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Abstract: In this work, we demonstrate the applicability of a recently proposed automatic
synthesis approach for behavioral arbitrators based on Probabilistic Finite State Machines
(PFSMs) for a multi-robot scenario. More specifically, a behavior-based controller for a multi-
robot exploration scenario is automatically synthesized using a predefined set of basic behaviors
and conditions. A key feature of the used synthesis approach is the tailored use of two modeling
levels of the scenario, microscopic and submicroscopic, to significantly reduce the computational
effort. Furthermore, the modeling is extended by a simplified macroscopic model of the scenario
to analytically evaluate the best achievable performance given an ideal controller, taking into
account real-world constraints such as limited speed and localization. Taking advantage of the
interpretability of the synthesized PFSM-based arbitrators, individualistic and collaborative
controllers are analyzed separately to provide insights into the theoretical and experimental
effects of collaboration for the considered case study. The obtained results show that the PFSM-
based synthesis approach is also suitable for multi-robot scenarios, and in particular that the
collaborative solution can compete with a manually designed and fine-tuned solution.
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1. INTRODUCTION

Despite the ever-growing number of robots being used for
increasingly complex tasks, many of these systems are still
designed manually. Only recently, approaches for designing
automatic control systems such as Birattari et al. (2021)
or Mukhlish et al. (2018) have emerged, largely due to
the increase of available computing power. Artificial Neu-
ral Networks (ANNs) combined with optimization strate-
gies (e.g., reinforcement learning, evolutionary algorithms,
metaheuristic optimizers) are currently the most popular
approach for such automatically designed systems. How-
ever, ANNs have significant drawbacks, including difficul-
ties in understanding, verifying, and analyzing their formal
properties. Although progress has been made in this direc-
tion, for example by Borg et al. (2018), these limitations
remain significant for critical applications. In this work, we
thus focus on behavior-based controllers using behavioral
arbitrators based on Probabilistic Finite State Machines
(PFSMs) that are fully readable and verifiable.

* This work is partially supported by Mitsubishi Electric Corpo-
ration, Japan, and partially by the University of Tokyo Go Global
Scholarship.

In Francesca et al. (2014), Birattari et al. (2021) a
framework has been introduced to automatically gener-
ate behavior-based controllers for robot swarms. Using a
predefined set of basic behaviors and conditions, as well
as a dedicated grammar, the synthesis problem is trans-
lated into an optimization problem. Ferrante et al. (2013)
proposes a similar framework, but relying on evolution-
ary algorithms. Similarly, Neupane and Goodrich (2019)
leverage grammatical evolution to obtain behavior tree
controllers based on a similar set of basic behaviors and
conditions. While the use of basic behaviors and condi-
tions might be perceived as a limitation on the richness
of the search space explorable by machine learning, such
an approach offers further advantages in addition to the
readability and verifiability mentioned above. For instance,
a significant reduction of the reality gap, that is the dif-
ference between simulated and real-world experiments, can
be achieved, due to the possibility of calibrating individual
behaviors in simulation with respect to the reality.

The resulting behavior-based controllers are competitive
in all the above works. However, their automatic genera-
tion involves a high computational cost as a result of the
extensive use of high-fidelity simulations of the scenarios
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(submicroscopic level). A significant first progress towards
the reduction of this computational cost has been made in
Baumann et al. (2022a), where a more abstract model of
the scenario (microscopic level) is leveraged to synthesize
the structure of the PFSM-based arbitrator. The PFSM’s
parameters are then learned in a second step using high-
fidelity simulation. Reductions of up to 75% in the com-
putational cost were achieved, without degradation of the
resulting control solution. However, the effectiveness of the
approach was only demonstrated for a relatively simple
single-robot scenario related to a foraging task.

In this work, we aim to demonstrate the viability of the
automatic PFSM-synthesis framework, enhanced with the
two-step modeling approach as introduced in Baumann
et al. (2022a), for a significantly more complex scenario
dealing with multiple robots. More concretely, this sce-
nario involves a multi-robot system engaged in an explo-
ration mission. The arena in which robots are deployed
includes obstacles and several Points Of Interest (POI)
that need to be discovered by the robots. Similar explo-
ration scenarios have previously been addressed in the lit-
erature. In Maza and Ollero (2007), for example, the area
is divided a priori, with each robot exploring its assigned
region. However, this requires prior knowledge of the entire
area and a centralized allocation process, which limits
its applicability. Other works, often based on cooperative
multi-robot techniques, do not require a map in advance.
For example, Jatmiko et al. (2007) draw inspiration from
the Particle Swarm Optimization algorithm to coordinate
robots. In Dutta et al. (2019) and Hayat et al. (2017), the
additional task of maintaining network connectivity was
added, leading to a multi-objective problem.

