Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications
 
research article

Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications

Nakatsuka, Nako  
•
Hasani-Sadrabadi, Mohammad
•
Cheung, Kevin
Show more
April 17, 2018
ACS Nano

Serotonin-based nanoparticles represent a class of previously unexplored multifunctional nanoplatforms with potential biomedical applications. Serotonin, under basic conditions, self-assembles into monodisperse nanoparticles via autoxidation of serotonin monomers. To demonstrate potential applications of polyserotonin nanoparticles for cancer therapeutics, we show that these particles are biocompatible, exhibit photothermal effects when exposed to near-infrared radiation, and load the chemotherapeutic drug doxorubicin, releasing it contextually and responsively in specific microenvironments. Quantum mechanical and molecular dynamics simulations were performed to interrogate the interactions between surface-adsorbed drug molecules and polyserotonin nanoparticles. To investigate the potential of polyserotonin nanoparticles for in vivo targeting, we explored their nano–bio interfaces by conducting protein corona experiments. Polyserotonin nanoparticles had reduced surface–protein interactions under biological conditions compared to polydopamine nanoparticles, a similar polymer material widely investigated for related applications. These findings suggest that serotonin-based nanoparticles have advantages as drug-delivery platforms for synergistic chemo- and photothermal therapy associated with limited nonspecific interactions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

images_medium_nn-2018-01470d_0008.gif

Type

Thumbnail

Access type

openaccess

License Condition

CC BY

Size

83.86 KB

Format

GIF

Checksum (MD5)

b82f51c6cdbf9533a9643caa932d77cc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés