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Abstract— This paper introduces a novel method for data-
driven robust control of nonlinear systems based on the Koop-
man operator, utilizing Integral Quadratic Constraints (IQCs).
The Koopman operator theory facilitates the linear represen-
tation of nonlinear system dynamics in a higher-dimensional
space. Data-driven Koopman-based representations inherently
yield only approximate models due to various factors. In
addressing this, we focus on effective characterization of the
modeling error, which is crucial for ensuring closed-loop guar-
antees. We identify non-parametric IQC multipliers to charac-
terize the modeling error in a data-driven fashion through the
solution of frequency domain (FD) linear matrix inequalities
(LMIs), treating it as additive uncertainty for robust control
design. These multipliers provide a convex set representation
of stabilising robust controllers. We then obtain the optimal
controller within this set by solving a different set of FD LMIs.
Lastly, we propose an iterative approach alternating between
IQC multiplier identification and robust controller synthesis,
ensuring monotonic convergence of a robust performance index.

I. INTRODUCTION

Due to the inherent challenges that data-driven modeling
and control of nonlinear systems pose, the Koopman operator
theory [1] has gained notable popularity within the past
decade for its capacity to offer a global linear representation
of nonlinear systems [2], [3]. Koopman operator theory
focuses on the evolution of the so-called observable func-
tions, expressing the nonlinear system dynamics linearly in a
higher-dimensional space of observables. However, achiev-
ing a global linearization often requires lifting the system
to an infinite-dimensional space. Therefore, in practice, a
finite-dimensional truncation of the Koopman operator is
considered, providing a linear but approximate representation
of the nonlinear dynamics. The prevalent Extended Dynamic
Mode Decomposition (EDMD) algorithm [4], facilitates the
computation of such approximations from data.

One concern for Koopman theory in the context of non-
autonomous systems is the fact that the linearity of the
lifted dynamics in observables does not imply linearity in
inputs. Many works, such as [5], impose linearity in inputs
by only allowing the use of observable functions that are
linear in inputs. Despite introducing an additional source of
modeling error by this restriction, this approach has seen
many successful applications. Several works consider bilin-
ear lifted models, which are claimed to strike a compromise
between modeling accuracy and ease of control design [6].

The authors are with Laboratoire d’Automatique, École Polytechnique
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While Koopman-based lifting of input-affine systems accepts
an infinite-dimensional bilinear representation, in practice,
the resulting models are still never exact due to finite-
dimensional truncation and data-driven approximation. Thus,
characterization of modeling error for data-driven lifted
models is paramount for providing closed-loop guarantees.

Probabilistic error bounds for EDMD-based bilinear ap-
proximate models of input-affine systems are derived in
[7]. In a complementary effort, [8] reformulates these error
bounds and designs state feedback controller in the lifted
space with closed-loop guarantees. These works focus on
continuous-time systems, which necessitates state derivative
measurements, posing a fundamental limitation for real-
world applications. To alter this, the discrete-time counterpart
of the error bounds, along with robust controller synthesis, is
worked out more recently in [9]. Considering general non-
linear systems, a data-driven characterization of the model
error in terms of the worst-case ℓ2-gain is proposed in [10],
where probabilistic guarantees are given by the scenario
approach [11]. Utilizing these error bounds, [10] further
presents robust controller synthesis tailored for LTI and open-
loop stable LPV models. It is noteworthy that these works
consider disc-shaped static error bounds, which are likely to
yield conservative control design.

Introduced by [12], IQC approach provides an effective
tool for analysis and control of uncertain dynamical sys-
tems by its flexibility of representing general nonlinearities.
While most of the existing literature on IQCs focuses on
the analysis of uncertain systems, an iterative algorithm
alternating between nominal H∞ controller synthesis and
robustness analysis was presented in [13]. More recently,
IQC synthesis methods based on non-smooth optimization
for H∞ and H2 performance are developed, respectively,
in [14] and [15]. These methods alter the need for an
iterative process; however, they require the use of structured
IQC multipliers. Lately, a controller synthesis method robust
against uncertainties characterized by non-parametric IQCs is
proposed in [16]. This method performs controller synthesis
by solving FD LMIs and enables less conservative designs
through compatibility with non-parametric IQC multipliers.

