourier transform (SDFT) is used for the estimation of the
unknown harmonic disturbance frequency (see Section IV-
B). A time-varying filter N(z, θ(k)) for a fixed value of
θ(k) = θc ensures asymptotic performance for the distur-
bance rejection. In accordance to the IMP, N(z, θc) is chosen



as an approximation of the z-transform of a sinusoidal signal:

N(z, θc) =
1

1 + βθcz−1 + β2z−2
, (10)

where β is a scalar factor allowing to adjust damping of the
inverted notch filter according to the desired performance.
Hence, for the steady-state case with θc constant, robust per-
formance is guaranteed based on the IMP. For the transitory
phase, we do not consider the attenuation performance as
the estimation of the scheduling parameter requires a certain
time lapse for convergence. The scheduling parameter θ(k) is
chosen such that θ(k) = −2 cos (Tsρ(k)) where ρ(k) is the
time-varying frequency of the sinusoidal disturbance. It can
be defined around a fixed frequency θ̄ as θ(k) = θ̄ + δθ(k)
with |δθ(k)| ≤ η such that [θmin, θmax] = [θ̄ − η, θ̄ + η].
The variation rate θ̊(k) = δθ(k)− δθ(k − 1) is bounded by
θ̊(k) ≤ ζ. In the discrete-time domain, we can relate θ(k) to
its variation rate θ̊(k) as shown in Fig. 3:

N(θ̄)

θ̊(k)
2

βz−1

δθ(k)
2

1
1−z−1

δθ(k)∆(k)

qθ

qθ̊ pθ̊

pθ

Fig. 3. Integration of θ̊(k) into N(z, δθ(k))

This allows for an equivalent formalisation of
N(z, θ(k)) = N(z, θ(k), θ̊(k)).

For a fixed stationary value of the scheduling parameter
θc = θ̄ + δθc, N(z, θc) can be defined as:

N(z, δθc) =
1

1 + β
(
θ̄ + δθc

)
z−1 + β2z−2

=

1
1+βθ̄z−1+β2z−2

1 + βz−1

1+βθ̄z−1+β2z−2 δθc

=
N(θ̄)

1 + βz−1N(θ̄)δθc
,

(11)

As shown in (11), N(z, θc) can be represented as a feedback
loop with N(z, θ̄) in the forward path and the term βz−1δθc
in the feedback. As presented in Fig. 3, δθ(k) and θ̊(k) can
be pulled out as an uncertainty block in an LFR represen-
tation with an LTI block. Note that the LPV part of the
controller is only a function of θ(k) as scheduling parameter.
Therefore θ̊(k) will be used for controller synthesis and it is
not required for the implementation of the algorithm.

For time-varying scheduling parameter in a multivariable
system, δθ(k) and θ̊(k) can be replaced with δθ(k)I and
θ̊(k)I respectively and the time-varying part of the control
system can be defined by the augmented plant N (see Fig. 4):

K N P2

P1

SDFT

∆(k)

+ y u u′ +

d

+

−
pq

Fig. 4. Control system architecture with LTI controller part

 pθ
pθ̊
u′

 =

(
N11 N12

N21 N22

) qθ
pθ̊
u


=

 −βz−1

2 N(θ̄)I −βz−1

2 N(θ̄)I βz−1

2 N(θ̄)I

− βz−1

2(1−z−1)N(θ̄)I − βz−1

2(1−z−1)N(θ̄)I βz−1

2(1−z−1)N(θ̄)I

−N(θ̄)I −N(θ̄)I N(θ̄)I


 qθ

qθ̊
u

 ,

(
qθ
qθ̊

)
= ∆(k)

(
pθ
pθ̊

)
=

(
δθ(k)I 0

0 θ̊(k)I

)(
pθ
pθ̊

)
(12)

C. Generalized model representation

After having “pulled out” δθ(k) and θ̊(k) from N , the
LTI plant model P2 will be augmented with N and will be
represented by an LFR. The augmented plant Gs maps qθ, qθ̊
and the control inputs u to pθ, pθ̊ and y2 (the output of P2)
and is given by:

 pθ
pθ̊
y2

 =

(
Gs

11 Gs
12

Gs
21 Gs

22

) qθ
qθ̊
u


=

 −βz−1

2 N(θ̄)I −βz−1

2 N(θ̄)I βz−1

2 N(θ̄)I

− βz−1

2(1−z−1)N(θ̄)I − βz−1

2(1−z−1)N(θ̄)I βz−1

2(1−z−1)N(θ̄)I

−P2N(θ̄)I −P2N(θ̄)I P2N(θ̄)I


 qθ

qθ̊
u


(13)

This augmented plant does not include the disturbance d and
will be used to define a convex set of stabilizing controllers.
The scheme representing the augmented system is given in
Fig. 5.

