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Abstract 

Background Early exposure to Computer Science (CS) and Computational Thinking (CT) for all is critical to broaden 
participation and promote equity in the field. But how does the introduction of CS and CT into primary school cur‑
ricula impact learning, perception, and gaps between groups of students?

Methodology We investigate a CS‑curricular reform and teacher Professional Development (PD) programme 
from an equity standpoint by applying hierarchical regression and structural equation modelling on student learn‑
ing and perception data from three studies with, respectively, 1384, 2433 and 1644 grade 3–6 students (ages 7–11) 
and their 83, 142 and 95 teachers.

Results Regarding learning, exposure to CS instruction appears to contribute to closing the performance gap 
between low‑achieving and high‑achieving students, as well as pre‑existing gender gaps. Despite a lack of direct 
influence of what was taught on student learning, there is no impact of teachers’ demographics or motivation on stu‑
dent learning, with teachers’ perception of the CS‑PD positively influencing learning. Regarding perception, students 
perceive CS and its teaching tools (robotics, tablets) positively, and even more so when they perceive a role model 
close to them as doing CS. Nonetheless, gender differences exist all around with boys perceiving CS more positively 
than girls despite access to CS education. However, access to CS‑education affects boys and girls differently: larger 
gender gaps are closing (namely those related to robotics), while smaller gaps are increasing (namely those related 
to CS and tablets).

Conclusion This article highlights how a CS curricular reform impacts learning, perception, and equity and sup‑
ports the importance of (i) early introductions to CS for all; (ii) preparing teachers to teach CS all the while removing 
the influence of teacher demographics and motivation on student outcomes; and (iii) having developmentally appro‑
priate activities that signal to all groups of students.
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Introduction and related work
Introducing computer science and computational thinking 
for all from an equity perspective
The past decades have seen a growing international con-
sensus regarding the importance of teaching Computer 
Science (CS) and Computational Thinking (CT) to ensure 
that students are digitally literate (Webb et  al., 2017). 
Computing is increasingly ubiquitous in today’s societies, 
thus leading to CS being more and more often consid-
ered as a subset of STEM education which must be ren-
dered as available to students as mathematics or science 
education (Guzdial & Morrison, 2016). Introducing CS 
into formal education is also considered to foster Com-
putational Thinking (CT), an essential skill for everyone 
in the twenty-first century (Jiang & Wong, 2022; Zhang 
et  al., 2023) which is as important as reading, writing, 
and arithmetics (Wing, 2006). Teaching CT is not only 
considered by researchers to benefit STEM-related dis-
ciplines (Hurt et al., 2023; Swaid, 2015), but is also con-
sidered transversal. The benefits of CT are thought to go 
beyond CS or mathematics (Denning & Tedre, 2021; Li 
et al., 2020; Mannila et al., 2014; Weintrop, 2021; Wein-
trop et  al., 2016; Zhang et  al., 2023), extending to arts 
(Zhang et  al., 2023), with new evidence even showing 
that young students employ CT during free play (Kot-
sopoulos et al., 2022), thus providing an additional lever 
to introduce both CS and CT to all. Although studies on 
K-12 CS education and CT have increased significantly in 
recent years (Apiola et  al., 2023; Bers et  al., 2022b; Hsu 
et  al., 2018), introducing CS and CT into curricula has 
been a challenge internationally.

Ottenbreit-Leftwich and Yadav (2022) recently 
expressed the importance of a “system-wide implemen-
tation of CT” from an equity perspective to ensure that 
all students are introduced to CT, and not just those of 
a select number of teachers who choose to teach CT. 
This is echoed by Bers et  al. (2022b) who advocate that 
exposure to CS and CT should happen in early founda-
tional years (ages 3–8) “from a social equity perspective 
to prevent stereotypes and ensure [that] all young chil-
dren receive equal opportunities to develop their digital 
literacy”. Two key points emerge from this discourse and 
must be addressed to broaden participation and promote 
equity in these fields:

• Structural barriers are access-related and limit (early) 
CS and CT experiences for all, but can be addressed 
through curricular reforms (Ottenbreit-Leftwich & 
Yadav, 2022).

• Social barriers, often stereotype (and therefore gen-
der) related, arise despite equal access and regardless 
of socioeconomic status (Wang & Hejazi Moghadam, 
2017), but can be addressed through early exposure 

to mitigate the effects of existing stereotypes (Bers 
et al., 2022b).

The consequence of social and structural barriers is that 
disparities are present at multiple levels, including per-
formance (i.e. learning) and attitudes towards CS (i.e. per-
ception). Such disparities ultimately contribute to having 
under-represented groups in CS and CT-related fields, 
and must therefore be addressed in order to increase the 
likelihood that a more diverse and inclusive set of people 
persist in these fields. In the following sections, we delve 
into the literature and highlight the disparities that exist 
due to such barriers, particularly in terms of learning and 
perception.

The influence of social and structural barriers 
on learning‑related equity
Several studies have shown that unequal access to (high-
quality) CS education (Bers et al., 2022b; Wang & Hejazi 
Moghadam, 2017)  contributes to performance gaps. In 
particular, a recent large-scale analysis of performance 
with 46,000 students from 14 countries conducted by 
Karpinski et  al. (2021) found that socioeconomic back-
ground, and therefore access, was related to persistent 
gaps in CT performance. Their findings indicated that 
students from “less advantaged backgrounds had lower 
levels of computer skills [...], especially in CT” (Karpin-
ski et al., 2021). Unfortunately, regardless of access, sev-
eral studies have found that boys perform better than 
girls (El-Hamamsy et al., 2022c; Kong & Lai, 2022b; Polat 
et  al., 2021; Román-González et  al., 2017), even in kin-
dergarten (Sullivan & Bers, 2016), due to the existence 
of stereotypes (see “ The influence of social and struc-
tural barriers on equity related to the perception of the 
discipline”).

Although access to developmentally appropriate CS & 
CT education can increase students’ skills from a young 
age (Bers et al., 2014; 2022a, b; Hall & McCormick, 2022; 
Relkin et al. 2021), several studies suggest that perception 
of the discipline can also influence performance (Hinckle 
et  al., 2020; Rachmatullah et  al., 2022; Sun et  al., 2022). 
Rachmatullah et  al. (2022) for instance found that the 
gender-performance gap was more prevalent in coun-
tries where the “socio-cultural context” tends to promote 
such stereotypes and “influenc[e] gender diversity in the 
CS field”. Their findings are corroborated by Hinckle et al. 
(2020) who found that student learning was not directly 
influenced by prior experience, but was mediated by their 
perception of CS. Numerous studies in higher educa-
tion have also found that motivational and affective fac-
tors influence performance and participation in the field 
(Lishinski et  al., 2022), and that they are influenced by 
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gender and ethnicity (Lishinski et al., 2022; Warner et al., 
2022). These studies confirm the importance of:

• developing CS and CT initiatives that broaden par-
ticipation to all students,

• considering their impact on performance and per-
ception to verify whether the gaps between different 
groups of participants are decreasing.

The influence of social and structural barriers on equity 
related to the perception of the discipline
Perception-related biases are considered to contribute 
to disparities and under-representation in CS for women 
(Rachmatullah et  al., 2022; Wang & Hejazi Moghadam, 
2017), and more generally for under-represented minori-
ties (Lishinski et al., 2022; Warner et al., 2022), due to ste-
reotype threat (i.e. conforming to/inducing a stereotype 
simply because you know it exists). Unfortunately, the 
developmental literature has found that basic stereotypes 
develop in children as young as 2–3 years old (Bers et al., 
2022b). This is confirmed by multiple studies that identi-
fied CS-related stereotypes in young children (e.g. start-
ing 6 years old, Master et al. 2021, and even kindergarten, 
Sullivan & Bers, 2016). The result is that when students 
are exposed to negative CS-stereotypes, students in the 
stereotyped group (e.g. girls in this case) tend to endorse 
those beliefs (Plante et al., 2013; Vandenberg et al., 2021) 
which negatively impacts their performance, motiva-
tion, and career intentions (Master & Meltzoff, 2020; 
Plante et al., 2013; Vandenberg et al., 2021). For instance, 
Cheryan et  al. (2013) found that women who were pre-
sented non-stereotypical views on computer scientists 
were more likely to express an interest in majoring in 
CS. Therefore, students may make early career decisions 
informed by such stereotypes, contributing to an early 
gender gap (Wang & Hejazi Moghadam, 2017), and long-
term disparities in the fields of CS and engineering (Mas-
ter et al., 2021).

As gender-related stereotypes are prevalent, it is not 
surprising that numerous studies find that girls perceive 
CS more negatively than boys (El-Hamamsy et al., 2023c; 
Kong et al., 2018; Vandenberg et al., 2021; Witherspoon 
et  al., 2016), contributing to a lower sense of belonging 
(Cheryan et  al., 2013, 2017; Opps & Yadav, 2022; Van-
denberg et  al., 2021), self-efficacy (Beyer, 2014; Kong 
et al., 2018; Vandenberg et al., 2021), and interest (Beyer, 
2014; Master et  al., 2021). Provided the importance of 
such factors for academic achievement and career deci-
sions (Bandura, 1993; Beyer, 2014; Howard et al., 2021a; 
Olivier et  al., 2019), the consequence is that CS “suffers 
from the lowest participation of girls than other sci-
ence, technology, engineering, and mathematics (STEM) 

subjects (Cheryan et al., 2017)" (Hinckle et al., 2020; Jiang 
& Wong, 2022). As prior experience may positively affect 
attitudes toward CS (Hinckle et  al., 2020), researchers 
have suggested that engaging early in CS-related activi-
ties that “signal equally to both girls and boys that they 
belong and can succeed” (Cheryan et  al., 2017) in CS, 
may increase girls’ interest, and ultimately contribute to 
addressing gender equity in the field (Cheryan et al. 2017; 
Hinckle et  al., 2020; Jiang & Wong, 2022). Therefore, 
in the rest of the article we refer to perception-related 
equity as the reduction of the influence of stereotypes 
around CS & CT that lead to biases between groups of 
people (namely gender) and may influence their motiva-
tion, engagement, participation and persistence in these 
fields.