In this work, we propose a novel robust controller syn-
thesis approach for nonlinear systems based on Koopman
operator theory and IQCs. We focus on LTI lifted models
of nonlinear systems obtained via EDMD using only data
collected from the system. To address the inherent errors
of such models, we propose characterization of the model
error using IQCs. Through solution of FD LMIs, we identify
non-parametric IQC multipliers characterizing the modeling



error. Next, we employ the control design method of [16] to
design controllers with robust performance guarantees. Since
the set of robustly stabilizing controllers during synthesis
is dependent on the identified IQC multipliers, we propose
an iterative algorithm alternating between IQC multiplier
identification and controller synthesis, yielding monotonic
convergence of a chosen performance index.

The paper is organized as follows: In Section II, a brief
overview of the Koopman operator theory, EDMD, and
IQCs are provided along with the main problem description.
In Section III, the proposed method is presented. First,
the IQC-based characterization of the modeling error and
synthesis of robust controllers are presented separately. Next,
the frequency sampling approach for implementation of the
optimization problems is discussed, followed by the iterative
algorithm combining the first two steps. The application of
the proposed algorithm on a simulation example is presented
in Section IV. A brief conclusion is offered in Section V.

II. PRELIMINARIES

Notations: R and C are used to denote the sets of real
and complex numbers respectively. ℓp2 denotes the space
of p dimensional square integrable signals. Identity matrix
of an appropriate size is represented by I . S ≻ (⪰)0
and S ≺ (⪯)0 indicate that the matrix S is positive (-
semi) definite and negative (-semi) definite respectively. The
conjugate transpose of a complex matrix S is denoted by S∗

and the pseudo-inverse of S is denoted by S†. If S ∈ C is full
row rank, the right inverse is denoted as SR = S∗(SS∗)−1.
If S ∈ C is full column rank, the left inverse is denoted as
SL = (S∗S)−1S∗. The frequency response of a discrete-time
system G is denoted by G(ejω).

A. Koopman operator

Consider the discrete-time nonlinear system,

H :
{
xk+1 = f(xk, uk), (1)

where x ∈ X ⊆ Rnx is the state variable, u ∈ U ⊆ Rnu is the
input and f : X×U → X is the nonlinear state transition map.
The Koopman operator K : F → F is a linear operator that
advances an observable function ξ(xk, uk) one-step ahead in
time,

ξ(xk+1, uk+1) = Kξ(xk, uk) = ξ(f(xk, uk), uk+1), (2)

where F is a Banach space of observable functions that is in-
variant under the action of the Koopman operator. Therefore,
the Koopman operator K globally maps the nonlinear dynam-
ics in the state space to linear dynamics in the lifted space of
observables. In general, the Koopman operator is defined on
an infinite-dimensional space. In practice, however, a finite-
dimensional approximation of the Koopman operator denoted
by K, is used where a finite set of observable functions
D = {ξj}dj=1 called a dictionary is considered.

Due to the availability of well established tools for LTI
systems, identifying such a model is often desirable. In
order to obtain a lifted LTI representation we consider a

dictionary structured as D =
[
ξ(xk) uk

]T
with ξ(xk) =[

ξ1(xk) ξ2(xk) . . . ξd−1(xk)
]T

yielding,[
ξ(xk+1)
uk+1

]
≈

[
K11 K12

K21 K22

] [
ξ(xk)
uk

]
. (3)

Since predicting the future values of the input is not of
interest we discard the last nu rows of K resulting in,

ξ(xk+1) = Aξ(xk) +Buk + εk, (4)

where A = K11, B = K12 and εk denotes the one step
ahead prediction error. Note that the prediction error εk is
introduced by the restriction of the Koopman operator to a
finite dimensional space as well as the structure imposed on
the dictionary. To alter the contribution of the latter, bilinear
or LPV representations based on Koopman theory are also
studied while this paper only considers LTI representations.

B. Data-driven approximation of the Koopman operator

EDMD [4] enables the computation of the matrices A and
B in (4) by solving a least-squares problem as follows. Based
on a set of data trajectories with N samples {xk, uk}N−1

k=0 and
a selected dictionary of observable functions ξ, the matrices

Z :=
[
ξ(x0) . . . ξ(xN−2)

]
,

Z+ :=
[
ξ(x1) . . . ξ(xN−1)

]
,

U :=
[
u0 . . . uN−2

]
,

are constructed. A and B in (4) can be obtained by solving,

min
A,B

∥∥∥∥Z+ −
[
A B

] [Z
U

]∥∥∥∥ (5)

which has the ℓ2-optimal solution
[
A B

]
= Z+

[
Z
U

]†
.