In contrast to previous contributions to exploration sce-
narios, our work considers also robot failures. Robots fail
with a given probability and can be repaired through
interaction with other robots, similar to Christensen et al.
(2009). This leaves the optimization algorithm the freedom
to converge to an individualistic or collaborative behavior.
Using additional modeling abstraction (macroscopic level),
we analyze the scenario for both types of controllers to
obtain lower bounds for the achievable cost. Together with
a manually designed and fine-tuned solution, this serves
as a comparison for the automatically optimized PFSM-
based arbitrators.

The remainder of this paper is organized as follows.
First, we give an overview of the modeling techniques
and the synthesis framework used. Then, we introduce
the considered scenario, the optimization problem, the
available behavioral library, the dedicated microscopic
model, and the experimental setup. Finally, we present
and discuss the results obtained both in simulation and
reality, before ending with some conclusive remarks. The
development of the macroscopic model used for calculating
the lower cost bounds can be found in Appendix A.

2. METHODS

In order to achieve its computational speedup, the PFSM-
based arbitrator synthesis framework introduced in Bau-
mann et al. (2022a) leverages both submicroscopic and
microscopic modeling levels. They are part of the multi-
level modeling framework for multi-robot systems, first in-
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Fig. 1. Experimental arena for real robots.

troduced for robotic systems in Martinoli et al. (2004). The
submicroscopic model (sub-uM) corresponds to a high-
fidelity simulation of reality. The microscopic model (M)
also represents each robot individually, but only captures
relevant robot features and includes numerous simplifica-
tions at the individual robot level. For example, individual
sensor readings might get grouped into omnidirectional
sensing information. Finally, at the macroscopic modeling
level, the whole multi-robot system is represented as a
single entity, usually leveraging a mean-field approach to
obtain a mathematical representation.

The synthesis framework itself is based on a two-step
approach, with each step leveraging one modeling level.
First, the discrete parameters of the PFSM encoding
its structure are optimized using a pM. Intuitively, this
corresponds to choosing, from a library of available basic
behaviors and conditions, the best suited combination
of them for a given scenario. Second, the continuous
parameters of the PFSM (i.e. probabilities) as well as
specific behavioral parameters (e.g., sensor thresholds) are
optimized using the more accurate sub-uM, corresponding
to a fine-tuning of the behaviors for the task.

2.1 Scenario

We consider a scenario in which N, wheeled robots are
randomly placed in a square arena populated with ob-
stacles, as illustrated in Figure 1. The robots are then
tasked to find as many red POIs on the walls of the
arena as possible and report their detection via wireless
communication to a central hub. The robots are considered
purely reactive, memoryless, operating in an area without
access to Global Navigation Satellite Systems (GNSS),
and endowed uniquely with local sensing capabilities and
limited-range communication among themselves. The po-
sitions of the POIs do not change over time to keep the
experimental setup simple. Furthermore, while successive
reports of a given robot for the same POI are discarded,
new nonsubsequent rediscoveries of the same POI are
considered valuable. This effectively results in having the
robots to constantly find the POIs anew using randomized
navigation, as no deliberative planning is possible under
these assumptions. To further increase the complexity of
the scenario, we assume that the robots can randomly
fail with probability P;. Although wheeled robots can
have various types of failure, we consider only a specific
type here, namely one making robots unable to conduct
any task and forcing them to stop. The failure can be
“repaired” through an exchange of messages with another
robot in proximity.
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Table 1. Set of predefined behaviors.

