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Modern computing has enhanced our understanding of how social inter-
actions shape collective behaviour in animal societies. Although analytical
models dominate in studying collective behaviour, this study introduces
a deep learning model to assess social interactions in the fish species
Hemigrammus rhodostomus. We compare the results of our deep learning
approach with experiments and with the results of a state-of-the-art analytical
model. To that end, we propose a systematic methodology to assess the faith-
fulness of a collective motion model, exploiting a set of stringent individual
and collective spatio-temporal observables. We demonstrate that machine
learning (ML) models of social interactions can directly compete with their
analytical counterparts in reproducing subtle experimental observables.More-
over, this work emphasizes the need for consistent validation across different
timescales, and identifies key design aspects that enable our deep learning
approach to capture both short- and long-term dynamics. We also show that
our approach can be extended to larger groups without any retraining, and
to other fish species, while retaining the same architecture of the deep learning
network. Finally, we discuss the added value of ML in the context of the study
of collective motion in animal groups and its potential as a complementary
approach to analytical models.
1. Introduction
Collective behaviour in animal groups is a very active field of research, studying
the fundamental mechanisms by which individuals coordinate their actions
[1–3] and self-organize [4,5]. One of the most common forms of collective
behaviour can be observed in schools of fish and flocks of birds that have the
ability to coordinate their movements to collectively escape predator attacks
or improve their foraging efficiency [6,7]. This coordination at the group level
mainly results from the social interactions between individuals. Important
steps to understand these collective phenomena consist in characterizing
these interactions and understanding the way individuals integrate interactions
with other group members [8–12].

New tracking techniques and tools for behavioural analysis have been
developed that have greatly improved the quality of collective motion data
[13–19]. In particular, advances in computing have allowed the development
of computationally demanding data-oriented model generation techniques
[12,20–24] and the subsequent simulation of biological models [25]. This has
resulted in more realistic models that attempt to recover the social interactions
that govern collective behaviours. Yet, the bottleneck with most of these
approaches is that they rely on demanding and laborious mathematical work
to obtain the interactions from experimental data.
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An alternative to such analytical models is to exploit machine learning (ML) techniques and let an algorithm learn the interactions
directly from data. The know-how required to use these techniques is different from the one needed to design analytical models.
Nevertheless, the structure of ML algorithms, here a neural network, has an impact on the modelling performance, and requires
specific expertise [26]. Once the architecture of an ML algorithm is set, ML can often process data for different species without struc-
tural adaptation, and generate new models quickly. This is very different from analytical models, where each new species requires
redefining the model nearly from scratch. The downside of this flexibility is that ML models are usually less explainable (black
box). Yet, recent ML algorithms provide higher-level information mappable to more tangible formats, such as force maps, which
show the strength and direction of behavioural changes experienced by an individual when interacting with other individuals in a
moving group [23,24]. Despite their limited explainability, ML algorithms require only a few biological assumptions. They offer an
almost hypothesis-free procedure [27] that can even outperform human experts in detecting subtle patterns [28], making ML a
very appealing complementary approach to analytical models.

For both analytical and ML models, several studies evaluate models over short timescales and through instantaneous quantities
such as speed, acceleration, distance and angle to objects [22,29], or by measuring the error between predictions and ground truth
[23,30,31]. Onlymore recently, long timescales have also been considered [21].However, amodel that performswell at short timescales
compared with experiment does not necessarily perform well at long timescales. This is especially true for models that try to repro-
duce complex collective phenomena in living systems. To our knowledge, the predictive capacity ofMLmodels in this context has not
been evaluated over both short and long timescales, that is, their ability to generate synthetic data that replicate the outcomes of social
interactions over both timescales.

Here, we demonstrate that ML models can generate realistic synthetic data with minimal biological assumptions, and that they
allow to accelerate and generalize the process of collective behaviour modelling. More specifically, we present a social interaction
model using a deep neural network that captures both the short- and long-term dynamics observed in schooling fish. We apply
our approach to pairs of rummy-nose tetra (Hemigrammus rhodostomus) swimming in a circular tank, and show that it can also be
applied to fish species with similar burst-and-coast swimming (zebrafish; Danio rerio). Our ML model is benchmarked against the
state-of-the-art analytical model for this species [32], showing that it performs as well as the latter, even for very subtle quantities
measured in the experiments. Moreover, we also introduce a systematic methodology to stringently test the results of an analytical
or ML model against experiment, at different timescales, and in the context of animal collective motion.
2. Methods
2.1. Experimental data
The trajectory data used in this study were originally published in [12] for Hemigrammus rhodostomus swimming either alone or in pairs in
a circular tank of radius 25 cm. This species is characterized by a burst-and-coast swimming mode, where the fish perform a succession of
sudden and short acceleration periods (of typical duration 0.1 s), each followed by a longer gliding period almost in a straight line, result-
ing in a mean total duration of the kicks of 0.6 s. The instant of the kicks, when heading changes take place, are assimilated to decision
instants [12].

The dataset corresponds to 15 h of video recordings at 25 Hz. Fish are tracked with idTracker [17], an image analysis software which
extracts the two-dimensional trajectories of all individuals. Occasionally, the tracking algorithm is temporarily unable to report positions
accurately. This can be due to small fluctuations in lighting conditions, fish standing still or moving at very low speed, fish swimming very
close to the surface, to the border or to each other. These instances are corrected using several filtering processes. Since our analyses focus
on social interactions, we remove the periods during which fish are inactive. Fish body length (BL) is approximately 3.5 cm, and the inter-
vals of time during which fish velocity is less than 1 BL s−1 are removed. Large leaps in fish trajectories during which fish move by more
than 1.5 BL≈ 5.25 cm between two consecutive frames, meaning that fish move at almost 65 cm s−1, are also identified and removed, as
they result from tracking errors. Finally, missing points are filled by linear interpolation. The final dataset used in this work represents
approximately 4 h of trajectory data for pairs of H. rhodostomus.