C. Integral Quadratic Constraints

Two discrete-time signals p(k) ∈ ℓ
np

2 [0,∞] and q(k) ∈
ℓ
nq

2 [0,∞] with sampling time Ts are said to satisfy the IQC
defined by Π if,∫

ω∈Ω

[
P (ejω)
Q(ejω)

]∗
Π(ejω)

[
P (ejω)
Q(ejω)

]
dω ≥ 0, (6)

where P (ejω) and Q(ejω) represent the discrete-time
Fourier transforms of p(k) and q(k) respectively and Ω =
(−π/Ts, π/Ts]. Let a performance metric on the channel
w → z with respect to the multiplier Πp(γ) be defined such
that, performance with index γ is achieved if the signals w
and z satisfy the IQC defined by Πp(γ). Considering the
IQC theorem [17, Corollary 3]:

Theorem 1. The feedback interconnection of a discrete-time
stable LTI system T and a bounded causal operator ∆ as
depicted in Fig. 1, is robustly stable against ∆ and has robust
performance on the channel w → z with respect to Πp if,

1) interconnection of T and τ∆ is well-posed, ∀τ ∈ [0, 1];
2) the IQC defined by Π is satisfied by τ∆, ∀τ ∈ [0, 1];



3) for all ω ∈ Ω,[
T (ejω)

I

]∗
Πrp(e

jω)

[
T (ejω)

I

]
≺ 0; (7)

where,

Πrp =


Π11 0 Π12 0
0 Πp,11 0 Πp,12

Π∗
12 0 Π22 0
0 Π∗

p,12 0 Πp,22

 . (8)

By [17, Remark 3] if Π is partitioned as

Π =

[
Π11 Π12

Π∗
12 Π22

]
,

with Π11 ⪰ 0 and Π22 ⪯ 0, then τ∆ satisfies the IQC defined
by Π for all τ ∈ [0, 1] if and only if ∆ satisfies the IQC.

[
Tqp Tqw

Tzp Tzw

]∆
q(k) p(k)

w(k)z(k)

Fig. 1. General feedback interconnection.

D. Problem Formulation

Consider data {{xm
k , um

k }N−1
k=0 }Mm=1 collected from a gen-

eral discrete-time nonlinear system (1) with sampling time
Ts, as M trajectories of N samples. The data is collected
from bounded sets such that x ∈ X, u ∈ U and assumed
to be rich enough to fully represent the systems behaviour
within these sets. Using the data and a predetermined set
of observable functions ξ(xk), the discrete-time nonlinear
dynamics can be approximated in the lifted space as,

H0 :
{
ξ̂k+1 = Aξ̂k +Buk, (9)

where ξ̂k ≈ ξ(xk) and the matrices A, B are calculated
by EDMD. Due to the prediction error term in (4), the LTI
system H0 is only an approximation of the true system H
such that H = H0+∆, where ∆ represents the error model
to be treated as additive uncertainty for controller design.
Thus, the interconnection of the nonlinear system H with a
controller K can be represented as in Fig. 2.

Based on this, we formulate the problem of designing a
data-driven controller providing closed-loop guarantees for
the nonlinear system H , as the following two subproblems,

1) Characterization of the error system ∆ using non-
parametric dynamic IQC multipliers.

2) Synthesis of a fixed-structure controller K = XY −1

for H0 with guarantees of robust stability against ∆
and robust performance with respect to Πp on w → z.

Remark 1. For simplicity we consider the scenario where
the controller is acting on the full lifted state. However, it is
possible to pass only a subset of the observable functions to
the controller. This would allow the synthesis of low dimen-
sional controllers for high dimensional lifted LTI models.

K H0

∆

uy ξ̂

−
ξ(x)

e

Fig. 2. Block diagram of the closed-loop system.

 G11 G12

G21 G22


∆

K

u(k)

y(k)

e(k)

u(k)

w(k)z(k)

Fig. 3. Generalized plant structure of the feedback interconnection.