Behavior Symbol | Parameter 1 Parameter 2
Collision avoidance CAB agressivity distance threshold
Stop SPB unused unused
Rescue RCB speed heading sensitivity
Failure FLB unused unused
Straight SRB speed unused
Random walk RWB speed unused
Random turn RTB speed factor interval
Report RPB unused unused

2.2 Optimization problem

During the PFSM synthesis, our aim is to find an “opti-
mal” behavioral arbitration solution #*, that minimizes a
given cost function o. That is, we look for

0* = arg min(c|0) (1)
0cO

Where © corresponds to the set of all possible PFSMs,
including structure and continuous parameters of both
the PFSM and the underlying behaviors and conditions
(Parameters in Tables 1 and 2), that can be constructed
for a given number of PFSM states and a given behavior
and condition library. Each PFSM is concretely encoded as
a mixed-discrete vector, using the grammar introduced in
Baumann et al. (2022a), with an additional parameter per
transition for the transition probabilities. Note that the
Failure behavior is not part of the optimization process,
but is added to every 6 prior to its evaluation, as we
consider failure unavoidable independently of the PFSM.

For our multi-robot system, we define o as function of
three factors, all measurable for each individual robot i:

e the distance traveled (incorporated in o? ,); ‘
e the number of state transitions (incorporated in 0%, );
e the number of POI reported (incorporated in o7.,).

with o being the average of the three factors:

N,
1 & . . .
o= FZ (U;p+0'zr+0'inv)
" i=1

and the individual cost factors calculated as follows:

N
O':m) = Nik Z (1 - %)
k=1
i 1 if Tlir > Nk/f)
Tir = {o if ni, < Ni/5
Uvi“p = exp(i(ni’p)/lo)
_ || X7 (k] — X [k—1]]|

where N, is the number of robots; v[k] N ,
with X?[k] the position of robot i at time step k and AT
the duration of a time step, the robot speed computed
in the sub-uM and real experiments, and v[k] = v the
average speed of the robot while moving (and 0 otherwise),
in the uM; Nj the number of time steps considered in the
experiment; n}, the sum of PFSM transitions recorded for
robot ¢ during the simulation, and nip the sum of reports
received from robot i.

2)

2.8 Behavior and condition libraries

The library of basic behaviors and conditions, available
for the optimization algorithm to build a PFSM from,
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Table 2. Set of predefined perceptual states
determining most of the conditions.

Perceptual State Symbol Parameter
Default State DSP unused
Obstacle in range OOP sensor threshold
No obstacle in range NOP sensor threshold
Robot repaired RPP unused
Broken robot in range BRP unused
Repair finished RFP unused
POI in range PRP unused
No POI in range NPP unused
Failure FFP unused

consists of eight distinct behaviors and eleven conditions.
The behaviors are listed in Table 1. As most are self-
explanatory, we omit their explanation here and focus on
the more elaborate ones instead:

e The Rescue Behavior (RCB) consists of two internal
procedures: approach and repair. Given a broken
robot within its local communication range R.om,
the rescuing robot approaches the broken robot to
a distance R,s. considered sufficient to carry out the
rescue operation. The broken robot then informs the
rescuing robot that its failure has been repaired. In
case no broken robot is in range, the behavior is
equivalent to the Stop Behavior (SPB).

e In the Failure Behavior (FLB), a robot stops its
motion but continuously emits an emergency message
through local communication.

e In the Report Behavior (RPB), a robot reports a
found POI to a virtual central “supervisor” node,
using global communication. As mentioned above,
repeated reports about the same POI by the same
robot are discarded until a new POI is found first.

The conditions are not listed explicitly, but most of them
are straightforward to be constructed from the perceptual
states in Table 2: for a given robot and perceptual state,
the corresponding condition returns true if the robot is
in the corresponding perceptual state. We denote this
condition with **C' (i.e. the condition corresponding to
OOP is O0C). The more elaborate conditions are:

e The Robot Repaired Condition (RPC) becomes true
when a robot is rescued by a surrounding robot and
is able to transition to another state in its PFSM.

o The Repair Finished Condition (RFC) is fulfilled
when a robot completes a rescue and gets the ter-
mination message from the former broken robot.

e In the POI in Range Condition (PRC) a robot checks
if there is a POI in front using the on-board camera.
When a predefined percentage (40% in our implemen-
tation) of the camera’s field of view is occupied by the
color of the POI, the robot is ready to report the POI
found, and this condition becomes true.

o The Always True Condition (ATC) is not derived
from any perceptual state but simply always returns
true without a parameter.

e The Timer Condition (TTC) is not derived from
any perceptual state either. It returns true after
1/parameter s.

As specified in Tables 1 and 2, each behavior and condi-
tion, directly coupled with a perceptual state, accepts up
to two and one continuous parameters, respectively.
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Table 4. Numerical parameters of the M.