Moreover, trajectories of the original dataset have been resampled with a timestep of Δt = 0.12 s instead of the original 0.04 s provided by
the camera, and data points have been converted from pixel space to a normalized [−1, 1] range to facilitate the training of the networks. This
subsampling helps to reduce the randomnoise between subsequent camera frames at the very short timescale of 0.04 s (especially formeasur-
ing fish headings and speeds), while maintaining a sufficiently small timestep to study and model the social interactions. The new timestep
Δt = 0.12 s is of the sameorder as the sudden acceleration period of a kick and approximatelyone-fifth of the average total kick duration [12]. In
addition to reducing the noise, the subsampling also reduces the dimension of the input vector and of the effective size of the training dataset
and, as a result, of the training time for the ANN models presented in this work.

2.2. Quantification of individual and collective behaviour in pairs of fish
We use a set of observables to quantify how close the results of the models are from the measures obtained in the experiments [12,20,21].
These observables constitute a stringent benchmarking and validation when designing and testing a model. In the case of deep learning
techniques, those observables also serve as means to partially explain what the algorithm has learned.

Let us first define the temporal variables characterizing the individual and collective behaviour of the fish. Figure 1a shows two fish swim-
ming in a circular tankof radiusR = 25 cm. The position vector of a fish i at time t is given by its Cartesian coordinatesuiðtÞ ¼ ðxiðtÞ, yiðtÞÞ in the
system of reference, centred at the centre of the tank C(0, 0). The components of the velocity vector viðtÞ ¼ ðvixðtÞ, viyðtÞÞ are given by
vixðtÞ ¼ ðuixðtÞ � uixðt� DtÞÞ=Dt (similar expression for viy). The heading angle of the fish is assumed to indicate its direction of motion and
is therefore given by the angle that the velocity vector forms with the horizontal, fiðtÞ ¼ ATAN2ðviyðtÞ, vixðtÞÞ.

The motion of a given fish i is then described using the three following instantaneous variables: the speed, ViðtÞ ¼ kviðtÞk, the distance
of the fish to the wall, riwðtÞ ¼ R� kuiðtÞk, and the angle of incidence of the fish to the wall, uiwðtÞ, defined by the angle formed by the
velocity vector and the normal to the wall: uiwðtÞ ¼ fiðtÞ � ATAN2ðyiðtÞ, xiðtÞÞ, see figure 1a.
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Figure 1. (a) Individual and collective variables characterizing the instantaneous state of an individual ( focal fish in red) and its pairwise relation with a neighbour
(blue): distance to the wall riwðtÞ, angle of incidence to the wall uiwðtÞ, heading angle ϕi(t), distance between individuals dij(t), difference of heading angles ϕij(t)
and angle of perception ψij(t). Positive angles (curved arrows) are defined in the anti-clockwise direction, starting from the positive semi-axis of abscissas. The
radius of the circular set-up is R = 25 cm. For visualization purposes, the size of fish is not to scale with the tank. (b) Typical profile of the fish speed, V(t), showing
the typical sequence of kicks (abrupt accelerations followed by longer gliding phases). (c) Trajectories of two fish close to the wall due to their burst-and-coast
swimming mode. The dots in the trajectories denote the instants of the kicks, where fish decision-making is assumed to take place.
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When there are two fish i and j in the tank, their relative motion is characterized by means of three variables: the distance between fish,
dijðtÞ ¼ kuiðtÞ � ujðtÞk, the difference between their heading angles, ϕij(t) = ϕj(t)− ϕi(t), which measures the degree of alignment between
both fish, and the angle of view, ψij(t), which is the angle with which fish i perceives fish j, and which is generally independent of ψji(t). See
figure 1a for the graphical representation of these quantities. The angle of perception of the fish also allows us to define the notion of geo-
metrical leadership for two fish: fish i is the geometrical leader (and therefore, j is the geometrical follower), if jcijðtÞj . jc jiðtÞj, meaning that i has
to turn by a larger angle to face j than the angle that j has to turn to face i. In practice, these definitions of the geometrical leader and
follower provide a precise and intuitive characterization of a fish being ahead of the other. Note that being the leader or the follower
is an instantaneous state that can change from one kick to the other.

These six quantities Vi(t), riwðtÞ, uiwðtÞ, dij(t), ϕij(t) and ψij(t) being defined, the measure of their probability distribution functions (PDF)
constitutes a set of observables probing the individual and collective instantaneous fish dynamics in a fine-grained and precise manner.
The PDF of Vi(t), riwðtÞ, uiwðtÞ probe the behaviour of a focal fish sampled over the observed dynamics, and are hence called instantaneous
individual observables. The PDF of dij(t), ϕij(t) and ψij(t) characterize the correlations between two fish at the same time t and are hence called
instantaneous collective observables. These three collective observables can be easily generalized to a group of arbitrary size N > 2, by con-
sidering i and j as pairs of nearest neighbours, or pairs of second-nearest neighbours (or even farther neighbours), or even averaging them
over all pairs in the group (then probing the size, the polarization and the anisotropy of the group). Ultimately, comparing experimental
results and model predictions for these individual and collective observables constitutes a stringent test of a model.