K
Gs

∆(k)

P1

W

+ y u y2 +

d

+ z

−

q p

Fig. 5. Closed-loop scheme with the augmented system

Note that the time-varying filter ensures asymptotic at-
tenuation of the disturbances. However, for nominal perfor-
mance specification, high amplifications at higher frequen-
cies should explicitly be avoided. An additional LFR for



Tzd(e
jω) can optionally be defined to constrain the effect of

the external perturbation signal d on the performance channel
z (see Fig. 5). The corresponding augmented plant Gp is
given by(

z
y

)
=

(
Gp

11 Gp
12

Gp
21 Gp

22

)(
d
u

)
(14)

=

(
P1W P2N(θ̄)
−P1W −P2N(θ̄)

)(
d
u

)
, (15)

where W is a weighting function which can be chosen
according to the desired shape of Tzd(e

jω). In the simplest
case, it can be a constant value to limit the amplification of
disturbance in all frequencies.

D. Controller Design

The stability for scheduling parameter θ(k) with a rate-
bounded variation θ̊(k) shall be guaranteed using an IQC-
based constraint. A simplified solution for Π in accordance
to (3), choosing D = D̄ = I and E = Ē = 0, is given by

Πpq =


η2I 0 0 0
0 ζ2I 0 0
0 0 −I 0
0 0 0 −I

 . (16)

When inserting (16) in (2), the obtained inequality can be
simplified:[
Tpq(e

jω)
I

]∗
Π

[
Tpq(e

jω)
I

]
≺ 0 ∀ω ∈ Ω

⇔ T ∗
pq(e

jω)Tpq(e
jω) ≺

(
η−2I 0
0 ζ−2I

)
= U ∀ω ∈ Ω

(17)

This inequality has the same form as the constraint in (5)
and can be converted to a set of LMIs in the same way as
for the general LFT systems presented in Section II-B and
be integrated into a feasibility problem as follows:

Find K

s.t. T ∗
zd(e

jω)Tzd(e
jω) ⪯ I, ∀ω ∈ Ω

T ∗
pq(e

jω)Tpq(e
jω) ≺ U ∀ω ∈ Ω

(18)

A feasible but undesirable solution to this problem is the
controller K = 0. To avoid this solution, a minimal steady-
state gain gmin of K shall be imposed. A lower-bound
constraint can be formulated as follows:

K(ejω)|ω=0 = Y −1(ejw)|ω=0X(ejω)|ω=0 ≻ gminI

⇒ X(0)− gminY (0) ≻ 0
(19)

Based on (18) and (19), we can now define an optimisation
problem maximizing η. The objective is to compute a K(z)
which guarantees robust stability for all θ(k) satisfying
|δθ(k)| ≤ η and |̊θ(k)| ≤ ζ. The constraints in (18) can
now be transformed into LMI in the form of (6) using the
method presented in Section II-B.

The procedure to obtain the desired controller K(z) is
summarized in Algorithm 1. An iterative approach is pro-
posed to reduce the conservatism related to the choice of

the initial controller Kc = 0. At each new iteration, Kc

is initialized with the optimal controller of the last iteration.
ϵ > 0 must be chosen sufficiently small such that the problem
is feasible. Theoretically, the optimisation problems in this
paper are formulated using frequency-domain constraints.
They correspond to convex semi-infinite programs (SIP). A
possible approach to solve such SIP is to sample the infinite
number of constraints for the complete Ω at a large finite set
of frequencies with a reasonable amount of frequency points
Ωf = {ω1, . . . , ωf} [21].

Algorithm 1 LPV control design algorithm
Require: Kc = 0
Require: η1, ζ > 0

while ηi − ηi−1 > ϵ do

- max
ηi,X,Y

ηi

s.t.
(
U − Λ (ΦGs

11 +XGs
21)

∗

⋆ Φs(Φs
c)

∗ +Φs
c(Φ

s)∗ − Φs
c(Φ

s
c)

∗

)
≻ 0,(

I − Λ (ΦpGp
11 +XGp

21)
∗

⋆ Φp(Φp
c)

∗ +Φp
c(Φ

p)∗ − Φp
c(Φ

p
c)

∗

)
≻ 0

∀ω ∈ ΩN ,

where Φp = (Y −XGp
22) (G

p
12)

L
,

Φs = (Y +XGs
22) (G

s
12)

L
,

U =

(
η−2
i I 0
0 ζ−2I

)
,

X(ω1)− gminY (ω1) ≻ 0,

- Kc = Y −1X

- Increment i

end while

The choice of Π as presented in (16) is conservative
because the off-diagonal terms are set to zero. Hence, the
achievable η is somewhat larger then the value obtained with
Algorithm 1. The conservatism can be reduced using a full
parameterized Π given by (3). Algorithm 2 can be used after
the completion of Algorithm 1 to obtain a stability guarantee
for an interval bound ηmax which is larger than ηn obtained
from the Algorithm 1 after n iterations. Algorithm 2 can be
solved using a bisection approach or by iteratively increasing
the value of η and checking the problem’s feasibility.