Probability Active Behavior Symbol Value Symbol Value
CAB SPB RCB FLB SRB RWB RTB RPB Wir | 0.46m NI 17200
Pnop—ooP Poop 0 0 0 Poopr Poop 0 0 Weam | 0.42m NZ“b7M1w 3'750
Poop-nop | 1/TS4E 0 0 0 0 L/TEYE o 0 Weom | 1.2m NEE | 300
Ppsp—prp | NyPgrp 0 0 0 N¢Pgrp NfPgrp O 0 Ag | 4m?2 Opoi | 131°
Pgrp_rrp | O 0 Tphp O 0 0 0 0 Aops | 0.32m?2 T§§§ 4.6s
Prrp_psp 1 1 1 1 1 1 1 1 Apoi 0.141112 TOOPB 13.7s
Prpp_rpp | - - - - - - - - Acom | 1.1m? Treport | 0.76s
Prpp_psp | 1 1 1 1 1 1 1 1 Apar | 1.4m? Nops | 4
Pvpp_prp | PPrpP 0 0 0 Pprp Pprp 0 0 Appe | 0.17m?2 Ny | 4
Pprp-nep | Tropore 1 1 1 Treport Treport  Trepore 1 Alsub—ppr | 0.032s Npoi | 3
ATyup | 0.10s Umaz | 0.24m/s
ATrr | 0.40s o | 0.08m/s
Reom | 0.6m P; | 0.01
NOP NPP Rrse | 0.2m
PNop-oop Poop-nop Pupp-pre Porp-npp objects (walls, obstacles and robots, respectively), and A,
the entire area of the arena. In the same way, we define
3l oop b) PRP the different detection widths W of the corresponding
sensors in the scenario. Wj;,. corresponds to the infrared
PsRp_RFP proximity sensors, used to detect obstacles and walls,
Ppsp_pRp. M Weom to the radio communication, leveraged for detecting
i Prep_Dsp broken robots, and W, defines the detection width of the
Dbsp camera, used to detect POIs. Given that, in contrast to the
Prpp-psp other sensing modalities, the camera can not be considered

Pr Pepp-rpp
<) FFP RPP

Fig. 2. PFSM of the perceptual situations used in the uM.

2.4 Microscopic model

Following the probabilistic framework of Martinoli et al.
(2004), we can establish an agent-based probabilistic pM.
However, differently from the previous work, the underly-
ing robot controller structure is not available to build the
structure of the model, as we are learning it. Therefore,
similarly to Baumann et al. (2022a), we will leverage the
perceptual situation of the robot, as illustrated in Figure
2, to define a specific state, where the probability of tran-
sition from one perceptual state to another depends on the
currently active behavior.

Consistent with Correll and Martinoli (2004), when the
well-mixedness assumption is satisfied (i.e., homogeneous
spatial distribution of interactions among robots and be-
tween robots and the environment), the corresponding
transition probabilities are calculated using geometric rea-
soning:

77I/Vi’r‘ No sAos+Awa + Nr -1 Ar
Poor = A batmob Aa (Nrot = 1) Arot AVINY;
(6)
ﬁWcom N Acom @WcomN
Pprp = 1 fTATuM = TfATuM (7)
@Wcam NpoiAcam epoi
P = AT,
PR A am A, 360 MM
ﬁNpoiWcam epoi
= — AT,
A, 360 MM ®)

with AT),p the time step duration in uM, Npoi, Nops
and N,y the number of POIs, obstacles and robots re-
spectively, Ny the number of robots currently in FFP,
Awal, Aobs, Arpe the detection areas of the corresponding

unidirectional, we further have 6,,; as the (horizontal)
angle of view of the camera.

When the well-mixedness assumption is only partially
fulfilled, we leverage the sub-pM to estimate the concerned
parameter. For instance, we measure an average event
duration in the sub-pM and assume a Poisson distribution
to estimate its probability of occurrence:

1
Pg(j)qngOP = TCAB 9)
oor

with ngg the recorded average time when in CAB to
transition from OOP to NOP (see Table 3, row 2, column
1). Similarly, Tyeport denotes the average time a POI
remains in range.

As the robot must first approach a broken robot to rescue
it, the probability in which the rescue procedure ends is
expressed by using the average approaching time Tprp =
(Reom —Rrsc)/, with U the average robot speed and Reom,
R,sc the communication and rescuing range, respectively.
As the duration of the rescue operation itself is negli%ible
in this work, this probability can be expressed as Tgpp.