How are CS and CT curricular reforms having an impact 
and contributing to equity in these fields?
Early CS and CT opportunities for all students are essen-
tial to address structural and social barriers, broaden 
CS participation, and promote equity in the field. An 
increasing number of initiatives have therefore sought to 
include CS and CT in compulsory K-12 worldwide (Bal-
anskat & Engelhardt, 2015; Bers et  al., 2022b; Bocconi 
et al., 2022;  European Union and Education, 2019; Hub-
wieser et al., 2015; Voogt et al., 2015; Webb et al., 2017). 
In this context, it is essential to establish how such initia-
tives affect students (Guskey, 2002). This should extend 
beyond learning to include perception, and investigate 
how these dimensions interrelate (Hinckle et  al., 2020) 
to ensure that expanding CS to K-12 “neither exacerbates 
existing equity gaps in education nor hinders efforts to 
diversify the field of CS” (Wang & Hejazi Moghadam, 
2017). The student-level impact of widespread CS and 
CT curricular reforms, and professional development 
(PD) programmes, is however seldom evaluated. “Stud-
ies that relate student’s learning achievement and teach-
ers’ capacity building are still rare in the literature of CT 
(Mason & Rich, 2019)” (Kong & Lai, 2022a). This is likely 
due to the difficulties countries face implementing CS & 
CT reforms, including adequately training a sufficient 
number of teachers to teach the new concepts (Bocconi 
et  al., 2022; El-Hamamsy et  al., 2021b). Difficulties of 
assessing teachers’ mastery of Computational Pedagogi-
cal Content Knowledge (Hickmott & Prieto-Rodriguez, 
2018), and what is implemented after PD programmes 
(El-Hamamsy et al., 2022a) also exist, despite their direct 
influence on student learning (Kong & Lai, 2022a). To the 
best of our knowledge, only Kong & Lai (2022a) linked 81 
teachers’ content knowledge with 3226 students’ achieve-
ment in their evaluation of a PD programme. However, 
these teachers chose to participate in the PD programme 
and were required to teach a year-long curriculum. This 
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differs significantly from mandatory curricular reform 
contexts, where the PD programme is imposed on all 
teachers, resulting in teachers who implement the peda-
gogical content to varying degrees, if at all. Since a pre-
requisite to achieving equity is that CS-related reforms 
have an impact, the lack of studies evaluating the impact 
of CS reforms means that there is little insight into 
whether these reforms are contributing to equity and 
reducing learning and perception gaps between different 
groups of students.

Since a “K-12 curriculum is a zero-sum game, where 
adding a subject means [removing] something” (Otten-
breit-Leftwich & Yadav, 2022), it is essential to establish 
the effectiveness of implementing CS & CT curricula in 
formal education. Evaluating a reform’s effectiveness is 
critical given:

• the need to improve corresponding PD programmes 
and curricula (Hickmott & Prieto-Rodriguez, 2018),

• the objective of sustaining the reform in teachers’ 
practices (Hubers, 2020),

• the importance of alleviating concerns of fund-
ing agencies and government bodies regarding the 
impact of the reform and PD programme on teachers 
(Hickmott & Prieto-Rodriguez, 2018) and students.

Studies evaluating the impact of reforms are even more 
pressing since recent findings indicate that teachers are 
not necessarily convinced that their students are learning 
as a result of teaching these novel curricula (El-Hamamsy 
et  al., 2023b; Toh, 2016) . Establishing the benefits at 
the student-level is therefore not only necessary to have 
a complete evaluation of reforms (Avry et  al., 2022; 
El-Hamamsy et  al., 2023b; Guskey, 2000), but is essen-
tial if the objective is to promote teachers’ decisions to 
continue to implement a new practice in the long term 
(Howard et al., 2021b; Klingner et al., 2001).

Problem statement and research questions
The present study therefore looks to contribute to under-
standing the influence of CS curricular reforms on stu-
dent learning and perception and determining to what 
extent they contribute to equity with respect to: (i) gen-
der, i.e. reducing significant differences between boys’ 
and girls’ perception and performance; (ii) performance, 
i.e. reducing significant differences between initially low 
and high performers; and (iii) self-efficacy, i.e. reducing 
significant differences between students who have low 
or high self-efficacy. Please note that although the main 
focus of the article is on the former equity dimensions, 
one must not neglect the importance of equity in terms 
of socioeconomic status (Vandenberg et al., 2021; Wang 

& Hejazi Moghadam, 2017), a dimension which we did 
not have access to in the present context.

We propose to address the overarching question of 
equity in two steps: first investigating whether and how 
the reform significantly influences perception and learn-
ing (impact), and then how the results differ according 
to student populations (equity). To that effect, we inves-
tigate the impact of a mandatory CS curricular reform 
and teacher PD programme (see “Context: a computer 
science curricular reform for all to promote equity start-
ing primary school”) to understand whether and how 
the primary school Computer Science curricular reform 
is contributing to reaching equity goals (i.e. broadening 
participation in the field to a larger number and a more 
diverse set of people). We therefore consider the follow-
ing research questions: 

(RQ1)  How does teaching CS pedagogical con-
tent1 impact student learning? And how 
does it impact learning-related gender- and 
performance-equity?

(RQ2)  How does teaching CS pedagogical content 
impact students’ perception of CS and the tools 
used to teach it (i.e. robots and tablets)? And 
how does it impact perception-related self-effi-
cacy and gender-equity?

To answer these questions, we employ data collected 
between January 2021 and June 2022 in the context of 
a mandatory primary school CS-curricular reform that 
is presently being deployed to all grade 1–6 teachers in 
the region after a piloting phase. The data stem from 
three studies (see Table  1), the first on student learning 
(RQ1), the second on perception of the discipline and 
performance (RQ1, RQ2), and the third on perception 
of the discipline (RQ2). These studies involved, respec-
tively,  n1 = 1384 , n2 = 2433 and n3 = 1644 grade 3–6 
students (ages 7–11) and their n1 = 83 , n2 = 142 and 
n3 = 95 teachers. The data are analysed through hierar-
chical linear modelling for student learning, and Struc-
tural Equation Modelling for perception, to establish 
the link between teaching CS and these key outcome 
variables.

Context: a computer science curricular reform 
for all to promote equity starting at primary school
The research is part of a large-scale project seeking to 
introduce Digital Education (also referred to as Com-
puting Education) as a new discipline for all students in 

1 CS pedagogical content refers to pedagogical activities that intend to teach 
students about CS, as opposed to those that employ CS as a tool to teach in 
other disciplines.
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the Canton of Vaud in Switzerland (El-Hamamsy et  al., 
2021b). The curricular reform relies on the collabora-
tion between four institutions in the region (the depart-
ment of education, the university of teacher education, a 
higher education university and the technical university) 
within a research practice partnership to develop the 
curriculum and corresponding mandatory teacher-PD 
programme for CS, Information and Communication 
Technology and Digital Citizenship. To ensure the sus-
tainability and scalability of the reform, the project began 
with a piloting phase with 10 representative schools from 
the region (hereby referred to as CS-schools) before 
large-scale deployment. The CS-curriculum and teacher 
PD-programme was piloted for the first time and itera-
tively adjusted for grades 1–4 in 2018–2019, and for 
grades 5–6 in 2019–2020, with all the teachers from the 
10 CS-schools (approximately ngrades1−4 = 350 , and 
ngrades5−6 = 180)2. This resulted in a reference manual3 
containing pedagogical activities (for CS, ngrades1−4 = 13 , 
ngrades5−6 = 12 ) that the teachers can choose from to 
achieve the curricular objectives (in terms of algorithms 
and languages, machines and networks, information 
and data, and the impact of CS on society). The teachers 
were trained to teach these activities during a mandatory 
CS-PD that they participated in prior to the present study 
and were encouraged to teach the novel discipline which 
is now part of the regional study plan. They were how-
ever not required to do so. Given that in primary school 
there is no dedicated hour in the grid for Digital Educa-
tion (and thus CS), and that the discipline is not evalu-
ated, this leads to a large variability in both what and 
how much is taught. This therefore required analysing 

the student-level impact of the curricular reform, and the 
influence being taught specific pedagogical content by 
teachers (which we refer to as adoption). While the ini-
tial focus was on student learning (see study 1 in “Study 
1: student learning and the link with what teachers from 
the CS-schools implemented”), a parallel pilot study in 
grade 9 (ages 13–14) in Spring 2021 indicated that there 
were already significant perception-related gender gaps 
(El-Hamamsy et al., 2023c). This lead to the introduction 
of a student perception survey in Fall 2021 (see studies 2 
and 3 in “Study 2: student perception, the link with what 
teachers from the CS-schools implemented, and correla-
tions with performance” and “Study 3: student perception 
between CS-schools and schools where teachers were 
not yet trained to teach computer science”) to determine 
when gender gaps appear and whether teaching CS con-
tributes to closing these gaps.

Study 1: student learning and the link with what 
teachers from the CS‑schools implemented
Methodology (study 1)
Participants and data collection (study 1)
The first study follows all the grade 3–4 students from 
7 CS-schools over 6 months to evaluate learning in a 
pre- post-test design. These students were all introduced 
to CS for the first time during the 2018–2019 academic 
year and therefore had approximately 2 years of prior 
CS experience. The objective of the study was therefore 
to see to what extent these students progressed over that 
time period in relation to what they were taught. Given 
the scale of the study, the objective was to focus on a sub-
set of the learning objectives that could be measured in a 
valid and reliable way, and at a large scale, in grades 3–6. 
We therefore chose to focus on the CT-concepts defined 

Table 1 Synthesis of the three studies evaluating the impact of the CS‑curricular reform at the student‑level

Study 1: learning Study 2: perception and 
performance

Study 3: perception

Date January and June 2021 November 2021 June 2022

Grades 3–4 (ages 7–9) 3–6 (ages 7–11) 3–6 (ages 7–11)

Number of schools 7 CS‑schools 7 CS‑schools 3 CS‑schools and 2 
non‑CS‑schools

Number of teachers 83 142 95

Number of students 1384 2433 1644

Student—CT‑concepts x x

Student—perception of CS x x

Teacher—perception of CS x

Teacher—activities taught x

2 The up-to-date Computer Science curriculum can be accessed at https:// 
www. pland etudes. ch/ web/ guest/ educa tion- numer ique
3 The 2021–2022 version of the pedagogical content can be accessed at 
https:// www. vd. ch/ filea dmin/ user_ upload/ accue il/ Commu nique_ presse/ 
decod age. pdf.

https://www.plandetudes.ch/web/guest/education-numerique
https://www.plandetudes.ch/web/guest/education-numerique
https://www.vd.ch/fileadmin/user_upload/accueil/Communique_presse/decodage.pdf
https://www.vd.ch/fileadmin/user_upload/accueil/Communique_presse/decodage.pdf
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by Brennan and Resnick (2012)4 which align with the 
region’s CS curricular objectives (sequences, loops, con-
ditionals, and while statements), all the while considering 
what the teachers taught between the pre- and post-tests. 
To that effect, we employed the competent Computa-
tional Thinking test (cCTt, El-Hamamsy et al., 2022c), a 
25-item CT-concepts’ assessment (see example questions 
in Fig.  1) originally developed and validated for grades 
3–4 that evaluates CS concepts of sequences, loops, if-
else statements and while statements. This instrument 
was later validated for grades 3–6, including a Differen-
tial Item Functioning analysis which demonstrates that 
the cCTt is not biased towards genders (i.e. it is gender 
fair) and can therefore be used to measure significant dif-
ferences between boys’ and girls’ responses (El-Hamamsy 
et al., 2023d).

The student-learning data were complemented by data 
on teachers’ perception of CS and the CS-PD acquired in 
January 2021, and data regarding what teachers taught 
(which we refer to as adoption) between January and 
June 2021 (see Table 2). The adoption data are based on 
the activities that the teachers were introduced to dur-
ing their CS professional development programme and is 
collected in the form of a number of periods per activ-
ity which we are then able to convert into boolean values 
and derive the amount of CS activities taught.