Moreover, to characterize the temporal correlations arising in the dynamics, we make use of three additional observables involving
quantities measured at two different times, for a given focal fish [21]: the mean-squared displacement CX(t), the velocity autocorrelation
CV(t), and, especially challenging, the autocorrelation of the angle of incidence to the wall Cuw ðtÞ, defined, respectively, by

CXðtÞ ¼ h[uiðtþ t0Þ � uiðt0Þ]2i, ð2:1Þ

CVðtÞ ¼ viðtþ t0Þ � viðt0Þh i ð2:2Þ

and Cuw ðtÞ ¼ cos [uiwðtþ t0Þ � uiwðt0Þ]
� �

, ð2:3Þ
where 〈w(t)〉 is the average of a variable w(t) over all reference times t0 (assumption of a stationary dynamics, where correlations between
two times depend solely on their time separation), over all focal fish, and over all experimental runs. In principle, these correlation obser-
vables can also be generalized to probe the (collective) time correlations between the two different fish (or between nearest neighbours
in a group of N > 2 individuals). For instance, one could consider CVNN ðtÞ ¼ hviðtþ t0Þ � vjðt0Þi, where the average is now over nearest neigh-
bour pairs. However, in the present study, we will limit ourselves to the study of the three (individual) correlation functions listed in
equations (2.1)–(2.3).
2.3. Analytical and deep learning models of fish behaviour
Many species of fish like H. rhodostomus or Danio rerio move in a burst-and-coast manner, meaning that their swimming pattern consists of a
sequence of abrupt accelerations each followed by a longer gliding period (figure 1b), duringwhich a fishmovesmore or less in a straight line
(figure 1c). The kicking instants observed in the curve of the speed can be interpreted as decision times when the fish potentially initiates a
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change of direction. InH. rhodostomus, themean time interval between kicks and the typical kick lengthwere experimentally found to be close
to 0.5 s and 7 cm, respectively [12].When confined in circular tanks, fish tend to swim close to the curvedwall because their trajectory ismade
of quasi straight segments with limited variance of the heading angle between kicks, hence preventing the fish from escaping from the tank
wall (unless when a rare large heading angle change occurs) [12,33]. When swimming in groups,H. rhodostomus tend to remain close to each
other, especiallywhen the number of fish in the tank is small. In fact, the social interactions between fish reflect the combined tendency to align
with and follow their neighbours while at the same time maintaining a safe distance with the wall. At a given kicking instant, only a few
neighbours (one or two) have a relevant influence on the behaviour of a fish [34]. The decision-making of fish displaying a burst-and-
coast swimming mode can thus be reproduced by considering only pairwise interactions. Obviously, if one only considers pairs of fish,
like here, it therefore suffices to consider the relative state of the neighbouring fish (relative position and velocity) and the effect of the distance
and the relative orientation to the wall [12,20].
journal/rsif
J.R.Soc.Interface

21:20230630
2.3.1. Analytical burst-and-coast model
The analytical burst-and-coast model (hereafter called ABC model) quantitatively reproduces the dynamics of H. rhodostomus swimming
alone or in pairs under the hypothesis that fish decision-making times correspond exactly to their kicking times, that is, the new direction
of movement, the duration and the length of the kick are decided precisely at the end of the previous kick [12].

Given a pair of agents i and j at a respective state ðun
j , f

n
j Þ and ðun

i , f
n
i Þ at time tn, the state of agent i at the next instant of time tnþ1

i is
given by

tnþ1
i ¼ tni þ tni , ð2:4Þ

fnþ1
i ¼ fn

i þ dfn
i ð2:5Þ

and unþ1
i ¼ un

i þ lni e ðfnþ1
i Þ, ð2:6Þ

where e ðfnþ1
i Þ is the unitary vector pointing in the heading direction fnþ1

i , tni and lni are the duration and length of the nth kick of agent i,
and dfn

i is the heading change of agent i. The heading angle change dfn
i is the result of three effects: the interaction with the wall, the social

interactions with the other fish (repulsion/attraction and alignment), and the natural spontaneous fluctuations of fish headings (cognitive
noise) [12]. The term ‘cognitive noise’ encapsulates the fact that fish (or humans) would not generally replicate the exact same motion
when placed under identical initial conditions, namely starting at the same positions and with the same initial velocities. Hence, a behav-
ioural model must not only describe the social interactions between individuals, but also the properties of their spontaneous fluctuations.
The social interactions depend only on the relative state of both agents, determined by the triplet (dij, ψij, ϕij). The derivation of the
shape and intensity of the functions involved in dfn

i is based on physical principles of symmetry of angular functions and a
data-driven reconstruction procedure detailed in [12] for the case of H. rhodostomus and in [20] for the general case of animal groups.

Starting from the initial condition ðu 0
i , f

0
i Þ of fish i, the length and the duration of its next kick, l0i and t0i , are sampled from the exper-

imental distributions obtained in [12]. Then, the timeline t1i of fish i is updated with equation (2.4), the heading angle of the next kick f1
i is

calculated with equation (2.5), and the position of the fish at the end of the kick u1i is obtained with equation (2.6). As kicks of different fish
are asynchronous, the next kick can be performed by either of the two fish. Each fish has thus it own timeline, but is subject, at each of its
kicks, to the evolution of the other fish along its own kicks.

The ABCmodel is therefore a discretemodel that generates kick events instead of continuous time positions. To directly comparewith the
deep learning interaction (DLI) model presented in the next section, which is a continuous timemodel, we resampled the trajectories made of
kick events produced by the ABC model and build continuous time trajectories with a timestep of size Δt = 0.12 s. We produced trajectories
that add up to a total of 500 000 timesteps, corresponding to approximately 16.7 h.
2.3.2. Deep learning interaction model
The DLI model consists of an artificial neural network (ANN) which is fed with a set of variables characterizing the motion of H. rhodos-
tomus and which provides the necessary information to reproduce the social interactions of these fish by estimating their motion along
timestep of length Δt = 0.12 s. At time t, the DLI model is designed to take sequences of states as input to capture the short- and long-
term dynamics. Then, it generates predictions for the acceleration components of the fish at the following timestep t + Δt.

For the DLI model, the state of an agent i at time t is defined by

siðtÞ ¼
�
uiðtÞ, viðtÞ, riwðtÞ

�
[ R5: ð2:7Þ

The state of an agent includes redundant information: in a fixed geometry, riw can be deduced from ui, and vn
i from the input sequence

un�4
i , . . . , un

i . This redundancy is intended to facilitate the training process of the neural network. Furthermore, these redundancies are
shown to significantly boost the performance of the network compared with similar ANN structures (see electronic supplementary
material).