Thanks to the reasoning above, all probabilities in Table
3 can be computed using the numerical values provided
in Table 4. Note that Table 3 can be considered a lookup
table to determine the state transition probabilities for the
perceptual PFSM in Figure 2, as function of the currently
active behavior. As the change from FFP to RPP is fully
dependent of the actions of the other robots, Prrp_grpp
does not have any probability. In fact, this transaction
happens with probability N ; ! whenever the BRP to RFP
transition happens in another robot.

It is further worth noting that, while a uM could also
be used to optimize some continuous behavior/condition
parameters (e.g., speeds), others (e.g., sensor thresholds)
cannot be captured without substantially increasing the
model complexity. We therefore chose to only explicitly
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Fig. 3. The manually designed (top) and one of the twenty
synthesized PFSMs (bottom). Double circles indicate
the initial state. Only relevant (i.e. not unused in
Tables 1 & 2) condition attributes are reported.

expose (and thus optimize) the discrete parameters of the
PFSM arbitrator in the pM.

3. EXPERIMENTAL SETUP

To validate the applicability of the automatic synthesis
framework of Baumann et al. (2022a) to our multi-robot
system, we follow the two-step process as already out-
lined in Section 2: we first conduct the optimization of
the PFSM structure using the uM, before optimizing the
PFSM parameters using the sub-puM. We use Webots,
Michel (2004), an open-source, high-fidelity simulator as
implementation of the sub-gM. Note that we calibrated
both sensors and actuators in Webots to match as closely
as possible those of the real robots. Finally, using simu-
lated and real experiments, we validate and compare the
performances of the automatically optimized controller
with the bounds obtained in Appendix A and a hand-
crafted and fine-tuned solution shown in Figure 3 (top).

We set the number of states in the PFSM controller to
three, as our system analysis showed that an ideal col-
laborative controller needs at least three behaviors: RCB,
RPB, and CAB. While PFSMs with more states are possi-
ble and might result in similar performance, an increased
number of states would exponentially increase the compu-
tational cost required for synthesizing the solution.

We use a Mixed-Discrete Particle Swarm Optimization
with Optimal Computing Budget Allocation (MDPSO-
OCBA), Baumann and Martinoli (2022b), to optimize the
PFSM-based arbitrator. The relevant meta-parameters for
the metaheuristic optimization algorithm are reported in
Table 5. We perform a total of twenty optimization runs
with a budget of 50’000 and 2’000 evaluations of candidate
solutions in the puM and the sub-uM, respectively. The
resulting PFSMs are then re-evaluated ten times in the
sub-puM. Leveraging the human readability of the resulting
PFSMs, we then split the PFSMs into individualistic and
collaborative solutions according to their structure. The
five best performing candidate solutions for both cate-
gories are further re-evaluated five times in reality. These
synthesized controllers are compared to a manually fine-
tuned PFSM, which is evaluated ten times in the sub-
uM and five times in reality. Additionally, using expert
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L E N

8x IR sensor <"

Fig. 4. Khepera IV robot with a custom range-and-bearing
module as well as a tracking module. In this work, the
US sensors are not used.

Table 5. Parameters for the MDPSO-OCBA optimization.

Description step 1 (uM)  step 2 (sub-uM)
Number of particles 150 36

Maximum evaluation budget 50’000 2’000

Number of variables 15 18

knowledge of the underlying scenario, we build a simplified
macroscopic model to provide a lower bound on expected
performance (¢) for an ideal individualistic (6 € O, ,),
respectively collaborative controller (6 € ©7 ;). The math-
ematical development of the macroscopic model can be

found in Appendix A.

All experiments were conducted using either simulated or
real Khepera IV robots. Khepera IV robots are differen-
tially driven vehicles with a diameter of 14 cm and a max-
imum speed of ~ 81 cm/s. They are further equipped with
eight infrared proximity sensors with a range of 20 cm that
are used for obstacle avoidance, as well as a camera used
for POI detection. As illustrated in Figure 4, the robots are
enhanced with a custom range-and-bearing module, Pugh
et al. (2009), for relative localization and an active marker
module featuring two LEDs that allows for accurate track-
ing through the SwisTrack software, Lochmatter et al.
(2008). Communication between the robots is leveraging
UDP/IP, assumed to be error-free but limited to a range
of Reom and is only used for identifying broken robots.