III. DATA-DRIVEN ROBUST CONTROL DESIGN

For any arbitrary channel w → z on which the perfor-
mance objective is defined, it is fairly standart to transform
the block diagram in Fig. 2 to a generalized plant structure
as in Fig. 3 where G22 = −H0. Then, by applying a lower
linear fractional transformation to the generalized plant G
and controller K, the closed-loop system can be represented
as in Fig. 1 with T = G11 + G12K(I − G22K)−1G21.
Using A and B obtained by EDMD, the frequency response
function (FRF) of the LTI model H0(e

jω) = (ejωI−A)−1B
can be computed for any ω ∈ Ω. Based on H0(e

jω) and
following the corresponding generalized plant formulation
G, the FRF T (ejω) can be obtained similarly. For the
generalized plant model G we assume that:

(A.1) G21(e
jω) has full rank, ∀ω ∈ Ω.

(A.2) G(ejω) is bounded, ∀ω ∈ Ω.

Next, we first discuss the problem of robust controller
synthesis against uncertainty ∆ characterized by an IQC
multiplier Π. Since solving this problem requires a certain
decomposition of Π, we discuss the error characterization
problem afterwards so that we can already formulate this
problem in terms of the decomposed elements of Π. Thus,
we can readily use the solution of the IQC-based error
characterization problem for robust controller synthesis.

A. Robust Controller Synthesis

The objective of the controller synthesis is to obtain a
controller structured as K = XY −1 which guarantees robust
stability against ∆ and robust performance on the channel
w → z with respect to Πp(γ). For some Π such that the error
system ∆ satisfies the IQC defined by Π, this objective can
be formulated as an optimization problem,

min
K

γ

s.t.
[
T
I

]∗
Πrp

[
T
I

]
(ejω) ≺ 0, ∀ω ∈ Ω,

T is stable.

(10)



For Φ = GR
21(Y −G22X) and Ψ = I −ΦΦL = GR

21G21 the
closed-loop transfer function T in (10) can be written as,

T = G11 +G12XΦL = G11(ΦΦ
L +Ψ) +G12XΦL

= (G11Φ+G12X)ΦL +G11Ψ.
(11)

Since Ψ is a hermitian idempotent matrix such that,

ΨΦ = Φ− ΦΦLΦ = 0 (12)

ΦLΨ = ΦL − ΦLΦΦL = 0 (13)

we get,[
T
I

]
=

[
G11Φ+G12X G11Φ

Φ Ψ

] [
ΦL

Ψ

]
= L

[
ΦL

Ψ

]
. (14)

Then, by [18, Proposition 8.1.2] the first constraint in (10)
can be replaced by L∗ΠrpL ≺ 0. Using the fact that any
square matrix accepts a factorisation Πrp = Π+

rp + Π−
rp

with Π+
rp ≻ 0 and Π−

rp ⪯ 0, L∗ΠrpL ≺ 0 can be written
as L∗Π+

rpL − (−L∗Π−
rpL) ≺ 0. By the Schur complement

lemma, this yields the constraint,[
(Π+

rp)
−1 L

L∗ −L∗Π−
rpL

]
≻ 0. (15)

The quadratic component −L∗Π−
rpL in (15) can be convex-

ified around a known controller Kc = XcY
−1
c such that,

L∗Π−
rpL ⪯ L∗Π−

rpLc + L∗
cΠ

−
rpL− L∗

cΠ
−
rpLc ≺ 0, (16)

where

Lc =

[
G11Φc +G12Xc G11Ψ

Φc Ψ

]
,

Φc = GR
21(Yc −G22Xc).

By expanding, it can be seen that (16) implies,

Φ∗Π−
rp,22Φc +Φ∗

cΠ
−
rp,22Φ− Φ∗

cΠ
−
rp,22Φc ≺ 0.

Therefore, by [16, Lemma 1], satisfying (16) also guarantees
that T is stable if Π−

rp,22 ≺ 0 and Kc is nominally stabilising.
Thus, by [16, Theorem 2], for a known robustly stabilising

initial controller Kc = XcY
−1
c a solution of the convex

problem,

min
γ,X,Y

γ

s.t.
[
(Π+

rp(γ))
−1 L

L∗ L

]
(ejω) ≻ 0, ∀ω ∈ Ω,

(17)

where L = L∗Π−
rpLc+L∗

cΠ
−
rpL−L∗

cΠ
−
rpLc, is also a solution

to (10) if Π−
rp,22 ≺ 0, for the full proof we refer to [16].