The system’s state S(t) is then defined as the combination of both agent states, in addition to their inter-individual distance dij(t) (also a
redundant variable),

SðtÞ ¼ �
siðtÞ, sjðtÞ, dijðtÞ

�
[ R11: ð2:8Þ

Figure 2 shows the structure of the ANN, consisting of seven layers: two long-short term memory (LSTM) layers [35], and five fully
connected (dense) layers.

The first LSTM layer consists of 256 neurons and is located at the input of the ANN, where it receives the sequence of the five last states
of the system, i.e. a matrix of dimension 5 × 11: (S(t− 4),…, S(t)). This history length of four timesteps (0.48 s) is borrowed from the biology
of the fish: as already mentioned, the time it takes for a fish to display its characteristic behaviour, a kick, is 0.5 s [12], therefore, we input
the current state plus the states that correspond to the average duration of a kick. The output of the first LSTM is then gradually reduced in
dimension by two successive dense layers, and then scaled up again with a second LSTM, whose configuration is also based on a history
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Figure 2. Structure of the artificial neural network (ANN) used in the deep learning interaction (DLI) model. From left to right: Input of the ANN: the five last states,
ðSðt � 4Þ, . . ., SðtÞÞ at time t. Where SðtÞ ¼ ðsiðtÞ, sjðtÞ, dijðtÞÞ [ R11 and each state is parametrized as siðtÞ ¼ ðuiðtÞ, v iðtÞ, riwðtÞÞ [ R5; the
seven layers (two long-short term memory, also known as LSTM, layers and five dense layers) capturing the social dynamics; Output: the two pairs of values
(μx, σx) and (μy, σy) corresponding, respectively, to the mean and standard deviation of the probability distribution function (assumed to be Gaussian) of
each component ax and ay of the instantaneous acceleration vector a at time t + 1, constituting the prediction of the DLI model.
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of five states. Then, two other dense layers are used to reduce the dimension of the output of the second LSTM, and a last dense layer is
applied to provide the final output of the ANN. More details about the configuration of the ANN are given in electronic supplementary
material, table S7.

The output of the ANN consists of two pairs of values, (μx, σx) and (μy, σy), corresponding to the expected value and standard devi-
ation of the x and y components of the predicted acceleration, which are assumed to be Gaussian distributed [36], as actually found for
H. rhodostomus [12]. Hence, the predicted acceleration of the agent, a ¼ ðax, ayÞ, can be written

ax ¼ mx þ sxgx, ay ¼ my þ sxgy, ð2:9Þ

where gx and gy are independent standard Gaussian random variables drawn from N ð0, 1Þ. Then, the velocity vector of the agent i at the
time tn+1 is given by

vnþ1
i ¼ v n

i þ Dt an
i , ð2:10Þ

and the position of the agent is updated according to

unþ1
i ¼ un

i þ Dtv nþ1
i : ð2:11Þ

Note that in the DLI model, the predicted variance of the acceleration accounts for the fish intrinsic spontaneous behaviour exhibited
during their decision process (cognitive noise), and hence translates the fact that two real (or modelled) fish will not act the same if put
twice in the same given state characterized by equation (2.8).

In some rare instances, the prediction of the DLI model would move one or both fish outside the limits of the tank. To account for that,
we introduce a rejection procedure: the invalid move is rejected, and we resample the Gaussian random variables drawn in equation (2.9)
until a valid move is produced. Note that a similar rejection procedure is also implemented in the ABC model of [12], to strictly enforce
the presence of the wall. Indeed, in the ABC model, the ABC agents would systematically escape the tank after a few seconds or very
few minutes without this rejection procedure. In §3.4 and electronic supplementary material, figures S1 and S2, we show that the DLI
model has, in fact, implicitly learned the presence of the wall, and that DLI agents can remain within or in the close vicinity of the
tank for several dozen minutes without implementing this rejection procedure (60% chance not to escape the tank during 100 min
of simulation).

The prediction of the ANN at time tn+1 is thus a vector of dimension 1 × 4 that can be written as ðmnþ1
pred, s

nþ1
predÞ, where

mnþ1
pred ¼ �

mnþ1
x , mnþ1

y

�
and snþ1

pred ¼ �
snþ1
x , snþ1

y

�
: ð2:12Þ

The ANN is then trained to approach the real/observed values mnþ1
real by means of the adaptive moment estimation optimizer (Adam)

with a time-decaying learning rate λ = 10−4 and a negative log-likelihood loss function ℓ defined in terms of the prediction error
enþ1 ¼ mnþ1

pred � mnþ1
real and the standard deviations as follows [37]:

‘ðenþ1, snþ1Þ ¼ 1
2

XNh

n¼1

[enþ1]
TC�1ðsnþ1Þ enþ1 þNh

2
logkCðsnþ1Þk, ð2:13Þ

where Nh is the number of timesteps in the history of the input of the ANN (here Nh = 5) and C is a diagonal covariance matrix with the
values of snþ1

pred in the diagonal and zeroes elsewhere.
The training of the ANN is carried out with a subset of the experimental dataset. More specifically, the training process is given a

budget of 45 epochs with a batch size of 512 samples on a dataset that was split 80%, 15% and 5% for training, validation and test,
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respectively. Then, the DLI model is used to produce trajectories of 500 000 timesteps of size Δt = 0.12 s, as done with the ABC model. At
the beginning of the simulation, each agent is given a copy of the DLI model and both agents are initialized with a random 5-timestep-long
trajectory sampled from the fish dataset. At each timestep tn, the state vector S(tn) is built and introduced in the network, which provides
the estimated instantaneous acceleration distributions at time tn+1. Then, the acceleration is evaluated according to equation (2.9), and the
next positions and velocities of the agents are obtained from the equations of motion, equations (2.10) and (2.11).