Please note that the data sets include missing data due 
to (i) students not being present for either the full pre- 
and/or post- tests, (ii) teachers not administering the 
test, or (iii) teachers not answering the pre- and/or post- 
teacher survey. As the analyses combine multiple data 

sets, a synthesis of the number of students and teachers 
for which the full responses are available with respect to 
the data subsets considered is provided in Table 3. Finally, 
while it would have been interesting to have a control 
group to be able to infer how learning compared between 
students who had access to CS courses and those who 
did not, the administration of a performance assessment 
to students in non-CS-schools was not authorised due 
to ethical concerns. Nonetheless, given the variability in 
what the teachers taught, 4 grade 3 classes and 6 grade 4 
classes did not receive any CS education and thus provide 
an interesting point of comparison. As the second data 
subset (test + adoption data) constitutes the core of the 
analysis, we provide more detailed demographics infor-
mation in Appendix A.1 in Table 10.

Analysis methodology (study 1)
The student learning data are analysed in three stages.

First, the January and June test data ( n = 1319 ) are 
analysed using multiple ANOVA with Benjamini–Hoch-
berg p-value correction to reduce the false discovery rate 
(study 1a). The results are reported as significant (i.e. 
p < 0.05 ) only if the minimum effect size (Cohen’s D5) 
required to achieve a statistical power of 0.8 is reached 
with α = 0.05 . Dunn’s post hoc test is then applied for 
multiple comparisons when significant. When compar-
ing responses between groups of students (according to 
the dependent variables) the delta between the average 

Fig. 1 Two cCTt question formats: grid on the left and canvas on the right (figure taken from El‑Hamamsy et al. 2022c)

4 Brennan and Resnick (2012)’s operational definition of CT decomposes 
CT into CT concepts (i.e. the concepts that computer scientists engage 
with), practices (i.e. the processes they employ to resolve computational 
problems) and perspectives (i.e. their perception of CT). Please note that at 
the time of the study there were no valid, reliable and scalable instruments 
to measure CT-practices and perspectives.

5 Cohen’s D is a means of quantifying the difference between the means of 
two samples ( µ1 , µ2 ) all the while accounting for their standard deviations 
( sd1 and sd2 ). Cohen’s D is therefore computed as the difference between the 
two sample’s means divided by the pooled standard deviation ( sp ). There-

fore, Cohen’s D =
µ1−µ2

sp
 where sp =

sd2
1
+sd2

2

2
 . The rule of thumb to inter-

pret Cohen’s D is as follows: if around 0.2 the effect is considered small, if 
around 0.5 the effect is considered medium and if around 0.8 or above the 
effect is considered large.
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scores on the cCTt’s scale is provided ( � ), in addition to 
the F-value, degrees of freedom, corresponding p-value 
and effect size using Cohen’s D. The ANOVA considers 
the students’ scores as the dependent variable, and the 
interaction between the following independent variables: 
time (pre-test or post-test), grade (3 or 4) and gender 
(boy or girl as indicated on the school’s records6).

Second, the data set that introduces the adoption data 
( n = 989 ), i.e. what the teachers taught between the pre- 
and post-test, is analysed through hierarchical linear 

modelling which nests students in classes and classes in 
schools (study 1b).

Finally, to determine whether teacher-level variables 
(see Table  2) influence student learning, the third data 
set (study 1c) that includes teacher perception is analysed 
through a correlation analysis with averaged class-level 
student scores ( n = 67 ), prior to a hierarchical linear 
modelling at the student-level ( n = 752 ). The hierarchi-
cal linear modelling done in these two stages was con-
ducted in R (version 4.2.1, R Core Team, 2019) with nlme 
(version 3.1-157, Pinheiro et al., 2022; Pinheiro & Bates, 
2000) and sjstats (version 0.18.2, Lüdecke, 2022).

Results: the impact of teaching CS on student learning 
(study 1)
Student learning and the influence of gender and when the 
test was taken (study 1a)
The ANOVA indicates that all independent variables and 
their interactions significantly influence the test score 
(see Appendix A.3 Table 12 for a synthesis of the effects) 
and the following trends emerge.

Table 3 Number of students participating in study 1 on student learning structured according to the number of complete 
observations according for each data subset considered: pre‑ (January) and post‑test (June) data, teacher adoption data (at the time of 
the post‑test, June), teacher perception data (at the time of the pre‑test, January)

Number of students per grade

Data subset Grade Boys Girls Total

0. Pre‑test (January) or post‑test (June) data Grade 3 357 313 670

(nclasses = 83) Grade 4 363 351 714

All grades 720 664 1384

1. Pre‑test (January) or post‑test (June) data Grade 3 332 297 629

(nclasses = 74)—study 1a Grade 4 353 337 690

All grades 685 634 1319

2. Pre‑test (January) or post‑test (June) data and adoption data Grade 3 256 224 480

(nclasses = 55)—study 1b Grade 4 265 244 509

All grades 521 468 989

3. Pre‑test (January) or post‑test (June) data and adoption data and percep‑
tion data

Grade 3 207 186 393

(nclasses = 43)—study 1c Grade 4 207 173 380

All grades 414 359 773

4. Pre‑test (January) or post‑test (June) data and perception data Grade 3 257 238 495

(nclasses = 55)—study 1c Grade 4 262 232 494

All grades 519 470 989

6 Please note that we never asked students to relate their gender throughout 
the data collection process to avoid biasing students’ responses and perfor-
mance as a result of stereotype threat. Indeed, as we could not guarantee 
that all students would participate in all the data collections which were 
conducted over multiple sessions, and therefore could not solely rely on 
collecting the gender information at the end of the final data collection, we 
relied on the gender information obtained from the school’s records. This 
information is provided by students’ parents to the schools and therefore 
most likely aligns with the students’ sex, without a guarantee that this corre-
sponds to up-to-date information regarding the way students identify them-
selves. Furthermore this gender information was provided by the schools in 
a binary format. Although we acknowledge that gender relates to a person’s 
identity, differs from biological sex (Risman, 2018), and is increasingly rec-
ognised as being non-binary, this was not yet fully the case in the country 
where the study was conducted at the level of formal primary education and 
at the time of the data collection. Indeed, at the time of the data collections, 
gender at the level of primary school and formal education more broadly 
was mainly considered as a binary construct. Nonetheless, most interna-
tional studies find that the proportion of people who identify as transgen-
der is generally inferior to 1.5% (e.g. 0.6% of the population aged 13 or 
older in the US, Herman et al. (2022); between 0.5% and 1.3% for children, 
adolescents and adults according to Zucker 2017’s international review). 

The potential discrepancy between the gender information on the school’s 
records and students’ gender identity represents therefore at most a 1.5% 
error which is below the level of significance which would affect the validity 
of the findings with a confidence level α = 0.05 . Therefore, in order to align 
with the current practice in the STEM education community which often 
employ the term gender and gender biases when actually gathering and ana-
lysing binary or biological sex data (e.g. Jensen et al., 2023; Sung et al., 2023; 
Malespina & Singh, 2023), we maintain the term gender, gender-biases and 
gender-gaps when referring to our data and our analyses.

Footnote 6 (continued)
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Are all students progressing?
As Fig.  2 shows, grade 4 students perform better 

than grade 3 students with a medium effect size overall 
(grade 4>3 � = 2.468 , p < 0.0001 , Cohen’s D = 0.502 ) , 
in the pre-test (pre-test grade 4 > 3, � = 2.686 , p = 0.0 , 
Cohen’s D = 0.549 ) and in the post-test (post-test grade 
4 > 3 � = 2.249 , p = 0.0 , Cohen’s D = 0.482 ). Stu-
dents also performed better on the post-test overall 
(post-test > pre-test, � = +2.256 , p < 0.0001 , Cohen’s 
D = 0.457 ) with students in grades 3 and grade 4 
improving by a medium effect size (grade 4 post > pre, 
� = 2.048 , p = 0.0 , Cohen’s D = 0.436 ; grade 3 post > 
pre, � = 2.485 , p = 0.0 , Cohen’s D = 0.51 ). Interestingly, 
the grade 3 students’ performance in the post-test (June) 
was equivalent to the grade 4 students’ performance on 
the pre-test (January), although only 6 months separated 
the assessments (grade 4 pre-test ∼ grade 3 post-test, 
� = 0.201 , p = 0.4444 , Cohen’s D = 0.042).

Are there gender biases and are these closing?
The results that account for the students’ gender 

alone show that there is a significant main effect of stu-
dents’ gender on their performance. In particular, boys 
have significantly higher scores than girls overall with a 
small effect size (boys > girls, � = 0.551pts , p = 0.0015 , 
Cohen’s D = 0.109 ). Considering the two-way interac-
tion effects, we observe the following tendencies. Over 
all students, the gender gap is significant in the pre-
test (January boys > girls, � = 0.664pts , p = 0.0079 , 
Cohen’s D = 0.131 ) but decreases and is no longer sig-
nificant by the post-test (June boys ∼ girls, � = 0.438pts , 
p = 0.0744 , Cohen’s D = 0.091 ). Considering the two-
way interactions, these gender differences are significant 
in grade 3 (grade 3 boys > girls, � = 0.725pts , p = 0.004 , 
Cohen’s D = 0.145 ) , but not in grade 4 (grade 4 boys ∼ 
girls, � = 0.469pts , p = 0.0604 , Cohen’s D = 0.098 ) . The 
three-way interaction between these variables thus helps 

shed some light on the trends observed (see Fig.  3) to 
draw conclusions:

• In grade 3 there is a small marginally significant 
gap in the pre-test (grade 3 pre-test boys ∼ girls, 
� = 0.764pts , p = 0.0526 , Cohen’s D = 0.161 ) and 
a small significant gap in post-test (grade 3 post-
test boys > girls, � = 0.687pts , p = 0.0422 , Cohen’s 
D = 0.139 ) , with the effect sizes indicating that the 
gap is getting smaller, but has not yet closed.

• In grade 4 there are small marginally significant dif-
ferences in the pre-test (grade 4 pre-test boys ∼ 
girls, � = 0.727pts , p = 0.0624 , Cohen’s D = 0.151 ) 
and no significant differences observed in the post-
test (grade 4 post-test boys ∼ girls, � = 0.211pts , 
p = 0.5046 , Cohen’s D = 0.046 ) , indicating that the 
gender gap has closed.

To complement these findings we consider the student 
learning data from study 2 (see “Study 2: student percep-
tion, the link with what teachers from the CS-schools 
implemented, and correlations with performance”) that 
was conducted in November 2021 (5 months after the 
post-test of study 1) in the same schools and includes 
students from grades 3–6 (7–11). This is a particu-
larly interesting cohort of students because students 
in grades 3 and 4 in study 2 are the first group of stu-
dents to have had access to CS education starting first 
grade. Analysing the student performance data confirms 
that students continue to progress in terms of CT-con-
cepts when moving on to grades 5 and 6 (see Fig.  4). 
Indeed, the differences between grades 3 and 4 are sig-
nificant ( � = 2.87pts , p < 0.0001 , Cohen’s D = 0.566 ), 
as well as those between grades 4 and 5 ( � = 1.35pts , 
p < 0.0001 , Cohen’s D = 0.266 ), although there is no 
significant difference between students in grades 5 and 

Fig. 2 Student performance distribution according to grade and whether in the pre‑ or post‑test
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6 ( � = 0.423pts , p = 0.1345 , Cohen’s D = 0.083 ). This is 
consistent with the fact that students increase in maturity 
faster when they are younger (Hartshorne & Germine, 
2015). As such, students in grades 3 and 4 differ more 
significantly in terms of their cognitive abilities than stu-
dents in grades 5-6.