For both simulated and real robot experiments, we ran-
domly place four Khepera IV robots in a 2m X 2m arena
populated with four obstacles and three POI, as illustrated
in Figure 1. The robots are then free to roam in the arena
for 120s, after which the three metrics associated to the
cost function of Eq. 2 are calculated.

4. RESULTS AND DISCUSSION

Among the twenty optimized solutions, we found eight
resulting individualistic PFSMs and twelve collaborative
ones. As illustrated in Figure 3, the learned collaborative
PFSM strongly ressemble the manual one. Figure 5 shows
the learning rates of the PFSM arbitrators for both cat-
egories in comparison to the average cost of the manual
solution in the sub-uM, as well as the two lower bounds
obtained analytically. On the horizontal axis, we report
equivalent sub-uM candidate evaluations, since an evalu-
ation time using the pM is significantly shorter than the
sub-uM one. Consistent with previous work, we observe
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Fig. 5. Average and 95% confidence interval (shaded
areas) of the global best fitness during MDPSO-
OCBA learning among the solutions. The dotted line
corresponds to the change from the first to the second
optimization step.

I Re-evaluation in sub-uM
I Re-evaluation in reality

18
061974
16 619s
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Cost [-]
-
[N
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0.8 L

0.6

Manual Collaborative

Collaborative
Approach

Individualistic

Fig. 6. Comparison of the re-evaluated PFSM-based arbi-
trators in both sub-yM and in reality. The crosses are
the average cost of ten evaluations of each solution.

that the learning process in pM takes only a fraction of
the total optimization budget, despite the 25 times larger
evaluation budget as shown in Table 5, confirming the
effectiveness of the two-step approach for this scenario.
We further notice that collaborative solutions result in
consistently lower cost than individualistic ones, meaning
that they are more competitive and, sporadically, even
outperforming the manual solution. We also note that
there is a cost jump between the uM learning curve and
the sub-uM learning curve. This is supposedly due to the
significant influence of the PFSM’s continuous parameters
on the system performance.

Figure 6 shows the comparison of the re-evaluated PFSM
controllers in both simulation and reality. Note that the
re-evaluation in sub-uM was performed with all twenty
solutions, whereas only the five best solutions per category
were evaluated in real robot experiments!. We observe
that several collaborative solutions achieved comparable
performances to the manual solution. However, the av-
erage performance of the synthesized controllers is worse
than the manual one. This is due to the complexity and
stochasticity of the scenario which makes finding optimal
continuous parameters challenging. We also conducted a

1 A video of real multi-robot experiments can be found on our
research page: www.epfl.ch/labs/disal /research/mrsmodelingcontrol
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Kruskal-Wallis Test which resulted in significant differ-
ences (p < .01) among the performance in the sub-puM
simulation of the three approaches. Pairwise comparisons
using Dunn’s test indicated that the differences in perfor-
mances between all pairs is statistically significant (p <
.05). For real robots, the collaborative PFSMs seem to be
slightly better than individualistic and manually designed
ones. However, a Kruskal-Wallis test was conducted and
revealed no significant differences (p > .50) among the
three categories. This can be explained by the fact that
we only evaluated the five best synthesized controllers per
category in reality.

We further observe that some individualistic candidates
resulted in a better cost than the analytically derived lower
bound (c.f. Appendix A). This is because the lower bounds
correspond to the expected average performances for an
achievable optimal controller. Therefore, individual experi-
mental runs may occasionally result in better performance,
given the stochastic nature of the experiments (i.e. no
failure occurs due to the robots being lucky, etc.). For the
collaborative approach, however, we observe that the opti-
mal value is never reached by any experimental run. This
is supposedly due to a number of small assumptions in our
macroscopic model (e.g., no obstacles in between a broken
robot and a rescuer, being able to encounter and report
POIs while rescuing, etc). While a more accurate model
is possible, its complexity would substantially increase.
Given that in this work, the purpose of the macroscopic
model was to provide a lower bound to the achievable cost,
we believe this additional faithfulness of the macroscopic
model is not needed.

While both the performance of the synthesized PFSMs,
as well as the synthesizing speed of this approach look
promising, there are some challenges to it. Firstly, the
approach requires a microscopic model of the scenario
and the behavior and condition libraries. While, in theory,
these latter could be reused, this is something we aim
to demonstrate concretely in a future work. Secondly, it
is worth noting that the creation of a microscopic model
currently needs a substantial amount of expert knowledge.
Consequently, a simplification or even automatisation of
the modeling process would greatly improve the impact of
the approach.