Designing the DLI model. Designing and selecting an appropriate ANN structure to model a system is for the most part non-trivial and
requires either an extensive search through automatic methods (e.g. neuro-evolution [38–40]) or an exhaustive number of empirical
attempts for very specific applications [22–24]. Here, we followed a hybrid approach consisting of empirically designing an ANN
based on biological insight and automatically searching for its optimal structure by bootstrapping the search. Once we established this
initial model, we performed an automated search for similar neural networks using the same input and output for different combinations
of (i) the number of layers, (ii) the size of the layers, and (iii) the activation functions (i.e. transfer functions tasked with mapping the inputs
of a neuron to a single weighted output value passed to the next layer). The search included a total of 82 neural network structures, trained
with the same budget of iterations and stopping criteria, and out of which the ANN shown above is the best performing. The best
performing ANN is selected according to the metrics presented in the following section.

Three notable categories of networks were considered: (i) non-probabilistic networks that only generate ðmnþ1
x , mnþ1

y Þ (and hence, not
explicitly including the cognitive noise), (ii) probabilistic networks that do not have memory cells (hence, missing the fact that fish are
gliding passively on a timescale of order 0.5 s), and (iii) probabilistic networks that implement memory thanks to LSTM layers. Non-prob-
abilistic networks (i) provide the mean value of the components of the acceleration for the next timestep with high accuracy, but miss the
essential variability that is intrinsic to the spontaneous behaviour of fish and which allows for the emergence of social interactions. Prob-
abilistic networks without memory (ii) are able to partly capture this intrinsic variability, but do not fully capture the nonlinear nature of
the problem (see electronic supplementary material, figure S6 and video S4). Finally, probabilistic networks with memory (iii) performed
generally well, and we found that the structure used in the DLI model consistently provides the best results for the number of epochs set
for training and for the ANNs considered by the automatic search.

Our search approach revealed the existence of two crucial ingredients that must be considered in the model, both accounting for bio-
logical characteristics of fish behaviour observed experimentally. First, the neural network must be fed with information covering the
typical timescale along which relevant changes take place in the behaviour of the fish. Since real fish kicks last 0.5–0.6 s on average,
the NN needs information about the fish behaviour over time intervals of at least this duration (i.e. four to five timesteps of 0.12 s). How-
ever, we found that using longer vector lengths (up to 10 timesteps) for the case of H. rhodostomus does not lead to any significant
improvement in the results, while considerably increasing the training time. Second, the output of the network must contain a sufficiently
wide diversity of predictions so that the agents reproduce the high variability of responses that fish display when behaving spontaneously
and reacting to external stimuli.

ANNs without memory tend to make too similar predictions, and agents do not initiate the typical direction changes that are observed
in the experiments. A possible solution could be to add some phenomenological noise to the predictions of the NN. However, this would
result in an unrealistic behaviour, albeit an improvement over not adding noise at all. For example, when a fish swims close to the wall, it
does not have the same liberty to turn toward or away from the wall, which would not be captured by a too crude implementation of the
fish cognitive noise. Our approach accounts for this behavioural uncertainty for each state (position, velocity, distance to the neighbour
and to the wall) and for both degrees of freedom during the training phase of the ANN, being therefore able to capture these complex
behavioural patterns. The performance of the two variants is depicted in electronic supplementary material, figure S4.
3. Results
When fish swim in a circular tank (here, of radius R = 25 cm), they interact with each other and with the tank wall. The resulting
collective dynamics can be finely characterized by exploiting the nine observables introduced and described in the Methods sec-
tion. As explained there, these observables probe (i) the instantaneous individual behaviour, (ii) the instantaneous collective
behaviour, and (iii) the temporal correlations of the dynamics.

Hereafter, we analyse three trajectory datasets: the first one corresponds to pairs ofH. rhodostomus in our experiment (4 h of data),
the second one to the ABC model (16.7 h) and the third one to the DLI model (16.7 h). Electronic supplementary material, video S1
shows typical trajectories for these three conditions. The aim of this section is to quantitatively validate the qualitative agreement
observed in this video.

3.1. Quantification of the instantaneous individual behaviour
The individual fish behaviour is characterized by three observables: the PDF of the speed V, of the distance to the wall rw and of
the angle of incidence to the wall θw. When swimming in pairs, fish tend to adopt a typical speed of approximately 7 cm s−1 (see
the peak of the PDF in figure 3a), but can also produce high speeds up to 25−30 m s−1. In fact, we observe that both the leader and
follower fish produce very similar speed profiles (thus omitted in figure 3a). Both fish remain close to the wall of the tank (a con-
sequence of the fish burst-and-coast swimming mode [12]), the leader being closer to the wall (typically, at approx. 0.5 BL) than the
follower (at approx. 1.2 BL; see figure 3b). This feature is due to the follower fish trying to catch up with the leader fish by taking a
shortcut while taking the turn. Moreover, fish spend most of the time almost parallel to the wall: see the peaks of both PDFs at
uw � +90� in figure 3c. A slight asymmetry is observed in the PDF of θw, showing that, in the experiments, fish have turned
more frequently in the counterclockwise direction. Values of the mean and the standard deviation of the PDFs presented in
this section are given in electronic supplementary material, tables S1, S2 and S3.