Evaluating the difference between boys’ and girls’ 
scores per grade in November 2021 (study 2) indicates 
that the results are non-significant across grades (see 
Fig.  4). As these students were in their 3rd or 4th year 
of CS education, this would appear to corroborate the 
previous findings: students who have had early and pro-
longed access to CS education are less likely to exhibit 
CS-performance gender-gaps.

Student learning and the influence of the CS‑education 
received (study 1b)
To understand how teaching the CS-pedagogical content 
from the curriculum may have influenced student learn-
ing, we consider the data from 989 students for whom 
the pre- and post- tests, and teacher adoption data (i.e. 
what the teachers taught, see “Participants and data col-
lection (study 1)”) are available. We implemented mul-
tiple hierarchical linear models while nesting students 
in classes and classes within schools to account for the 

different ways of considering student learning and adop-
tion7 These models consistently indicated that there was 
no direct link of adoption on students’ post-test scores. 
For instance the model considering how the delta between 
the post and pre-tests is influenced by the students’ grade, 
gender and the number of CS activities taught estimates 
a non-significant effect of the number of CS activities 
taught on the progress students made with b = 0.122 , 
df = 45 , t = 0.442 , and p = 0.661 (see Table 11 in Appen-
dix A.2). Only the pre-test score significantly predicts the 
progress made in the post-test, with students performing 
lower at the pre-test progressing more. While the lack of 
a significant influence of CS activities taught on learning 
may appear surprising, visualising the trends between 
teaching and not teaching CS pedagogical content, as well 

Fig. 3 Student performance distribution according to grade, gender and whether in the pre‑ or post‑test

7 The hierarchical linear models considered the following:
• Dependent variables: the delta between the post-test and pre-test 

scores or the normalised change (a symmetrical version of the learning 
gain, Coletta and Steinert, 2020)

• Independent variables: the interaction between pre-test score, grade (3 
or 4), and different adoption metrics (number of activities, or amount 
of CS-education time)

• Random effects: classes within schools. Please note that random effects 
are not the main focus of the analysis but still need to be included in 
the hierarchical linear model in order to account for their influence 
on the dependent variables. We therefore do not estimate the impact 
of each school or class on the outcome but rather control for them in 
order to avoid drawing erroneous conclusions.
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as according to the number of activities taught, confirms 
the lack of an evident trend (see Fig. 5).

Student learning and the influence of teacher demographics, 
perception and the CS‑PD received (study 1c)
Given the link between access to CS education and per-
formance, and the lack of a direct link between what the 
teachers taught and student learning, it would appear 
that there are additional factors at play when affecting 
learning. Therefore in a final phase, the teachers’ aggre-
gate (i) perception of the PD programme, (ii) percep-
tion of CS, (iii) autonomous motivation to teach CS8 and 
the (iv) demographic data collected at the same time as 
the pre-test were put in relation to the student learning 
results. First, the students’ results were averaged per class 
to obtain a class performance and correlated with the 
teacher-level variables. As the perception data are on a 
7-point Likert scale and non-normally distributed, Spear-
man’s rank correlation was used. All the correlations 
with class performance were non-significant (whether in 
terms of teacher demographics, prior experience or CS 

perception), with the exception of the training evaluation 
(Spearman’s rho = 0.33, p = 0.007).

As adoption was found to be not significantly related to 
student learning (study 1b), we compared two hierarchi-
cal linear models at the student-level, one with and one 
without adoption variables, with both including student-
level, teacher perception-level and teacher demographic-
level variables. An analysis of variance between the two 
models indicates that the difference is non-significant (p 
= 0.768). The more parsimonious model which does not 
include the adoption data (see Table  4), and which also 
relies on a larger set of complete data (i.e. 1027 vs. 752 
observations) should therefore be preferred. The result-
ing hierarchical linear model at the student-level con-
firms the trend observed in the correlation analysis, and 
indicates that the following dependent variables predict 
the delta between the pre- and post-test scores, with no 
influence of teacher demographic variables (including 
teaching and ICT experience):

• The pre-test score predicts the delta negatively 
( p < 0.0001 , β = −0.35 ), i.e. students performing 
lower at the pre-test progressed more.

• The average PD programme evaluation score predicts 
the delta positively ( p = 0.0053 , β = 1.02 ), i.e. stu-
dents of teachers who positively viewed the CS-PD 
progressed more.

Fig. 4 Student performance distribution according to grade and gender using data from the second study (n = 2226, November 2021). All 
grade‑differences are significant, excepted the one between grades 5 and 6 while the gender‑differences per grade are non‑significant

8 The Autonomous Motivation (AM) score is computed using the 
Relative Autonomy Index (Grolnick & Ryan, 1989) by combining the 
sub-scales for intrinsic motivation (IM), identified regulation (IdR), 
introjected regulation (InR) and external regulation (ER) and aggre-
gating them as explained by Howard et  al. (2020). That is to say: 
AM = (2× IM+ 1× IdR − 1× InR − 2× ER)/6
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Synthesis and limitations of study 1
The students progress in terms of CT-concepts over 
time, with grade 3 students achieving a year’s worth of 
CT-development in a 6-month window (study 1a, posi-
tive impact). However, the results of the hierarchical 
linear modelling indicate that there is no direct effect of 
what was taught with the progress students made (study 
1b, no impact and therefore negative for equity). The 
only factors that appear to influence learning are: (i) 

the students’ scores in the pre-test, with students who 
have lower scores progressing more thus contributing 
to performance-equity; (ii) the teachers’ perception of 
the PD programme (study 1c, positive impact). There 
is additionally no influence of teachers’ demographics 
on what the students have learnt, indicating that the 
PD programme helped prepare teachers to teach CS 
pedagogical content, irrespective of their prior teaching 
experience and ICT experience. This contributes once 

Fig. 5 Student normalised change distribution according to grade, access to CS‑education (left) and the number of CS‑activities taught 
(centre for grade 3, right for grade 4). A two‑way ANOVA between the grade and what was taught does not identify any significant differences 
between groups in terms of access to CS education ( F(2) = 1.05 , p = 0.35 ). A one‑way ANOVA per grade did not identify any significant differences 
according to the number of activities taught (grade 3 F3(1) = 0.13 , p3 = 0.72 ; grade 4 F4(1) = 0.89 , p4 = 0.35)

Table 4 Hierarchical linear model for student learning with respect to student‑, and teacher‑level variables (dependent variable: delta 
between pre‑ and post‑test scores, n = 1027 students in 57 classes in 6 schools) 

Significant variables are highlighted in bold. R2 = 0.279 , AIC = 5386 , BIC = 5474 , RMSE = 3.04 . Random effects σ 2 = 9.72 , τclass = 0.57 , τschool = 1.37

Please note that (i) the classes had an average of 18± 2 students per class (minimum 14, maximum 22); (ii) the schools had an average of 8± 5 classes (i.e. 8, 8, 1, 
17, 6, 7, 8 classes) who participated in the three data collections required for this analysis. These numbers are coherent with the relative sizes of the schools, with the 
exception of the third where the majority of teachers chose not to participate in the data collection

Variables Estimate 95% CI Std. error Degrees of 
freedom

t‑value p‑value

Student‑level (Intercept) 10.48 [5.42, 15.54] 2.579 968 4.06 0.0001
Pre‑test score − 0.35 [− 0.40, − 0.31] 0.023 968 −15.54 0.0000

Gender (girl) 0.17 [−0.22, 0.55] 0.198 968 0.84 0.4021

Grade (3) 0.35 [−0.34, 0.53] 0.823 39 0.42 0.6746

Grade (4) 1.15 [−0.13, 0.73] 0.814 39 1.41 0.1663

Teacher‑perception CS‑PD programme evaluation 1.02 [0.07, 0.38] 0.344 39 2.96 0.0053

CS utility perception 0.15 [−0.84, 1.06] 0.628 39 0.24 0.8122

CS non‑utility perception 0.27 [−0.72, 1.18] 0.600 39 0.45 0.6561

CS autonomous motivation −0.21 [−0.97, 0.56] 0.380 39 −0.54 0.5896

Teacher demographics Age −0.14 [−0.30, 0.01] 0.078 39 −1.83 0.0743

Experience with informatics 0.01 [−0.06, 0.09] 0.036 39 0.41 0.6828

Teaching experience 0.11 [−0.05, 0.27] 0.079 39 1.42 0.1640

Digital education teaching experience −0.10 [−0.31, 0.11] 0.104 39 −0.94 0.3552

Perceived ICT competence −0.57 [−1.34, 0.19] 0.376 39 −1.53 0.1345

Perceived relative ICT competence 0.20 [−0.65, 1.05] 0.421 39 0.47 0.6387



Page 15 of 43El‑Hamamsy et al. International Journal of STEM Education  (2023) 10:60 

more to equity by ensuring that all students have access 
to quality CS education, irrespective of the teachers’ 
background (structural barriers). Finally, the findings 
indicate the existence of gender gaps (study 1a, likely 
due to social barriers) but that these get smaller the 
longer students are in contact with CS education (posi-
tive for gender-equity).

There are, however, limitations due to the lack of 
a true control group that has never had access to CS 
education. Indeed, the students in the present study 
were not compared to students who had not done any 
CS education between the pre- and post-tests, or since 
the start of their schooling. The fact that students with 
lower pre-test scores progress more may also be due 
to the existence of a “ceiling effect” for already higher 
performing students (either cognitively, with respect 
to what the cCTt measures, or what is attainable with 
the pedagogical content taught). In terms of teacher 
and class data, while the teachers were asked what they 
taught and for how long, this does not indicate their 
mastery of the content, the implementation fidelity 
(i.e. to what extent they put emphasis on the CS con-
cepts in these activities) or whether they taught other 
activities that were not part of the PD programme that 
may be linked to CS education or grid based concepts 
which are also part of the maths curriculum. Finally, 
the assessment used:

• focuses on CT-concepts, although there are other 
elements of CT that may be positively affected by 
access to CS education which are not measured (in 
addition to other dimensions of the CS curricular 
reform including those pertaining to machines and 
networks, data and information and the impact of 
CS on society);

• is used in both the pre- and post-test due to the 
fact that (i) at the time of the studies there existed 
no valid and reliable assessment of CT-concepts in 
primary school for these grades; (ii) no validated 
assessment proposes isomorphic variants which 
have been proven to have the exact same difficulty 
and can therefore be reliably employed in the com-
parison of pre–post test design. To the best of our 
knowledge this remains true today as only Parker 
et  al. (2022) has begun investigating how to cre-
ate an isomorphic version of their instrument (the 
ACES test) and analysed what types of changes to 
the questions could truly be considered isomor-
phic in this context. This is important because 
“seemingly superficial changes in an item’s context 
can cause students to recruit different knowledge 
and cognitive processes when solving a problem” 
(Parker et al., 2022).

Study 2: student perception, the link with what 
teachers from the CS‑schools implemented, 
and correlations with performance
Methodology (study 2)
Participants and data collection (study 2)
This study extends the first by evaluating students’ mas-
tery of CT-concepts and their perception of the disci-
pline. The data collection was conducted in November 
2021 and involved all students from grades 3–6 in the 7 
CS-schools involved in the first study (see Table 5). The 
students first responded to a perception survey, before 
being administered the cCTt (which was shown to be 
adapted for grades 5–6 in El-Hamamsy et  al. 2023d) to 
assess their mastery of CT-concepts.