IV. EXPERIMENTAL RESULTS

A. Hybrid micro-vibration damping platform (MIVIDA)
Novel high-precision optical instruments designed for

Earth observation missions require exceptional pointing ac-
curacy. These stringent line-of-sight stability demands im-
pose constraints on the allowable levels of mechanical vi-
bration that may occur onboard spacecraft. Micro-vibrations,
stemming from primary satellite systems such as reaction
wheels, thrusters, cryocoolers, or solar array drive mecha-
nisms can significantly degrade the performance of sensitive
payloads.



Algorithm 2 Stability analysis of final controller

max
Π,ηmax

ηmax

s.t.
[
Tpq(e

jω)
I

]∗
Π

[
T ∗
pq(e

jω)
I

]
≺ 0 ∀ω ∈ ΩN ,[

I
ηmaxI

]∗
Π

[
I

ηmaxI

]
≻ 0, ∀ω ∈ ΩN ,

Π =


η2maxD 0 E 0

0 ζ2D̄ 0 Ē
E∗ 0 −D 0
0 ĒT 0 −D̄

 ,

where D = DT ⪰ 0, D̄ = D̄T ⪰ 0,

E = −ET , Ē = −ĒT

To address this problem, a hybrid active-passive micro-
vibration damping platform (MIVIDA) was developed at
CSEM. The platform aims to mitigate micro-vibrations and
isolate sensitive optical payloads from external disturbances,
facilitating the study of stabilizing sensitive active payloads
against multiple unknown external perturbations in a broader
context. The modular platform comprises an adjustable num-
ber of passive dampers, a set of proof mass actuators (PMA)
generating a 6 degree of freedom (DoF) force tensor, and a
payload interface capable of accommodating various types of
sensitive instruments. Utilizing accelerometer measurements
in close proximity to the payload, the platform actively
rejects disturbances originating from the satellite body. These
external perturbations are induced using an external inertial
shaker. An illustration of the system is provided in Fig. 6.

All experimental evaluations of the platform are conducted
at the Microvibration Characterisation Facility at CSEM in
Neuchâtel, Switzerland [22].

Elastomeric
dampers

Proof Mass
Actuators (PMA)

Accelerometers

Payload
interface

Base
plate

Fig. 6. Hybrid micro-vibration damping platform MIVIDA developed at
CSEM, Switzerland

B. Scheduling parameter estimation

The scheduling parameter is updated by estimating the
main harmonic frequency of the perturbation. As the pertur-
bation signal d cannot be measured directly, an estimation
of the harmonic frequency is calculated based on a sliding
discrete Fourier transform (SDFT) on the output signal y.
The SDFT is implemented using the algorithm presented in
[23]. The discrete Fourier transform (DFT) is given by

Yn =

N−1∑
k=0

y(k)e−( j2πkn
N ),

where 0 ≤ n ≤ N−1 designating the nth bin of the N -point
DFT. The DFT can be computed recursively using the SDFT
algorithm. Essentially, the SDFT algorithm arises from the
fact that for two successive times k−1 and k, the sequences
y(k − 1) and y(k) contain mainly identical elements. The
recursive update step of the SDFT at time k can therefore
be expressed by

Yn(k) = e
j2πn
N

(
Yn(k − 1) + y(k)− y(k −N)

)
.

The detailed derivation of the SDFT algorithm is given in
[17]. Based on the m highest peaks present in Ŷ (k), n
harmonic frequencies ρi, i = 1, ...,m are identified in real-
time. The values of ρi are then used to update the value of
θi(k) = −2 cosTsρi(k).

C. Harmonic disturbance rejection on MIVIDA

To validate the method, a controller for the MIVIDA
platform allowing to adaptively reject sinusoidal disturbances
is computed. A system identification experiment is conducted
to compute an FRF matrix P2(e

jω) from experimental data
using a frequency grid with 500 points and a sampling
frequency of 1 kHz. The disturbance signal d is known
to contain a single main harmonic frequency. Hence, a
single scheduling parameter θ(k) is identified and used in
N(z, θ(k)). For the control design, a controller order of 40,
a minimal steady-state controller gain gmin = 1, a center
frequency ρ̄ of 60 Hz and η0 of 0.1 Hz is used. The upper
bound on the rate is set at ζ = 1 Hz and the damping
parameter β for N(z, θ(k)) at β = 0.997. This is the
highest value of β leading to a feasible solution for this
application. The performance weighting factor W is chosen
as W = −10I dB in order to limit the infinity norm of the
sensitivity function

S(ejω, θ̄) = [I + P2(e
jω)KN (ejω, θ̄)]−1.