Both ABC and DLI models produce agents that move at the same mean speed as fish in the experiments, and figure 3a shows
that the speed PDF for both models are in excellent agreement with the one observed in real fish. Moreover, the agents of the ABC
model are as close to the wall and as parallel to it as fish are. The PDF of the ABC leader is in good agreement with that of the fish
leader (figure 3b). However, the PDF for the ABC follower has a peak at approximately the same distance to the wall as that of the
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leader, while the corresponding peaks are more separated for real fish. Yet, the PDF for the ABC follower is broader than for the
leader, showing that the ABC follower tends to be farther from the wall than the leader, as observed for real fish. For the DLI
model, the peaks of both leader and follower PDFs are at approximately the same position as for real fish, although their
height is smaller than for fish, meaning that DLI-agents tend to explore more frequently the interior of the tank (observe the thicker
tails of the PDF of rw for the DLI model in figure 3b). Alignment with the wall is also well reproduced by both models (figure 3c),
including the asymmetry in the direction of rotation around the tank: their peak at θw > 0 is higher than the one at θw < 0. As
already seen in the PDF of rw, DLI-agents visit more often the interior of the tank, and are hence less aligned with the wall
than the real fish and ABC agents. Note that the tendency of DLI-agents to rotate more frequently in the counterclockwise direction
is learned from the training set, while this asymmetry has to be explicitly implemented in the ABC model, by introducing an asym-
metric term in the analytical expression of the wall repulsion function. A closer look at figure 3c shows that fish actually follow the
wall with a most likely angle of incidence juwj that is slightly smaller than 90°, a feature resulting from the burst-and-coast swim-
ming mode inside a tank with positive curvature: fish are found more often going toward the wall than escaping it.

We have also computed the Hellinger distance (HD) between the experimental PDF probing the individual behaviour and the
corresponding PDF produced by the DLI and ABC models. The HD (see the caption of electronic supplementary material, tables
S10 and S11, for more details) quantifies the (dis)agreement between two PDF for the same variable. The results of electronic sup-
plementary material, tables S10 and S11 for both models confirm their good performance: the DLI model HD is slightly better
than that of the ABC model for the speed PDF, as good for the PDF of rw and not quite as good for the PDF of θw.

3.2. Quantification of the instantaneous collective behaviour
Hemigrammus rhodostomus is a social species, and figure 4a shows that the two fish remain most of the time close to each other, with
the PDF of their distance dij presenting a peak around dij≈ 7 cm≈ 2 BL (mean and standard deviation of the PDFs presented in this
section are given in electronic supplementary material, tables S1, S2 and S3. The PDF of dij produced by the DLI model is slightly
wider than for the experiment and the ABC model, and in particular, presents too much weight at small distances.

The fish have a strong tendency to align with each other, as shown in figure 4b, with the PDF of their relative heading ϕij being
sharply peaked at 0�. In addition, the PDF of the viewing angle ψij reveals that the fish are swimming one behind the other rather
than side-by-side. This is illustrated in figure 4c by the sharp difference in the PDF of the viewing angle for the leader and the
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follower. The PDF of ψleader is peaked around +160�, meaning that the follower fish is almost right behind the leader fish,
but slightly shifted to the right or left. A slight left–right asymmetry in the PDF of the viewing angles is also visible, the
follower being more frequently on the left side of the leader, a consequence of the fact that the fish in the experiment follow
the wall by turning more often counterclockwise (figure 3c), with the follower swimming farther from the wall than the leader
(figure 3b).

All these features are well reproduced by both models, with only some small quantitative deviations. The ABC model repro-
duces almost perfectly the experimental PDF of the distance between fish, whereas the PDF for the DLI model is only slightly
wider and presents slightly more weight at very small distance than found for real fish or in the ABC model (figure 4a). The
DLI model is in turn better than the ABC model at reproducing the PDF quantifying the alignment of the fish, the latter producing
more weight near 0� than for real fish (figure 4b). Both models fail at reproducing the small weight in the PDF at fij � +180�,
which corresponds to sudden U-turns that real fish sometime perform. The PDF of the viewing angles for the leader and the fol-
lower (figure 4c) are also fairly reproduced by both models, including the slight left–right asymmetry observed in real fish,
although the peak in the PDF at cfollower ¼ 0� (and to a lesser extent at cleader � �160�) is not quite as sharp as in the experiment.

Again, we have computed the HD between the experimental PDF probing the collective behaviour and the corresponding PDF
produced by the DLI and ABC models. The results of electronic supplementary material, tables S10 and S11 for both models con-
firm their good performance: as anticipated above, the DLI model HD for the PDF of the distance between agents is higher than for
the ABC model (and is the highest found for all six PDF presented here, with HDdij ¼ 0:13). However, electronic supplementary
material, tables S10 and S11 also confirm that the DLI model reproduces quantitatively the PDF of ϕij and ψij.
3.3. Quantification of temporal correlations
Figure 5 shows the three observables defined in equations (2.1)–(2.3) and probing the emerging temporal correlations in the
system: the mean-squared displacement CX(t), the velocity autocorrelation CV(t) and the autocorrelation of the angle of incidence
to the wall CuwðtÞ, as function of the time difference t between observations. The figure reveals that both models fail to fully repro-
duce quantitatively these very non-trivial observables, which indeed constitute the most challenging benchmark characterizing the
correlations emerging from the fish behaviour.

Fish data present three distinct regimes: a quasi-ballistic regime at short timescale (t & 1:5 s) where CX(t)≈ 〈v2〉t2, followed by a
second short diffusive regime (1:5 s & t & 5 s) where CX(t)≈Dt, which is limited by the finite size of the tank, ultimately leading to
a third regime of saturation (t > 5 s) characterized by slowly damped oscillations since fish are guided by the wall (figure 5a).
Accordingly, the velocity correlation function starts from CV(t = 0) = 〈v2〉 at short time and also presents damped oscillations
(figure 5b). The negative minima of the oscillations in CV(t) correspond to times when the focal fish is essentially at a position
diametrically opposite to its position at the reference time t = 0, its velocity then being almost opposite to that at t = 0. Similarly,
positive maxima correspond to times when the fish returns to almost the same position it had at t = 0, with a similar velocity,
guided by the tank wall. Of course, these oscillations are damped as correlations are progressively lost, and the velocity correlation
function CV(t) ultimately vanishes at large time t≫ 20 s, due to the actual stochastic nature of the trajectories at this timescale
(possible U-turns, or the fish randomly crossing the tank). Note that CX(t) is markedly different for the leader and follower
fish, with a higher saturation value for the leader, which swims closer to the wall, as mentioned above.