The perception survey (see Table  6) targeted three 
dimensions.

The first dimension is the students’ perception of Com-
puter Science, including who they perceive as doing CS, 
called “informatics” in the region, a scalable alternative to 
the draw-a-computer-scientist test (Pantic et  al., 2018). 
Students were asked whether they perceived certain 
role models (e.g. influencers such as parents and teach-
ers, Wang & Hejazi Moghadam, 2017), someone else, 
or nobody, as doing CS. One hypothesis is that students 
who have access to CS-education are more likely to per-
ceive their teachers as role models. As primary school 
teachers are mainly women, they can be considered 
female role models, an element that is key to engaging 
girls in the field (Cheryan et al., 2017; Kong et al., 2018). 
Another hypothesis is that perceiving people “close 
to them” as doing CS (i.e. related to the idea that CS is 
becoming ubiquitous and accessible to all), will contrib-
ute to improved perception of CS overall.

The second dimension is how students perceive robots, 
as robotics is a means of teaching CS (El-Hamamsy 
et al., 2021a), and CS and engineering tend to be subject 
to stronger stereotypes than science and maths among 
young students (Master et al., 2017). Interestingly, recent 
studies have found that there is a link between students’ 
perception of robots and their “aspirations to pursue a 
career in science” (Giang et  al., 2023), with introduc-
tions to educational robotics affecting their perception of 
robots.

The third dimension is how students perceive tablets 
and other digital devices which are also employed as 
means of teaching CS (and ICT) in the curricular reform.

For each of these dimensions (CS, robotics, tablets), the 
emphasis is placed on three factors that are “different but 
related aspects of motivation” (Master et  al., 2017) and 
can be considered as predictors of academic achievement 
in general (Bandura, 1993; Howard et al., 2021a; Olivier 
et  al., 2019), educational choices, and career decisions 
(Blotnicky et al., 2018; Mason & Rich, 2020; Wang et al., 



Page 16 of 43El‑Hamamsy et al. International Journal of STEM Education  (2023) 10:60

2020), in addition to being the most prominent in surveys 
evaluating students’ (at all levels of education) perception 
of CS, coding or STEM (Mason & Rich, 2020):

• Interest, i.e. “how much the individual likes or is 
interested in the activity” (Mason & Rich, 2020), is a 
key component of intrinsic motivation in self-deter-
mination theory (Ryan & Deci, 2020) and expec-
tancy-value theory (Eccles & Wigfield, 2020). Several 
studies have found that boys are more interested in 
CS than girls, as in most STEM-related disciplines 
(Mason & Rich, 2020). Comfortingly, researchers 
have also found that interest increases after access to 
CS experiences, in particular for girls, which contrib-
utes to closing the interest gender gap (Master et al., 
2017).

• Self-efficacy (Bandura, 1993; Kong et al., 2018), i.e. 
“a person’s belief that they can complete a particu-
lar task or fulfil a particular role within a specific 
domain” (Mason & Rich, 2020). Similarly to inter-
est, self-efficacy has been found to be higher for 
boys than girls in STEM-related domains. Self-
efficacy has also been found to increase with com-
puting experience, in some cases even contrib-
uting to closing the gender gap (Mason & Rich, 
2020), whether related to programming (Gunbatar 
& Karalar, 2018), or robotics (Master et  al., 2017). 

Please note that, as domain-specific self-efficacy 
may be related to general self-efficacy, we also con-
sider a school-related self-efficacy variable in the 
survey (i.e. how well students believe they are able 
to perform in school in general).

• Perceived utility (Eccles & Wigfield, 2020; Wigfield & 
Eccles, 2000), a component of expectancy-value the-
ory referring “to how a task fits into an individual’s 
future plans” which is considered to “directly [influ-
ence] a person’s achievement-related choices, and is 
influenced by a person’s experiences, perceptions, 
goals, and self-schemata” (Mason & Rich, 2020; Wig-
field & Eccles, 2000).

Given that the same survey was administered from 
grades 3–6 in conjunction with the test, the survey 
needed to be short to account for the students’ age and 
attention span (see Table 6). Cronbach’s α measurement 
of internal consistency of scales is provided for all Likert-
type questions employing an analogue visual scale (see 
Fig. 6). This is complemented by a Confirmatory Factor 
Analysis to confirm the adequacy of the complete meas-
urement model (see “Results: perception, the influence of 
what was taught since the start of the year on perception, 
and the link with performance (study 2)”). Finally, the 
student survey was accompanied by a teacher adoption-
survey that asked each teacher the amount of time spent 

Table 5 Number of students participating in the first perception survey and the third test (study 2, November 2021) and their 
intersection with the teacher adoption survey

Subset Gender Grade Total

3 4 5 6

Perception ( nclasses = 142) Boys 263 307 314 334 1218

Girls 265 286 311 328 1190

All 528 593 625 662 2408

Perception and adoption ( nclasses = 114) Boys 196 230 285 351 1062

Girls 201 220 287 346 1054

All 397 450 572 697 2116

Test ( nclasses = 140) Boys 240 282 289 317 1128

Girls 243 252 296 307 1098

All 483 534 585 624 2226

Test or perception ( nclasses = 142) Boys 265 311 317 337 1230

Girls 272 287 314 330 1203

All 537 598 631 667 2433

Test and perception ( nclasses = 139) Boys 209 262 270 295 1036

Girls 214 239 281 294 1028

All 423 501 551 589 2064

Test and perception and adoption ( nclasses = 105) Boys 166 198 285 267 916

Girls 175 182 287 252 896

All 341 380 572 519 1812
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teaching each of the CS, ICT and robotics activities pro-
posed in the PD-programm.

Please note that the survey was initially intended as a 
pre–post administration to be put in relation with what 
the students did in between (as in study 1, see “Study 1: 
student learning and the link with what teachers from 
the CS-schools implemented”). However, the positively 
skewed results (see “Results: perception, the influence 
of what was taught since the start of the year on percep-
tion, and the link with performance (study 2)”) indicated 

that the students’ perception of the discipline was possi-
bly impacted by the CS-education received in prior years. 
It was thus essential to compare with students who had 
not yet received any CS-education. Unlike administering 
an assessment of CT-concepts to students who had not 
received any CS-education, administering a perception 
survey to a control group was accepted from the ethical 
standpoint (see study 3 in “Study 3: student perception 
between CS-schools and schools where teachers were 
not yet trained to teach computer science”).

Table 6 Student perception survey items translated from French

Cronbach’s αCS, Robotcs, Tablets = 0.67 for the 9 items consisting of 3 sub‑scales using the 5‑point Analogue Visual Scale (5PT‑AVS) and is considered to be between 
acceptable and good (George & Mallery, 2003), and to have between moderate and high reliability (Hinton, 2004)

Please note that the items pertaining to the usage of robots and tablets are not investigated in the present article

Dimension Concept Question Format

Computer Science Interest I like informatics 5PT‑AVS

Self‑efficacy I am capable of learning informatics 5PT‑AVS

Utility We can do a lot of things with informatics 5PT‑AVS

Role models When I think of someone who does informatics I think of (you can chose multiple answers): Checkboxes

   The teacher

   My mother

   My father

   A sibling or friend

   Somebody else

   Nobody

Robotics Interest I like robots 5PT‑AVS

Self‑efficacy I am capable of using robots 5PT‑AVS

Utility We can do a lot of things with robots 5PT‑AVS

Usage When I am at school or at home I use or play with the following robots (you can chose multiple 
answers):

Checkboxes

   Thymio

   Bluebot

   Lego Robots (WeDo, Spike, Prime, Mindstorm or Technic)

   Cubetto

   mBot

   Ozobot

   Other robots

Tablets Interest I like tablets 5PT‑AVS

Self‑efficacy I am capable of using tablets 5PT‑AVS

Utility We can do a lot of things with tablets 5PT‑AVS

Usage When I am at school or at home I use a tablet or computer to (you can chose multiple answers) Checkboxes

   Take photos and videos

   Call, text, watch videos or listen to music

   Play games

   Read

   Programme (e.g. Scratch)

   Draw, create interactive albums or music

   Nothing

General School‑
related self‑
efficacy

I am capable of doing well at school 5PT‑AVS
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Analysis methodology (study 2)
The analysis is conducted in three stages: 

1. Descriptive analysis of students’ perception of the 
discipline.

2. Structural Equation Modelling (SEM) to assess the 
impact of student demographic variables (gender, 
grade, general school-related self-efficacy), class-level 
variables (with respect to CS-, robotics- and ICT-
related education received since the start of the year) 
on students’ perception of the discipline (see Fig. 7).

3. Introducing student performance variables into the 
previous SEM to see how perception of the discipline 
may influence performance (see Fig. 8).

To assess the models’ goodness of fit, both the meas-
urement model (CFA) and the structural models (SEM) 
must be validated. Hu & Bentler (1999) recommend 
employing multiple complementary fit indices. There-
fore, we employed local and global fit indices, namely 
the ratio between the χ2 statistic and the degrees of 
freedom, the comparative fit index (CFI), the Tucker–
Lewis index (TLI), the root mean square error of 
approximation (RMSEA) and the standardised root 
mean square residual (SRMR). While the χ2 statistic 
should be non-significant (Alavi et  al., 2020; Prudon, 
2015), this is rarely the case, which is why researchers 
have recommended employing the ratio between the 
χ2 statistic and the degrees of freedom (df ). The ratio 
χ2/df  should be inferior to 5 for acceptable fit, and 
inferior to 3 for good fit (Kyriazos, 2018). The CFI and 
TLI should be above 0.9 for acceptable fit and above 
0.95 for good fit (Byrne, 1994; Schumacker & Lomax, 
2004; Xia & Yang, 2019). The RMSEA on the other 
hand should be below .08 for acceptable fit and below 
.06 for good fit (Chen et al., 2008; Hu & Bentler, 1999; 
Xia & Yang, 2019). Finally, the SRMR should be below 
0.08 (Hu & Bentler, 1999; Xia & Yang, 2019).

As the data are not normally distributed and is posi-
tively skewed, in addition to including binary variables, 

the CFA and SEM analyses were conducted using 
robust diagonally weighted least square estimators. The 
modelling was conducted in R (version 4.2.1, R Core 
Team, 2019) with lavaan (version 0.6-11, Rosseel, Ros-
seel (2012)), semTools (version 0.5-6, Jorgensen et  al., 
2022), semTable (version 1.8, Johnson & Kite, 2020), 
psych (version 2.2.5, Revelle, 2022), and semPlot (ver-
sion 1.1.5, Epskamp, 2022).

Results: perception, the influence of what was taught 
since the start of the year on perception, and the link 
with performance (study 2)
Students’ perception of CS, robots and tablets is highly 
positive and nearly saturates ( M = 1.55± 0.84 on the −2 
to +2 scale, see Fig 9). An ANOVA, however, indicates 
that there are small significant gender differences.

As Fig. 10 shows, boys:

• are more interested in CS ( p < 0.0001 , Cohen’s 
D = 0.253),

• are more interested in tablets ( p = 0.006 , Cohen’s 
D = 0.117),

• have higher tablet self-efficacy ( p = 0.0042 , Cohen’s 
D = 0.124),

• perceive robots more favourably on all criteria 
( p < 0.0001 , Cohen’s D = [0.197, 0.363]).