Thus, by solving (17) for any Π+
rp ≻ 0 and Π−

rp ⪯ 0 such
that Π−

rp,22 ≺ 0, we can obtain the controller K = XY −1

guaranteeing robust performance with index γ.
A known Πp defining a performance objective can be

easily decomposed in to Π+
p ≻ 0 and Π−

p ⪯ 0 with Π−
p,22 ≺ 0

such that Πp = Π+
p + Π−

p for many conventional IQC
multipliers. For some examples we refer to [16, Section
III.A]. Following that, decomposition of Πrp in to Π+

rp ≻ 0
and Π−

rp ⪯ 0 can be obtained by applying the structure in

(8) to Π+, Π+
p and Π−, Π−

p respectively. Obtaining Π+ and
Π− with Π−

22 ≺ 0 from data is adressed in subsection III-B.

Remark 2. Both constraints in (10) are convexified around
the initial controller Kc arriving at (17), resulting in an
over approximation of a convex-concave constraint. The
conservatism due to this over approximation vanishes as
K = Kc is attained. To achieve this, it is proposed to
iteratively solve the problem in [19], replacing the initial
controller at each iteration by the optimal controller obtained
in the previous one which guarantees monotonic convergence
of the objective to a local minimum where K ≈ Kc such that
the conservatism vanishes.

B. Error characterization via non-parametric IQCs

In order to characterize the error system, we aim for
finding a multiplier Π(ejω) such that the input signal u
and the error signal e in Fig. 2 satisfy the IQC defined
by Π(ejω) as in (6). Thus, first the frequency spectrum of
the signals u and e has to be computed using the available
data. To do so, we first simulate H0 with the same input
trajectories used for data collection {{um

k }N−1
k=0 }Mm=1 with

initial conditions ξ̂m0 = ξ(xm
0 ) for all m ∈ [1,M ]. Next,

we obtain the trajectories of e corresponding to the available
data as {{emk }N−1

k=0 }Mm=1 = {{ξ(xm
k )− ξ̂mk }N−1

k=0 }Mm=1. Then,
frequency content of e at each trajectory can be obtained as,

Em(e−jω) =

N−1∑
k=0

emk e−jωTsk, ∀ω ∈ Ω, ∀m ∈ [1,M ].

(18)
Similarly, the frequency spectrum of the plant input u can
also be computed ∀ω ∈ Ω and ∀m ∈ [1,M ] following (18).

Additionally, for a known robustly stabilising controller
Kc, the IQC stability condition (7) should be satisfied by
the resulting Πrp(e

jω, γ) as in (8) where γ denotes the
robust performance index achieved by Kc. Thus, for a known
robustly stabilising initial controller Kc, an IQC multiplier
characterizing the error system as well as the achieved robust
performance index can be obtained by solving the following
FD convex optimization problem,

min
γ,Π+,Π−

γ

s.t.
∫
ω∈Ω

[
Um

Em

]∗
Π

[
Um

Em

]
(ejω)dω ≥ 0, ∀m ∈ [1,M ],[

T
I

]∗
Πrp(γ)

[
T
I

]
(ejω) ≺ 0, ∀ω ∈ Ω,

Π(ejω) = Π+(ejω) + Π−(ejω), ∀ω ∈ Ω,

Π11(e
jω) ⪰ 0, Π22(e

jω) ⪯ 0, ∀ω ∈ Ω,

Π+(ejω) ≻ 0, Π−(ejω) ⪯ 0, ∀ω ∈ Ω,

Π−
22(e

jω) ≺ 0, ∀ω ∈ Ω.
(19)

Here, imposing Π−
22 ≺ 0 in addition to Π− ⪯ 0 yields us

the desired IQC multiplier such that (17) already guarantees
the stability of T , with arbitrarily small conservatism added
to the IQC multiplier identification problem.