The ABC model is able to fairly reproduce the short and intermediate regimes for CX(t) (figure 5a), as well as the position of its
first peak, reached only 1 s later than for fish. The ABC model also reproduces the experimental saturation value of CX(t) averaged
over the two fish. As for the DLI model, its predictions are only slightly worse than that of the ABC model, since the DLI agents are
moving a bit farther to the wall compared with ABC agents and real fish. Yet, both models equally fail at producing more than one
oscillation, and the correlations are damped faster compared with the experiment.

As for the velocity autocorrelation CV(t) (figure 5b), the ABC model reproduces almost perfectly the short and intermediate
regimes and the position of the first negative minimum (hence, up to t = 6 s), while the DLI model underestimates the depth of
this first minimum. But again, both models fail at reproducing the persistence of the correlations, producing a too fast damping
of the oscillations (an effect slightly stronger in the DLI model).
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Both models struggle at reproducing the correlation function CuwðtÞ of the angle of incidence to thewall (figure 5c), where the fish
curve first sharply decreases up to t = 6 s and then remains close to Cuw � 0:2. The ABCmodel is clearly unable to reproduce both the
decreasing range (clearly diverging before t = 2 s) and the correct saturation value (never falling below Cuw � 0:6). As for the DLI
model, it produces a slightly sharper decay ofCuwðtÞ than for real fish, up to t≈ 6 s, but fails to reproduce the non-negligible remaining
persistence of the correlation observed in fish for t > 7 s, withCuwðtÞ in the DLImodel decaying rapidly to zero. In fact, bothmodels fail
to reproduce the experimental CuwðtÞ for opposite reasons. The ABC model exhibits a too high persistence of the correlations of θw
compared with real fish, presumably because real fish indeed often follow the wall but can also produce sharp U-turns, as observed
in figure 3c. On the other hand, the failure of the DLI model in reproducing CuwðtÞ stems from the fact that DLI agents move farther
from thewall and cross through the tank more often than real fish and ABC agents (see the discussion of figure 3b above), hence lead-
ing to a too fast, and ultimately total, loss of correlation for θw.
rnal/rsif
J.R.Soc.Interface
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3.4. Complementary analyses
In order to test whether the DLI model has correctly learned the presence of the wall, we have run 30 simulations of duration 6000
s to check whether the DLI agents would stay within the area of the tank, even without enforcing its presence by the rejection
procedure mentioned in the second paragraph below equation (2.11). We found that the DLI agents indeed remain in or very
near the tank during the entire time of the simulation in 60% of runs. In the other 40% of runs, the DLI agents would ultimately
escape the tank after a mean time of order 3000 s. These results are summarized in electronic supplementary material, figure S1,
where we present the time series of the distance to the wall rw(t) for the 10 first runs, and in electronic supplementary material,
figure S2, where we report the survival probability (i.e. the probability that the DLI agents remain within the tank up to a given
time). These results indicate that the DLI model has convincingly learned the presence of the wall, and is able to maintain the
agents within the wall for several dozen minutes without the need of an explicit rejection procedure.

We have also conducted several other complementary tests of our approach. First, theDLImodel yields better results in generating
social interactions than a similarly purposedANN for human trajectory forecasting [30,31] (D-LSTMmodel; see electronic supplemen-
tary material, figures S3 and S4, tables S4, S5, S6 and S12, and video S2). In particular, the results for the HD (HDrw ¼ 0:30 and
HDuw ¼ 0:40) show that this D-LSTM model completely fails at capturing the interaction of the fish with the tank wall. While this
is expected due to the missing inputs (compared with the DLI; see electronic supplementary material, S1), these results confirm
that there exist models that do indeed capture the short-term dynamics without being able to reproduce the long-term dynamics, pre-
sumably due to non-Markovian effects. In addition, we also trained a multi-layered perceptron interaction (MLI) model without any
memory cells, and found that it fails to reproduce all six PDF (see electronic supplementary material, S1, figure S6), resulting in high
values of the corresponding HD (see electronic supplementary material, S1, table S13).

Moreover, we have analysed the performance of the DLI model when varying the fraction of the dataset used in its training.
The performance is quantified by using the HD between the experimental PDF and that produced by the DLI model, and elec-
tronic supplementary material S1, table S15 reports the resulting HD values. When only using 75%, 50%, or even 37.5% of the
dataset, the DLI model has a similar performance as when trained with the full dataset (4 h of pair trajectories). However, the
performance sharply drops when only using 25%, 12.5% and 5% of the dataset. In fact, using 25% or less of the dataset, we
also found that the performance significantly depends on the training sample (we ran four training sessions in each case). Finally,
we also found that without enforcing the presence of the wall with our rejection procedure, the median escape time of the fish
computed over 30 runs of 6000 s when using 25%, 12.5% and 5% of the dataset are of order 500 s, 75 s, 50 s, compared with
3000 s when using 100% or even 50% of the dataset. These results show that our DLI network (and its size) is coherent
with the size of the training dataset, and that its predictions remain robust when restricting the data at least down to half of
the original dataset.

Finally, we have trained the DLI model with data for pairs of zebrafish (D. rerio), and found that it yields fair results for this species
too, without any structural modification in its architecture (see electronic supplementary material, figure S5 and tables S8, S9 and S14).
While acquiring a functional model of a new species’ interactions proved straightforward with the DLI, the same would not be gen-
erally true for analytical models.