5. CONCLUSION

In this paper, we have demonstrated that a robust meta-
heuristic optimization algorithm can be coupled with
multi-level modeling to achieve computationally efficient
design and optimization of PFSM-based behavioral arbi-
trators for a complex multi-robot scenario. Taking advan-
tage of the nature of the scenario and the interpretability
of the synthesized PFSM-based arbitrators, individualistic
and collaborative controllers could be identified and ana-
lyzed individually. We used a macroscopic model to obtain
analytically the best achievable performances, which, to-
gether with a manually designed and fine-tuned controller,
served as challenging comparison for the learned behav-
ioral arbitrators. While differences in performance were
observed in simulation, statistical tests revealed no statis-
tically significant differences in performance between the
manually designed and automatically synthesized PFSM-
based behavioral arbitrators in real robot experiments.
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Appendix A. SYSTEM ANALYSIS USING A
MACROSCOPIC MODEL

While the cost of a perfect controller is o = 0, such a con-
troller is not feasible in reality and therefore irrelevant for
most practical applications. Consequently, we study here
the best achievable performance by an ideal controller,
subject to all real-world constraints of both the robot and
the scenario, such as limited speed and no knowledge of
the location of POIs. Naturally, such an ideal controller
is highly specific to a particular mission and might not
fully be achievable through a combination of the available
behaviors listed in Table 1. However, such an idealized
controller allows us to compute lower bounds. Given the
idealized conditions and possible formal considerations, we
perform this analysis using a macroscopic model of the
multi-robot system, which is closely rooted to the puM
presented above, and again follows Martinoli et al. (2004).

Formally, we are looking for ©* C O, the subset of con-
trollers 6 that results in optimal performance with respect
to Eq.1. We further assume that the maximum speed used
in the calculation of the cost function corresponds to the
maximum speed that any controller can achieve.

We note that an ideal controller minimizes each of the
three ¢ individually. That is:

N, N,
I <& I«
min(o]6) > min(- S ollo)+ min( < > i, l0)
T =1 T i=1
N, N

+mm(NT1Nk > ol k0 V€O (A1)

i=1 k1

Consequently, we will treat o, 04 and oy, independently
for the remainder of this analysis. Given that we only
consider homogeneous robots, we can further drop the
superscript 7. The expected cost function (6) can thus be
expressed as & = Gy + Grp + Oty

Idealistic case In a first step, we assume that the robots
do not collide or fail.

Lemma 1. O}, ;, the set of optimal idealistic controllers
is given by {0 : U = Umag }, with expected cost Gpmy|OF .0 =
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o 01p0i Npoi VW™ A oi N,
0 O—TP‘@:deal = eXp (7(Nr = p360Apm‘,Aa, = )/10) and
Ut""‘ezdeal 0.

Proof. Using Eq. 3, the set of ideal and achievable con-
trollers with respect to oy, is given by ©7, ., = © U
{6 : v = argmin, (|| — Vmazl|)}- Given the assump-
tion of no knowledge about the location of POIs, the
expected probability of encountering a POI can be de-
fined geometrically using Eq. 8. The expected num-
ber of reports is thus Nrp = N,.NiyPprp = vC, with

— N"'Nkepoi Weam NpoiApoi .
¢ = 360Apoid, V6. Therefore, ©7, ., C
arg ming(o,p|0) = argmin, (e=7C¢/10|9). Furthermore, O teal

needs to report the finding of a POI immediately and
without delay, since o, takes into account reported POI,
but N,, corresponds (so far) to POI found. We denote
by O, the set of controllers that meet this condition.
ThUS7 @;ﬁdeal - Greport

Given that ¥ > 0 V@ € O, for both 0,,, and 6,, we
thus obtain O}, ,, C argmax,(0|6). For this idealistic case,
this further simplifies to ©7, ., =
consequently to (6|0 001) =

0 : T = Umas} and

It is trivial to see that (64-|©7,) = 0 as long as a maximum
of one state transition occurs every five time steps, which
we assume to be easily satisfied by any ©7,, ;- O
Collision avoidance (CA) In a second step, we consider
that robots collide. For the sake of simplicity, we assume
that a robot, once in a collision, cannot move again, but
that V8 € @:a, the set of behaviors including optimal CAB,
robots do not enter into collisions.