Gender biases are also found in terms of who the stu-
dents perceive as doing CS ( χ2(5) = 15.7 , p = 0.008 , see 
Fig. 11). In particular, boys consider that their father does 
CS more often than girls ( χ2(1) = 10 , p = 0.0017 ), while 
girls perceive that their teacher does CS more often than 
boys ( χ2(1) = 16 , p = 0.0001).

To gain better insight into how the student-factors 
interact (demographic variables, perception of CS, tablets 
and robots, CS role models), and are influenced by what 
teachers taught, we employed SEM (n = 2116, November 
2021) using Robust Diagonally Weighted Least Squares 
estimator (WLSMVS).

Fig. 6 Analogue Visual Scale employed for the student survey’s Likert questions. The labels in French (original survey language) were established 
with teachers and validated in a pilot run with two classrooms
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Fig. 7 Structural Equation Model for the perception survey (study 2)

Fig. 8 Structural Equation Model for the link between perception and performance (study 2). Performance here is measured with the cCTt which 
targets CT‑concepts which align with a subset of the CS concepts in the curriculum, i.e. sequences, loops, if‑else statements, while statements). 
Please note that this model includes all paths from the model in Fig. 7 but has been simplified for visualisation purposes
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• First, a CFA indicates that the measurement model 
does not have an adequate fit with the modification 
indices indicating that the issue is due to the “other” 
option in the CS role model question (Bartlett’s test of 
sphericity χ2(105) = 3660 , p < 0.001 , KMO = 0.70 , 
model fit χ2(84) = 373 , p < 0.001 , χ2/df = 4.44 , 
CFI = 0.888 , TLI = 0.859 , RMSEA = 0.040 , RMSEA 
0.90ci = [0.036,0.045], SRMR = 0.039).

• Second, a CFA conducted after removing the 
“other” option from the CS role model question 
indicates that the measurement model has an ade-
quate fit (Bartlett’s test of sphericity χ2(91) = 3421 , 

p < 0.001 , KMO = 0.72 , model fit χ2(71) = 216 , 
p < 0.001 , χ2/df = 3.05 , CFI = 0.939 , TLI = 0.922 , 
RMSEA = 0.031 , RMSEA 0.90ci = [0.026,0.036], 
SRMR = 0.033).

• Finally, employing SEM on the model in Fig 7 
(see “Analysis methodology (study 2)”) meets 
the fit requirements (Bartlett’s test of spheric-
ity χ2(190) = 7300 , p < .001 , KMO = 0.72 , 
model fit χ2(113) = 260 , p < 0.001 , χ2/df = 2.30 , 
CFI = 0.941 , TLI = 0.908 , RMSEA = 0.025 , 
RMSEA 0.90ci = [0.021, 0.029] , SRMR = 0.026).

Fig. 9 Students’ perception in schools that had been teaching CS for three years (n = 2433, November 2021)

Fig. 10 Delta between boys’ and girls’ perception on the 5‑point Analogue Visual Scale (scores between −2 and +2 ) in schools that had been 
teaching CS for three years (n = 2433)
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Figure 12 shows the significant paths and factors in the 
model (see Table  13 in Appendix B.1 for all links) and 
indicates that:

• Perceiving an influencer or somebody close as 
doing CS (e.g. teacher: β = 0.17 , p < 0.001 ; par-
ent: βfather = 0.3,βmother = 0.23 , p < 0.001 ; or peer: 
β = 0.13 , < 0.001 ) positively contributes to the per-
ception of role models, while perceiving nobody has 
a negative influence β = −0.024 , p < 0.001 ). The 
role model latent factor then impacts the percep-
tion of CS ( β = 0.3 , p = 0.016 ) and of the discipline 
overall, i.e. the second order latent factor in the SEM, 
β = 0.15 , p = 0.003).

• Higher school-related self-efficacy positively corre-
lates with the perception of the discipline on all the 
Likert scale CS, robot and tablet-related criteria, with 
the exception of interest in tablets.

• Girls tend to have a more negative perception of 
the discipline with respect to robots overall, tab-
lets and CS interest, and tablets self-efficacy. Com-
pared to boys, they also perceive the father less often 
( β = −0.06 , p = 0.005 ) and the teacher more often 
as doing CS ( β = 0.06 , p = 0.003).

• Older students are more likely to consider CS 
( β = 0.09 , p < 0.001 ), tablets ( β = 0.03 , p = 0.020 ) 
and robots ( β = 0.07 , p = 0.000 ) useful; while being 
less interested in tablets ( β = −0.04 , p = 0.014 ). 
They are also less likely to perceive their teacher 
( β = −0.04 , p < 0.001 ), mother ( β = −0.06 , 

p < 0.001 ), and nobody as doing CS ( β = −0.03 , 
p < 0.001).

• The amount of CS education received since the start 
of the year does not significantly influence student 
perception on any dimensions ( p > 0.05).

The lack of influence between teachers’ adoption of CS 
pedagogical content and perception appears conjointly 
with a lack of influence between perception and perfor-
mance. Indeed, the SEM that includes students’ scores 
(n = 1583, see Fig. 8 in “Analysis methodology (study 2)”) 
to see how performance is influenced by perception and 
demographics indicates that there is no significant link 
(see Table  7). The only variables that significantly influ-
ence the score are the grade (older students have higher 
scores) and their general self-efficacy (students that are 
more confident in their capacity to succeed in school 
have higher scores).

Synthesis and limitations of study 2
The students have a positive perception of the discipline, 
and the tools employed to teach it in schools with access 
to CS education. Although the results are nearly satu-
rated, the structural equation models help identify that:

• Gender influences the way the discipline is perceived, 
as girls have a more negative perception of the disci-
pline then boys (in particular where robotics is con-
cerned) which is aligned with stereotypes in these 
fields (social barriers).

Fig. 11 Students’ perception of who does CS in schools that had been teaching CS for three years (n = 2433)
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• Having a role model close to the students as doing 
CS positively influences the perception of CS and the 
overall discipline, but those perceived as doing CS 
differs according to gender since girls perceive the 
teacher more often, and boys the father more often 
as doing CS.

• There is no influence of the CS education received 
from the start of the year on perception.

• There is no link between students’ perception of the 
discipline and their performance on the assessment 
(positive for equity).

• Students’ general school-related self-efficacy posi-
tively correlates with the perception of the discipline 
and with students’ performance on the cCTt.

There are, however, several limitations to this study, 
mainly that (i) the students were at least in their third 
year of CS education by the time the study was con-
ducted, (ii) their perception was positively saturated 
and (iii) there was no control group. It would have been 
interesting to have access to a pre-test prior to their 
first CS lecture and to compare the evolution of per-
ception over time. Where the link between perception 

and what the teachers taught is concerned, as for study 
1, some of the findings may be biased by the fact that 
teachers may be teaching CS pedagogical content 
that was not included in the PD program and are not 
accounted for in the analyses.

In terms of the perception survey itself, while the CFA 
analysis indicates that the perception survey is a short 
and valid instrument that can be employed to measure 
grades 3–6 students’ perception of the discipline and 
the tools used to teach it, this is not without its limita-
tions. Indeed, the survey measures interest, utility and 
self-efficacy concepts with only one item for each dimen-
sion (CS, robotics, tablets). Ideally, for each concept and 
dimension, there would be at least 3–4 items (for interest, 
utility, and self-efficacy) in order to improve the reliability 
of the instrument. This owes to our requirement of being 
able to administer the CS perception survey to grades 
3–6 students before the cCTt (and not after to avoid hav-
ing their performance bias their perception), without tak-
ing too much in-class time for both (i.e. the perception 
survey had to be short and take less than 20  min over-
all with grade 3 students). Nonetheless, researchers have 
investigated the reliability of single-item items and have 

Fig. 12 Perception SEM (n = 2116, November 2021) path diagram with standardised variables for the measurement model that meets 
the requirements for adequate fit displaying only significant links in the model. Please note that all standardised factor loadings are above 0.3
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shown that it is possible to have reliable measures with 
only single items (see Hoeppner et al. 2011).

Study 3: student perception between CS‑schools 
and schools where teachers were not yet trained 
to teach computer science
Methodology (study 3)
Participants and data collection (study 3)
To extend study 2, the perception survey (see Table  6) 
was administered to all students in grades 3–6 ( n = 1644 , 
see Table  8) from 3 schools with access to CS educa-
tion (which we refer to as CS-schools, n ∼= 831 ) and 2 
similar schools without access to CS education (which 
we refer to as non-CS-schools, n ∼= 813 ) which were 
selected to be representative of the demographics of the 
region. Non-CS-schools here therefore refer to schools 
where, at the time of the study, the teachers were neither 
trained to introduce the new discipline into their practice 
nor had access to the material resources, infrastructure 

or support they require to teach the discipline, an ele-
ment which was confirmed by an accompanying teacher 
survey. The objective was to compare the students’ per-
ception of the discipline between the two conditions (CS-
schools and non-CS-schools) as students in CS-schools 
had been in contact with the discipline for multiple years 
and perception was positively saturated in study 2.

Analysis methodology (study 3)
The comparison between both groups is established 
using Structural Equation Modelling by constraining the 
models to have equal factor loadings, and allowing the 
regression parameters to vary between the two groups 
(gender, grade, general self-efficacy). By comparing the 
intercepts of the two SEMs, it is possible to establish the 
effect of having received several years of CS-education on 
perception. By comparing the regression parameters, it is 
possible to establish whether there are interaction effects 
between the student variables (e.g. gender) and access to 

Table 7 Unstandardised regression parameters for the perception and background to performance SEM (n=1583, November 2021, 
χ2(124) = 221.462 , p < 0.001 , chi2/df = 1.79 , CFI = 0.951 , TLI = 0.923 , RMSEA = 0.022 , 90%ci = [0.017, 0.027] , SRMR = 0.026)

Please note that on the smaller sample CS utility did not correlate highly with interest and self‑efficacy and had to be removed from the model. For the full set of 
model parameters see Table 14 in Appendix B.2

Model

Estimate Std. Err. Z p R2

Percentage (/100) 0.136

CS perception −0.29 1.31 −0.22 0.824 0.707

Tablets perception −0.04 0.99 −0.04 0.969 0.372

Robots perception 0.96 1.11 0.86 0.387 0.411

General self‑efficacy 1.54 0.69 2.22 0.027
Gender ( 0 = boys, 1 = girls) −1.57 1.06 −1.47 0.141

Grade 7.53 0.53 14.19 0.000
Number of CS education periods SI 0.09 0.13 0.70 0.483

Number of ICT education periods −0.02 0.08 −0.20 0.842

Number of Robotics education periods −0.29 0.42 −0.68 0.496

Table 8 Number of participants in the second student perception survey (study 3, May 2021)

CS education Gender Grade Total

3 4 5 6

False (i.e. non‑CS‑school) Boys 84 91 116 122 413

Girls 83 98 121 98 400

Total 167 189 237 220 813

True (i.e. CS‑school) Boys 102 91 96 135 424

Girls 93 99 92 123 407

Total 195 190 188 258 831

Total Boys 186 182 212 257 837

Girls 176 197 213 221 807

Total 362 379 425 478 1644
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CS-education, and thus determine if gender-related gaps 
are indeed closing with the introduction of the novel 
curriculum.