The identified FRF matrices P1(e
jω) and P2(e

jω) together
with the computed sensitivity function S(ejω, θ) are pre-
sented in Fig. 7. It can be observed that the disturbance
frequency is attenuated mostly at around 25 dB along the
three axes. The obtained controller guarantees stability for a
value of ρ(k) ∈ [16, 104] Hz. This is the resulting value
obtained with Algorithm 2, the stability interval obtained
after the last iteration with Algorithm 1 is ρ(k) ∈ [54, 66]
Hz. To assess this result of guaranteed stability for ρ(k) ∈
[16, 104] Hz, it can be compared to the stability interval of



Fig. 7. Closed-loop sensitivity functions S(θ) and FRF matrix of
perturbation model P1 and of plant model P2

ρ(k) ∈ [44, 76] Hz that was achieved for an arbitrarily fast
scheduling parameter variation on the same setup (results
presented in [17]). Hence, a significant increase in the
disturbance frequency interval ρmax can be achieved by
introducing rate bounds on the scheduling parameter θ(k).

The closed-loop control system including the real-time
scheduling-parameter estimation and sensor data acquisition
is implemented using a dSpace rapid prototyping platform.
Two individual power amplifiers generate the power supply
and the analog input and output signals for the PMA and
the accelerometers respectively. A third control module is
used for the command of the external inertial shaker. For
performance evaluation, a sinusoidal perturbation along the
x-axis is injected with this shaker. In Fig. 8, the measured
accelerations along the three axes in open- and closed-loop
are shown. The harmonic frequency ρ(k) of the sinusoidal
perturbation is shifted in the interval of ρ(k) ∈ [35, 85]
Hz increasing the frequency by 1 Hz every 2 seconds. The
frequency range of the sinusoidal perturbation could be theo-
retically further extended according to the achieved stability
interval for ρ(k) ∈ [16, 104]. However, due to physical
limitations such as limited sensitivity of the accelerometer
and the nonlinear behaviour of the PMA close to their
resonance frequency at around 25 Hz, the zones closer to the
limit of the interval cannot be implemented. Table 1 shows
the obtained attenuation values for different values of ρ(k).

An additional test has been performed to assess the closed-
loop stability for a faster variation of the scheduling param-
eters θ(k) which is above the rate bound ζ. During that test,
the harmonic frequency ρ(k) of the sinusoidal perturbation
is increased by 10 Hz every 5 seconds in the interval of
ρ(k) ∈ [35, 85]. From Fig. 9, it can be observed that the
stability is still guaranteed in closed-loop. Note that the
attenuation performance cannot be always achieved and the
transitory phase is somewhat longer. However, the stability
of the closed-loop is still guaranteed even if there may be
slight amplifications compared to the open loop response.

Fig. 8. Closed-loop attenuation test

Attenuation Performance (dB)
X-axis Y-axis Z-axis

ρ(k) = ρ̄ = 60 Hz 17.42 25.23 25.57
ρ(k) = 35 Hz 15.56 -2.50 -4.81
ρ(k) = 40 Hz 21.06 10.34 1.13
ρ(k) = 50 Hz 22.47 32.80 27.01
ρ(k) = 70 Hz 21.09 8.62 22.12
ρ(k) = 80 Hz 17.71 9.51 18.89
ρ(k) = 85 Hz 14.28 2.99 23.21

TABLE I
ATTENUATION PERFORMANCE ACHIEVED WITH THE IQC-BASED LPV

CONTROLLER AT DIFFERENT VALUES OF ρ(k)

Fig. 9. Fast parameter variation test



V. CONCLUSIONS

A data-driven method to compute an LPV controller with
rate-bounded scheduling parameter variation was developed
and validated on a hardware system. Using an IQC describing
a time-varying real scalar with rate bound, an equivalent
LMI is computed which is included in a two-step iterative
control design algorithm. This method allows to guarantee
the stability of the controller for time-varying scheduling
parameters lying in a bounded interval and varying at a
bounded rate. Based on an FRF matrix of an LTI-MIMO
system, an LPV controller is computed for adaptive rejection
of a non-stationary sinusoidal disturbance signal with an
unknown harmonic frequency. A controller was designed
for the hybrid micro-vibration damping (MIVIDA) platform
using the proposed method. The closed-loop stability is guar-
anteed up to a scheduling parameter variation rate of 1 Hz.
The resulting controller achieves a disturbance attenuation
of up to 32.80 dB on the real system and the closed-loop
stability is experimentally verified.
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