Lemma 2. For our case study, there exists ©%,, C O%,, a
subset of behaviors including optimal CAB, whose impact
on o is negligible.

Proof. CAB is only necessary whenever a robot encounters
either an obstacle, wall or another robot. The average
number of time steps between such encounters is Poor L

with Poop given by Eq. 6. Thus, the impact of the CAB
is negligible if Nog < l/Poop7 with Nga the average
number of time steps in which the CAB is active. O

Failure  Given that robots fail with probability Py,
Lemma 1 has to be revisited, taking into account that
v = 0 for any robot in Failure state. To leave the Failure
state, another robot in the Rescue behavior is necessary.
We can distinguish between two types of optimal con-
trollers: individualistic ones, which are not rescuing other
robots, and collaborative ones which do rescues. They are
deﬁned as ©F ;, C 0"\ Oresene and OF; C O U Oreseue,
respectively. In order to pursue our analysis, we introduce
a simplified macroscopic model keeping track only of the
average numbers of robots in optimal movement, failure
and rescuing state respectively:

N, = Nopt[k] + Nfal[k] + NTSC[k] (AZ)
Nopt [k+1] = Nopt (k] + 2Afin (k]
- Aopt—fotl [k] - AT‘SC[k‘} (A3)
Ny [k + 1] = Nyu [k] + Afal [k’] — Aﬁx [k‘] (A4)
Nrsc[k + 1] = Nrsc[k] + Arsc[k'}
- Afiac [k] - A7"$c—fal [k] (A5)
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The corresponding transitions per time step (the A’s) can
be computed leveraging the definitions introduced for the
1M, which is coherent with Martinoli et al. (2004):

Aopt—fal [k] = PrNopt [k] (A. 6)
A7"sc—fal [k] PfNTsc[k] (A 7)
Afal [k'] = Aopt fal [k] + AT'sc—fal [k] (A 8)
Arselk] = PprpNopt[K]|Nyai[K] (A.9)
Afizlk] = Arselk — Tprp](1 — Pp)™1r (A.10)

It is worth stressing, that the purpose of this macro-
scopic model is purely to analyze the expected behavior.
Consequently, its explicitly exposed parameters are those
anchored to the physical quantities characterizing the set-
up and not the control design.

Lemma 3. The expected costs of an optimal individ-
ualistic and collaborative controller depend only on the
average speed Uind,Veol achieved through O, , and O
respectively. The corresponding average speeds are:

col’

_ 1-(1- Pf)N’C

ind — — Umaxzx A1l
Vind NePr (A-11)
_ Nopt + Nyse

Veol = ptNT —VUmazx (Al?)

Proof. Lemma 1 states that v should be maximized to
minimize all cost functions. As Py is uncorrelated with o,
this remains valid for the case including failures. There-
fore, to find the performance of an optimal controller, it
is sufficient to find the average speed Ving,coi achievable
through ©7,, or ©F ,, respectively. Consequently, we ob-
tain ¥ = Ujnd,cor instead of vp,q, in Lemma 1.

For any given robot, the probability that no failure occurs
up to the time step k is (1 — Py)*~1. Therefore, the
expected average speed of an individualistic controller can
be defined as
L
k—1

000 € OG0 = 5 ]; (vmas (1 = P1)*)
According to the characteristic of the geometric series, this
can be simplified to

_ Umaa(1 — (1 — Py)™)
Ny Py

(A.13)

5|0 € O (A.14)

ind —

For the collaborative case, the situation is more complex
due to the rescue of failed robots. However, it is reasonable
to assume that Opescye U {0 : 0 = Vpmasz} # 0. Therefore,
Veol = LN”“UWM With N,,: and N, found using
steady-state analysm of Egs. A.2 - A5:

2Afm - Ao;ot—fal + A7“sc (A15)
Afar = Afix (A.16)
Arsc = Afzt + A1’sc—fal (A]-7)
and thus, using Eqs. A.6 - A.10, we obtain:
_ (ZNTPBRP(I — Pf)TBRP — Pf — NPBRrp

Nopt = Parr(l— Py)Torr (A15)

N - @= Py)TBRP —1)(Py + Np Py (1 — 2(1 — Pp)"BrP))

e (1 — Py)TBrRP Prp(2(1 — Py)TBRP —1)
Py

Nyar = (A.19)

PBRP(2(]- — Pf)TBRP — ].)
O