Results: perception and the influence of having access 
to CS education on perception (study 3)
The SEM to compare the groups (CS-schools vs. non-CS-
schools) constrained the loadings and thresholds, while 
leaving the intercepts and regression parameters free to 
vary between groups9. We thus compare the intercepts 
and regression coefficients between the groups (for the 
full SEM, see Table 15 in Appendix C.1).

The intercepts for both groups indicate that students’ 
responses positively saturate for both groups for nearly 
all CS, robotic and tablet perception items (see Fig. 13). 
Nonetheless, students in CS-schools appear more inter-
ested generally, and evaluate the robotics generally more 
favourably. However, CS and tablet utility and self-effi-
cacy are lower for students in CS-schools. Students in 
CS-schools perceive the teacher more often as doing CS, 
which is coherent with the fact that their teachers over 
the past few years have been teaching CS pedagogical 
content. On the other hand, students in CS-schools per-
ceive their mothers and other students less often as doing 
CS, possibly indicating that the students have a bet-
ter awareness of what it means to “do” CS (Pantic et al., 
2018), and that it is not only related to using a computer 
or tablet.

The significant impact of general self-efficacy and gen-
der on student perception is shown in Figs. 14, and 15.

Figure  14 shows that general school-related self-effi-
cacy positively influences CS self-efficacy ( bCS = 0.16 , 
pCS = 0.001 , bno-CS = 0.2 , pno-CS < 0.001 ) and robot-
ics self-efficacy ( bCS = 0.11 , pCS = 0.033 , bno-CS = 0.14 , 
pno-CS = 0.016 ) of all students. This reveals that stu-
dents who consider themselves less capable of doing 
well in schools also think that they are less able to do CS 
and robotics, although the influence is less pronounced 
when students have received CS-education. Access to CS 
education may thus contribute to a wider range of stu-
dents considering that they are capable of doing CS and 
robotics. On the other hand, for tablets, while there is 
no significant influence of school-related self-efficacy in 
non-CS-schools ( pno-CS = 0.054 ), it is present in CS-
schools ( bCS = 0.08 , pCS = 0.016 ) which may indicate 
that students realise the range of possibilities (beyond 
merely passive activities) and that this may require more 

competencies to be able to make use of. Nonetheless, gen-
eral self-efficacy does not influence interest or perceived 
utility in CS-schools ( pCS > 0.05 ), contrary to non-CS-
schools for CS interest ( bno-CS = 0.1 , pno-CS = 0.036 ), CS 
utility ( bno-CS = 0.14 , pno-CS = 0.001 ), and Robotics’ util-
ity ( bno-CS = 0.11 , pno-CS = 0.044 ). It would thus appear 
that access to CS-education helps reduce these biases.

Where gender is concerned (see Fig.  15), all gender 
gaps that are identified as significant confirm the stereo-
types that boys perceive the discipline more favourably 
than girls. Some gender gaps are only present in CS-
schools (CS and tablet interest and self-efficacy, robots 
utility) suggesting that access to CS-education increases 
these gaps which, interestingly, are initially the smaller or 
non-significant gaps in non-CS schools. There are none-
theless some gaps that are smaller in CS-schools, all the 
while remaining present in both types of schools: robot-
ics interest and self-efficacy, as well as perceiving the 
teacher as doing CS in CS-schools, which interestingly 
are the initially larger gaps in non-CS schools. Only the 
CS-interest gap is present in both schools and stronger in 
CS-schools.

Synthesis and limitations of study 3
Students’ perception of the discipline is highly positive 
and affected by gender biases (social barriers) in both 
schools with CS education and schools without. How-
ever, access to CS education leads to:

• Positive impacts through: increased interest in CS 
and the associated tools, a more positive perception 
of robotics on all dimensions, teachers being more 
often perceived as doing CS.

• Negative impacts through: lower self-efficacy with 
respect to CS and tablets.

• Positive outcomes for equity through: closing larger 
gender-gaps in terms of robotics interest and self-
efficacy (gender-equity), a lesser influence of general 
self-efficacy on several perception dimensions (CS 
interest, utility, self-efficacy; robotics utility and self-
efficacy).

• Negative outcomes for equity through: increasing 
smaller gender-gaps in terms of CS and tablets self-
efficacy (gender-equity), a higher influence of general 
self-efficacy on tablets’ self-efficacy.

As in the case of studies 1 and 2, this study has its limi-
tations. Firstly, the sample is relatively small to do a 
comparison between groups (even when constraining 
parameters to be equal). As such, the minimum effect 
size that can be detected is smaller than in the case of 
study 2. This analysis would therefore benefit from a rep-
lication at a larger scale. As mentioned for study 2, there 

9 The selection of model constraints was achieved by successively com-
paring through ANOVA the following SEMs: (1) without groupings, (2) 
groupings without constraints, (3) constrained loadings and thresholds, (4) 
constrained loadings, thresholds, regression parameters, (5) constrained 
loadings, thresholds, intercepts.
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is also no view on how the perception evolves over time 
within these groups, and at the point where students gain 
access to CS education the first time. Therefore, it would 
be interesting to have access to a sample of students just 

before they began having access to CS education and 
then follow up over time, and compare with a group that 
has no access to CS education. This type of analysis has 
temporal constraints and must be planned for at the start 

Fig. 13 Comparison of the SEM intercepts between schools that had access to CS‑education and schools that did not

Fig. 14 Comparison of the SEM regression coefficients for general self‑efficacy between schools that had access to CS‑education and schools 
that did not. Please note that only significant regressors are shown
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of the reforms and prior to deployment to all schools if 
the objective is to be able to compare for an extended 
period of time.

Discussion
This article investigates whether a large-scale mandatory 
primary school CS curricular reform and accompanying 
PD programme has an impact, and contributes to achiev-
ing equity goals, in terms of learning and perception. 
As indicated in the introduction, achieving equity goals 
requires addressing structural (i.e. access related) and 
social (i.e. stereotype related) barriers that lead to under-
representation in the field by influencing performance 
and perception early on. While equity in terms of access 
is ensured by the fact that the reform is being deployed to 
all teachers in the region, two main questions drive the 
study:

(RQ1) How does teaching CS pedagogical content 
impact student learning? And how does it impact learn-
ing-related gender- and performance-equity?

(RQ2) How does teaching CS pedagogical con-
tent impact students’ perception of CS? And how 
does it impact perception-related self-efficacy- and 
gender-equity?

We provide a visual synthesis of the findings in Fig. 16 
based on the learning and perception data drawn from 3 
studies that were conducted over 2   years and involved, 
respectively, n1 = 1384 , n2 = 2433 and n3 = 1644 grade 
3–6 students (ages 7–11) and their n1 = 83 , n2 = 142 and 

n3 = 95 teachers. The findings are further discussed in 
the following subsections.

Impact of the curriculum reform on student learning, 
and learning‑related performance‑ and gender‑equity 
(RQ1)
Student learning impact
The findings of studies 1 and 2 indicate that the stu-
dents progress in terms of CT-concepts (sequences, 
loops, if-else statements, while statements) over time, 
consistently with other studies that have found that stu-
dents’ algorithmic skills improve as they age (Kanaki & 
Kalogiannakis, 2022; Piatti et al., 2022). In particular, we 
observe that grade 3 students achieved a year’s worth 
of CT-development in the 6 months that separated the 
pre- and post-tests (positive impact). Indeed, the grade 
3 students’ post-test scores were equivalent to the grade 
4 students’ pre-test scores. However, there is no direct 
link between learning and the amount of CS education 
received (absence of impact). There is, on the other hand, 
a positive influence of the teachers’ perception of the PD 
programme (positive impact), which may be due to the 
Pygmalion (or Rosenthal) effect according to which a 
teachers’ expectations may act “as a self-fulfilling proph-
ecy” (Rosenthal, 2010). While teachers’ perception of the 
PD-programme likely acts as a mediating variable for 
teachers’ assimilation of the underlying CS-concepts and 
their appropriation of the pedagogical content, it does 
indicate the need to find means of motivating teachers 
to introduce CS into their practices (El-Hamamsy et al., 

Fig. 15 Comparison of the SEM regression coefficients for gender between schools that had access to CS‑education and schools that did not. 
Please note that only significant regressors are shown
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2022a) and to ensure that they see the utility of doing so 
(El-Hamamsy et al., 2023b).

The lack of a direct link between what the teachers 
taught (i.e. adoption) and learning could be due to two 
main factors and their interaction: the adequacy of the 
content with respect to the targeted concepts, and the 
teachers’ appropriation of the CS pedagogical content. 
We have synthesised the corresponding hypotheses in 
Table  9 depending on whether either or both of these 
factors are indeed at play in the present context. As a 
reminder: the teachers were trained to introduce the 
specific CS-pedagogical activities which were designed 
by experts in CS and pedagogy from multiple institu-
tions. Therefore, considering conjointly these elements, 
and the link between student learning and the teachers’ 
perception of the PD-program, it appears likely that the 
second hypothesis is true. More specifically: the lack of 

direct link with adoption could be partially or entirely 
due to teacher-level factors (their mastery of the con-
cepts, and how they are teaching the pedagogical activi-
ties), although we may not presently rule out the other 
hypotheses.

To better understand the impact of teaching CS on 
learning, it would be important to investigate the vari-
ous hypotheses by considering teacher assessments to 
gain insight into their mastery of the concepts, class-
room observations to gain insight into teachers’ imple-
mentation fidelity, and comparing with students in 
non-CS-schools. Such an approach would not only make 
it possible to assess each of the pedagogical activities indi-
vidually, but would also give the opportunity to provide 
guidelines regarding how best to teach the pedagogical 
content to promote learning. Doing so, however, requires 
getting past certain barriers in the field, whether in terms 

Fig. 16 Visual synthesis of the study’s findings and how these relate to impact and equity. Each factor considered is indicated in a rectangle 
in bold. For the student learning results that are based on hierarchical linear models, the identified effect of said factor on the outcome variable 
is indicated in plain text in the same rectangle. For the student perception results that are based on structural equation modelling, the impact 
of general school‑related self‑efficacy and gender on a given factor are indicated in the factor’s rectangle in plain text. In both cases, the impact 
of the measured effect (or lack thereof ) on equity is colour coded (blue for a positive impact, red for a negative impact, purple for a mixed impact 
and black for an absence of impact). Please note that we only indicate significant links/effects (i.e. p > 0.05 ) which does not reflect on the strength 
of the effect detected (for that please refer to the results section and see the effect sizes and regression coefficients)
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of teacher reticence towards classroom observation and 
evaluation (Hickmott & Prieto-Rodriguez, 2018), or in 
terms of acceptability for policy and decision-makers 
(e.g. access to a control group for performance assess-
ments). However, it is only by gaining such insight that it 
will be possible to adapt the CS curricular reforms so that 
it is successfully implemented and sustained in teachers’ 
practices. This could include adapting the CS pedagogi-
cal content, PD program, or even considering a differ-
ent strategy to introduce CS into formal K-12 education. 
The latter could involve having specialised teachers, or 
introducing CS transversally to support other disciplines 
thus contributing to “build computational literacies in 
all students” (Peel et  al., 2022), all the while accounting 
for time struggles (Ottenbreit-Leftwich & Yadav, 2022) 
which according to Fofang et  al. (2020) would provide 
pedagogical and equity benefits (but may also run the 
risk of decreasing the impact of the curricular reform, 
Suessenbach et al., 2022). We therefore argue that a com-
plete assessment of CS and CT curricula would benefit 
greatly from expanding to other dimensions of CT (e.g. 
CT-processes, Brennan & Resnick, 2012), and evaluat-
ing the impact that CS-pedagogical content may have on 
learning in other disciplines (El-Hamamsy et  al., 2022b; 
Ottenbreit-Leftwich & Yadav, 2022), transversal and 
twenty-first century skills (Barr et al., 2011; El-Hamamsy 
et al., 2022b; Gretter & Yadav, 2016; Nouri et al., 2020).