C. Frequency Sampling

Note that both problems outlined in this paper are framed
as FD convex optimization problems with infinitely many
constraints known as convex semi-infinite programs (SIPs).
A common strategy for solving SIPs is to sample the infinite
constraints in the FD at a sufficiently large set of finite
frequencies Ωg = {ω1, . . . , ωg} ⊂ Ω. Since all constraints in
(17) and (19) are imposed on Hermitian matrices, it suffices
to consider frequencies only in the range Ωg ∈ [0, π/Ts),
discarding the negative half of the spectrum. While this
sampling approach does not provide constraint satisfaction
guarantees at all frequencies, probabilistic guarantees de-
pendent on the number of finite frequency points that are
considered can be obtained by the scenario approach [11].

As a result of this sampling approach, we obtain the non-
parametric IQC multipliers Π(ejω) also at finite number
of frequency points Ωg . While by choosing sufficiently
large number of frequency points a robust controller can be
synthesized in practice, it should be noted that due the use
non-parametric IQCs the number of optimisation variables
scale with the number of frequencies in Ωg .

D. Iterative Approach

While in subsections III-A and III-B we separately ad-
dressed the two parts in our problem formulation, for achiev-
ing the best possible performance we propose an iterative
scheme between the two. Clearly, for the signals u and e
there is not a unique IQC multiplier Π characterizing the
error model. And since a particular multiplier Π determines
a convex set of controllers that we can choose from during
the controller synthesis, without iteratively updating the Π
and K it is very likely that the achieved performance indexes
will be highly conservative. Thus, we propose Algorithm 1.

Algorithm 1: Iterative algorithm over error system
characterization and robust controller synthesis

Data: measured trajectories: {{xm
k , um

k }N−1
k=0 }Mm=1,

lifting functions: ξ(x),
initial robustly stabilising controller: Kc.

Preparation:
obtain A and B in (9) by EDMD.
compute T (ejω), ∀ω ∈ Ωg.
compute {(Um, Em)(ejω)}Mm=1, ∀ω ∈ Ωg.
obtain RCF Kc = XcY

−1
c .

Iteration: set i = 0.
while γ converges and i ≤ imax do

• update IQC multiplier Π:
solve (19) for ω ∈ Ωg , obtain Π+,Π− ∀ω ∈ Ωg .

• update controller K:
solve (17) for ω ∈ Ωg , (iteratively as in [19]),
obtain K = XY −1.

• set i = i+ 1.
end
Result: K, γ.

The presented algorithm yields monotonic decrease of

the performance objective γ over each iteration. At the
end of the algorithm a controller K that guarantees robust
stability against ∆ and robust performance on the channel
w → z with respect to Πp(γ) is obtained by only using data
trajectories collected from the system and a lifting dictionary.
It should be noted that while we synthesize a linear controller
in the lifted space, due to the nonlinear state transformation
from the state space to the lifted space of observables the
resulting controller is nonlinear in the actual state space.

Remark 3. By properly modifying the optimization problems
(19) and (17) in Algorithm 1, it is possible to use the same
approach to find an initial robustly stabilising controller. In
that scenario, only a nominally stabilising initial controller
for H0 is required by the algorithm, which can be set to 0
for stable systems or easily synthesized using various linear
control design methods. Then, instead of optimizing over a
performance objective we relax the stability conditions by
adding slack variables and optimize over the slack vari-
ables until the original stability constraints are met. More
precisely, one should set Πrp = Π and relax the second
constraint in (19) and the first constraint in (17) by adding
−γs1I and γs2I to the left hand-sides respectively. Then, the
iterative approach in Algorithm 1 must be followed while
minimizing over γs1 and γs2 when solving (19) and (17),
until either γs1 ≤ 0 or γs2 ≤ 0 is achieved. This yields a
robustly stabilising controller that can be used as an initial
controller for optimizing robust performance afterwards.