Following the completion of the present work, we have exploited the DLI model to study groups with more than two fish,without
any retraining. Indeed, H. rhodostomus [34], like many other group-living species [7], effectively only interact with a few influential
neighbours, at a given time. Thus, for a given agent in a group ofN > 2 agents, the DLI forH. rhodostomus should only retain the influ-
ence of typically the two agents leading to the highest acceleration [34,41], as predicted by the DLI model. Electronic supplementary
material, video S3 illustrates this procedure forN = 5 agents, resulting in a cohesive and aligned group, in qualitative agreement with
experimental observation [34]. In addition, the present DLI model has also been recently exploited in [42] to command a robot fish
initially introduced in [43] (where it was commanded by the ABC model), and moving alone in the tank, or reacting in a closed-
loop to one or four real fish.
4. Conclusion and discussion
Studying social interactions in animal groups is crucial to understand how complex collective behaviours emerge from individuals’
decision-making processes. Very recently, such interactions have been extensively investigated in the context of collective motion by
exploiting classical computational modelling [12,20,21] and automated ML-based methods [23,24]. Although ML algorithms have
been shown to provide insight into the interactions of hundreds of individuals at short timescales [23,24], their ability to reproduce
the complex dynamics in animal groups at long timescales has not yet been assessed.
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Here, we have presented a DLI model which reproduces the behaviour of fish swimming in pairs. The DLI model’s good per-
formance can be primarily ascribed to its memory related to a biologically relevant timescale (fish kicks of typical duration 0.5–0.6
s), and to a carefully crafted input/feature vector. Indeed, the MLI model without memory cells performs very poorly, while the D-
LSTM model, characterized by a different input/feature vector, demonstrates markedly lower performance than the DLI model.

We have also introduced the appropriate tools for the validation of an ANN model, when compared with experimental results
and confronted with an analytical behavioural model (ABC). In fact, our study establishes a systematic methodology to assess the
long-term predictive power of a model (analytical or ML), by introducing a set of fine observables probing the individual and col-
lective behaviour of model agents, as well as the subtle correlations emerging in the system. These observables, which can be
straightforwardly extended to groups ofN > 2 agents, provide an extremely stringent test for anymodel aimed at producing realistic
long-term trajectories mimicking that of actual animal groups. In particular, we consider that the usual validation of anMLmodel at
a short timescale should be complemented by the type of long timescale analysis that we propose here, in order to fully assess its
performance. Indeed, we have shown that a model (like the D-LSTMmodel) can have a good performance at very short timescales,
while presenting a degraded performance at large timescales, presumably due to non-trivial non-Markovian effects.

The DLI model closely reproduces the dynamics of real fish at both the individual (speed, distance to the wall, angle of inci-
dence to the wall) and collective (distance between individuals, relative heading angle, angle of perception) levels during long
simulations corresponding to more than 16 h of fish swimming in a tank, hence successfully generating lifelike interactions
between agents. When compared with experiment, the ABC model and the DLI model essentially perform equally well. Notably,
the DLI model better captures the most likely distance of the leader and follower from the wall. However, the DLI model is less
accurate in reproducing the temporal correlations quantified by the mean-squared displacement and the velocity autocorrelation.
Yet, both ABC and DLI models fail at capturing the temporal correlations of the angle of incidence to the wall, but for very different
reasons. More importantly, the DLI model convincingly infers the presence of the tank wall, and is able to keep the DLI agents
within the wall boundaries for several dozen minutes, even when the rejection procedure is not enforced. In addition, we have
shown that the performance of the DLI model remains robust even when only using half of the experimental training dataset,
while its accuracy sharply drops when only using a quarter of the training dataset.

Our study demonstrates two advantages of ML techniques: (i) they can drastically accelerate the generation of new models (as
illustrated here for zebrafish) and (ii) with minimal expertise in biology or modelling. This is especially useful in robotics, where
models often act as behavioural controllers (i.e. trajectory generators) that guide the robot(s). Although there already exist many
bio-hybrid experiments in the literature, most of them rely on simplified models for behavioural modulation [44–46], few of them
exploit realistic models (analytical or ML) [29,47], and, to our knowledge, none of them are tested in the long term in simulations
or real-life. In this context, ML has the potential to benefit multidisciplinary studies, provided such techniques are thoroughly vali-
dated in simulations.

However, accelerating the production of collective behaviour models with ML comes at a cost. Indeed, the DLI is a black-box
model, and although it captures the subtle impact of social interactions between individuals, it is impossible to retrieve the inter-
action functions themselves. Some approaches partially address this issue by providing insight into how the network operates for
specific sets of inputs [23,24]. Yet, they still do not offer explicit interaction functions. Instead, they provide insights in the form of
force maps that can, to some extent, be used to interpret the underlying mechanisms of the interactions, or in the form of input/
output correlation graphs, that showcase the manner in which an input state typically affects the output [48]. On the other hand,
analytical models supplemented by a procedure to reconstruct social interactions [12,20] provide a concise and explicit description
of the system in question. Moreover, varying the parameters of such models allows for investigating their relative impact on the
dynamics, in the form of phase diagrams representing the collective observables (and the corresponding collective state of the
group) as a function of the model parameters [32,41]. This is not feasible with ML models, unless they are retrained or specifically
structured to allow it.

In summary, this work shows that DLI-like models may now be considered as firm candidates to shed light on groundbreaking
problems such as how social interactions take place and affect collective behaviour in living groups. Yet, we have emphasized that
social interaction models should be precisely tested at both short and long timescales. Future work includes the design of ANNs
that provide additional information about the learned dynamics (e.g. using the framework of [48] and/or attention layers, like in
[23,24]), or possibly, by exploiting symbolic regression algorithms [49,50]. We also plan to study the extension of the DLI model to
larger groups, in particular, in connection with our robotic platform [42–46]. It would also be interesting to apply the DLI model in
different environmental conditions, such as light intensity, as recently done for the ABC model [33]. Ultimately, a more generalized
and unified version of the DLI model or similar algorithms requires extensive testing with additional social animal species (e.g.
humans). We believe that these approaches could improve our understanding of the mechanisms arising in collective behaviour
and allow for more precisely exploring and modulating them.
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