IV. NUMERICAL EXAMPLE

To demonstrate the proposed method on a simulation
example we consider an inverted pendulum which is a
commonly used example for validation of nonlinear control
methods. The system dynamics are,

ẋ1(t) = x2(t), (20)

ẋ2(t) =
g

l
sinx1(t)−

b

ml2
x2(t) +

1

ml2
u(t), (21)

with mass m = 1 kg, length l = 1 m, rotational fric-
tion coefficient b = 0.01, and gravitational constant g =
9.81 m/s2. We discretize the dynamics using the 4th-order
Runge-Kutta method with sampling time Ts = 0.01 s
and consider the discrete-time model as our true nonlinear
system. To collect data, we simulate the discrete-time system
for a single trajectory of N = 5000 samples with initial
condition x0 =

[
0 0

]T
and a random input, such that uk

is randomly chosen from U = [−10, 10] with a uniform
distribution for all k ∈ [0, N − 1]. By also inferring some
knowledge of the dynamics we choose the lifting functions
ξ(x) =

[
x1 x2 sin(x1)

]T
.

After applying the EDMD algorithm the lifted state ma-
trices as in (9) are obtained, yielding a 3-dimensional stable
LTI representation of the system. We consider the tracking
problem where the pendulum angle x1 is desired to track
the reference w. The performance channel output is defined
as z =

[
(W1(w − x1))

T (W2u)
T
]T

such that the tracking
error as well as the control input are penalized during control



design. For optimising a desired tracking response we use a
low-pass filter W1 defined by the Matlab command W1 =
1/makeweight(0.001,1,2,Ts) and we set W2 = 0.1.
We select,

Πp =

[
−γ2I 0
0 I

]
, (22)

such that minimizing H∞ norm of Tzw is our objec-
tive. Next, applying Algorithm 1 with initial controller
Kc = 0, yields the state feedback controller K =[
82.98 9.076 −10.64

]
with robust performance index

γ∗ = 9.6613.
To observe the benefits of Koopman lifting and error

characterization via non-parametric IQCs separately, we con-
sider two other control design methods. For the same robust
performance objective, first we consider the case where
we did not employ lifting such that ξ(x) =

[
x1 x2

]
.

After identifying the system matrices by solving the EDMD
problem, we use Algorithm 1 for robust controller synthesis.
This approach yields a robust performance guarantee with
index γ∗

1 = 31.5295 achieved by the linear state feedback
controller K1 =

[
278.6 22.76

]
. Next, to observe the benefit

of using non-parametric IQCs, we follow the approach in
[10] for the same performance objective. As lifting functions
we again use ξ(x) =

[
x1 x2 sin(x1)

]T
, which yields the

same lifted representation obtained earlier. Considering the
single measured trajectory, we find a lower bound on the
error systems worst case ℓ2-gain by finding the minimum
value of γe > 0 such that

N−1∑
k=0

∥ek∥2 ≤ γ2
e

N−1∑
k=0

∥uk∥2 ,

is satisfied. This yields the lower bound of γ∗
e = 0.0753

achieved on the worst case ℓ2-gain of the error system.
Next, we apply the linear feedback controller synthesis
method from [10, Section 3] which is based on the well
known small-gain theorem. This yields a performance index
of γ∗

2 = 14.5565. Thus, while all three approaches yield
a robust controller that can track a reference in the full
operation range x1 ∈ [−π, π], the performance guarantee
that is be achieved by the proposed method is significantly
better. While we only present state feedback synthesis for
simplicity, the proposed method also allows for dynamic
output feedback controller synthesis to be used when full
state information can not be recovered.

V. CONCLUSION

The presented method offers a promising approach to ro-
bustly control nonlinear systems by leveraging the Koopman
operator theory and IQCs. The use of non-parametric IQC
multipliers for characterizing the modeling error proves to
be a powerful strategy since it yields a tight uncertainty
around the lifted LTI model, significantly reducing conser-
vatism for control design. While the iterative algorithm is
not guaranteed to converge to the global optimum solution,
the monotonic decrease of the performance objective is
ensured. Overall, the algorithm enables data-driven control

of nonlinear systems with closed-loop guarantees by only
using linear control methods and solving convex problems.
However, the method relies on the central assumption that the
data collected from the system is fully representative of its
behaviour in a region of operation. While this assumption
can be satisfied by collecting large enough sets of data in
practice, quantification of the quality of available data is
aimed to be addressed in future research, to further enhance
a priori guarantees. Simulation example shows the benefit
of the proposed non-parametric IQC based error characteri-
zation signifying the main contribution of this work. Future
work will also consider the extension of this approach to
bilinear/LPV lifted models which promises to yield smaller
modeling errors enhancing better closed-loop performance.
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