Student learning equity
The findings of study 1 indicate that students perform-
ing lower at the pre-test progress more in the 6 months 
before the post-test. This indicates that the performance 

gap is closing and contributing to performance-equity 
and is consistent with Vygotsky and Cole (1978)’s con-
cept of the Zone of Proximal Development (ZPD). The 
ZPD is determined by the learning activity and its rela-
tion to what students are capable of doing along and with 
a specific instruction. Therefore, it would appear that the 
content is adapted to all students because:

• Students with low scores on the pre-test progress 
more, indicating that the pedagogical content is 
within their ZPD.

• Students with high scores on the pre-test may already 
master the concepts and therefore not progress more 
with the instruction provided.

Provided the additional lack of influence of teacher-
demographics (including ICT experience, teaching expe-
rience and age which have been found to impact student 
achievement in various contexts Burroughs et  al., 2019; 
Croninger et  al., 2007; Kini & Podolsky, 2016; Ladd & 
Sorensen, 2017), their perceived utility of CS and their 
autonomous motivation to teach CS, on student learning, 
this would appear to indicate that the PD-program con-
tributes to fostering student learning, and learning equity 
more generally.

The findings of study 1 also indicate that a marginally 
significant gender gap exists in grades 3–4 (likely due to 
stereotypes and social barriers), and that it appears to 
be closing over time (positive for gender-equity). This is 
corroborated by the data from study 2 (from the follow-
ing academic year) where students who have had more 
access to CS education do not exhibit gender gaps. These 

Table 9 Hypotheses related to the absence of direct links between CS‑education and student learning

The teachers’ appropriation of the CS‑pedagogical content is aligned with the curricular 
objectives

True False

The CS‑pedagogical content is ade‑
quate with respect to the targeted 
concepts

True H1: The students have reached the limit of their 
cognitive abilities and are not capable of pro‑
gressing more, irrespective of the additional 
content and CS education received

H3: The teacher, while teaching the CS‑pedagogi‑
cal activities is not teaching the CS‑concepts well 
(H3.1) either because they do not have sufficient 
mastery the concepts themselves; or (H3.2) 
because they do not put the emphasis on the CS 
concepts while teaching and focus on other 
facets, such as disciplinary links (e.g. maths 
or verbalisation), coherently with the differences 
between intended, enacted and attained curricula 
that are present generally van den Akker (2003) 
and in the context of CS Falkner et al. (2019). The 
PD program should be revised.

False H2: The CS‑pedagogical content is either (H2.1) 
not developmentally appropriate Ottenbreit‑Left‑
wich & Yadav (2022); Bers et al. (2022b), or (H2.2) 
does not go sufficiently in depth for students 
to progress beyond what they are acquiring with‑
out the CS‑education, and should be revised.

H2 + H3
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findings therefore confirm the importance of provid-
ing prior CS experience to address performance-related 
gender gaps. As the study did not include grade 1–2 stu-
dents, it would appear relevant to follow up on the cohort 
of students over multiple years (and from the start of 
their schooling) to see how these differences appear and 
evolve over time.

The findings therefore appear to support that the 
CS-curricular reform contributes to achieving learn-
ing equity goals. This would align with the findings of a 
recent independent study conducted in Germany to eval-
uate the impact of the introduction of “informatics” into 
the curriculum throughout the country. In a longitudi-
nal study, Suessenbach et al. (2022) found that (i) lower 
secondary schools students’ ICT competence increased 
with access to informatics education; (ii) the gap between 
students with low and high socioeconomic backgrounds 
decreased; (iii) gender gaps were closing with girls catch-
ing up with boys’ performance; and (iv) the impact was 
stronger in the case of informatics as its own discipline 
rather than having informatics transversally integrated 
into other subjects.

Impact of the curricular reform on student perception 
and perception‑related self‑efficacy‑ and gender‑equity 
(RQ2)
Student perception impact
Students’ perception of the discipline and the tools 
employed to teach it is globally positive in primary 
school, whether in CS schools or not (studies 2, 3), as the 
results are positively saturated. Nonetheless, students’ 
overall perception of the discipline is influenced by access 
to CS education. Indeed, access to CS education contrib-
utes to increased interest in CS and the associated tools, 
with a more positive perception of robotics overall (posi-
tive impact). Perceived utility and self-efficacy towards 
CS and tablets are however lower (negative impact). The 
latter may be indicative of a better understanding of what 
CS is, and the extent of the applications that are possi-
ble with tablets, contributing to more realistic expecta-
tions (Pantic et al., 2018), possibly addressing a key issue 
identified when introducing CS education in secondary 
school (El-Hamamsy et al., 2023c). As the results remain 
globally positive, they appear promising for both CS and 
robotics, particularly since interest, self-efficacy and per-
ceived utility are key motivational factors that influence 
academic performance and career choices. Future stud-
ies should therefore i) continue to monitor how these fac-
tors evolve and how they relate to students’ decision or 
not to pursue studies in these fields (which in the present 
educational system, begins at the end of 8th grade) and ii) 
investigate using qualitative methodologies why certain 
trends are observed.

Student perception equity with respect to the effect of gender
Gender gaps are present already in grades 3-6 with boys 
having a more positive perception of the discipline than 
girls on nearly all criteria, coherently with Master et  al. 
(2021)’s and Sullivan and Bers (2016)’s findings, and 
despite access to CS-education from grade 1 (study 2). 
Robotics in particular appears to be subject to the larg-
est gender gaps (study 2, 3). Nonetheless, the perception 
of CS-role models, and in particular influencers (Wang 
& Hejazi Moghadam, 2017) such as teachers and parents 
being perceived as doing CS has a positive influence on 
the perception of the discipline, but is subject to gender 
biases (study 2). As access to CS-education contributes 
to more students perceiving their teachers as doing CS 
(study 3), and these teachers are mainly women in pri-
mary school, the introduction of CS for all in schools may 
contribute to addressing social perceptions and counter 
the creation of early gender gaps evoked by Wang and 
Hejazi  Moghadam (2017). The model selection further 
indicates that the influence of gender on perception 
varies with access to CS education (impact on gender-
equity). While for interest and self-efficacy the gender 
gap appears to be closing for Robotics in CS-schools 
(positive for gender-equity), the gap is increasing for CS 
and tablets (negative for gender equity). Different trends 
along these dimensions indicate that the CS pedagogical 
activities might need to be adjusted to “provid[e] students 
with early experiences that signal equally to both girls 
and boys that they belong and can succeed” (Cheryan 
et al., 2017) (e.g. by adopting more collaborative settings, 
Sullivan and Bers, 2016, or introducing social aspects). 
The findings further indicate that introducing robotics as 
a means of teaching CS may also contribute to broaden-
ing participation in STEM by reducing robotics-related 
gender biases. This complements a prior study that found 
that employing robots to teach CS benefited both CS and 
robotics at the teacher and PD-level (El-Hamamsy et al., 
2021a). As such, robotics to teach CS benefits both the 
PD-, teacher-, and student-levels. Robotics and STEM 
more broadly could therefore take advantage of ongoing 
CS-curricular reforms worldwide to broaden participa-
tion and engage more students in these fields.

Student perception equity with respect to the effect 
of school‑related self‑efficacy
The influence of general self-efficacy varies between CS 
and non-CS schools (study 3). On the one hand, in CS-
schools, there is a positive influence of general self-effi-
cacy on tablet-related self-efficacy, which is not the case 
for non-CS-schools. Once again, this may be due to 
students having a better awareness of what it means to 
“do” CS and more creative activities with tablets (Pan-
tic et  al., 2018). Indeed, the tablet is a ubiquitous tool 
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in the region which students easily have access to. Their 
traditional usage of this tool differs significantly from 
the type of activities that are proposed in the curricular 
reform which tend to be active and creative. The learn-
ing objectives of these tasks push students to adjust their 
“imagination” around this tool (Flichy, 2001). Concretely, 
we believe that the students are forced to reconsider the 
affordances and the potential of this tool, thus reevaluat-
ing their own competencies beyond the more traditional 
use involving playing games, texting, taking photos and 
watching videos.

On the other hand, CS perception (interest, self-effi-
cacy and utility), and robots perception (self-efficacy, and 
utility) are positively influenced by general self-efficacy 
in both CS and non-CS schools, but to a lesser degree 
when students have received CS education. Contrary to 
tablets, CS and robotics are novel, with students having 
little to no access in schools (or at home) where the CS 
education curricular reform has not yet occurred. There-
fore, we believe that the positive influence of general 
self-efficacy on domain-specific self-efficacy is consist-
ent with Bandura (1986)’s sociocognitive theory on auto-
evaluation: people’s belief in their efficacy to do a task is 
developed through vicarious experience, i.e. by compar-
ing themselves to others. However, it is also built through 
mastery experiences: by experiencing CS and robotics-
related activities, the students are more influenced by 
their own CS- and robotics-specific experiences, and less 
by their overall assessment of their capacity to succeed in 
school. Therefore, given the influence of self-efficacy on 
students’ choices and career decisions in the long term, 
such experiences may ultimately contribute to broaden-
ing participation in the field to a wider range of students, 
and namely to not only those who believe they are good 
in school.

Student perception equity with respect to the link 
between performance and perception
There is no evident link between student performance and 
perception of the discipline (study 2, positive for equity), 
such as those found in other studies in middle school 
(Hinckle et  al., 2020); Rachmatullah et  al., 2022). How-
ever, student performance is related to students’ general 
self-efficacy, with students who consider that they are 
better at school performing better on the test. This would 
suggest that there may be a link between students’ per-
formance on CT-concepts and other disciplines, irre-
spective of how students perceive the discipline. This 
may be indicative that perception is not yet biased by 
performance and inversely. Nonetheless, given the role 
that perception (and stereotypes) has been found to play 
on academic and career decisions (see “Introduction and 

related work”), it is important to continue to monitor 
how students’ perception evolves over time and establish 
at which point this may influence their sense of belonging 
and career decisions.

Globally, the trends observed confirm not only the 
importance of introducing the discipline in formal edu-
cation for all, but also the complex interactions that this 
introduction may have on students’ perception. The lat-
ter indeed may not necessarily contribute to closing all 
perception-related gaps but may also exacerbate oth-
ers. Therefore, in addition to conducting the study with 
a larger sample to be able to detect smaller effect sizes, 
it would be important to complement the results of the 
study with qualitative data to gain better insight into 
how students perceive the discipline, how this differs, 
and why, between students with and without access to 
CS-education

Conclusion
Early exposure to Computer Science (CS) and Compu-
tational Thinking (CT) for all is important to broaden 
participation and promote equity in the field. This is con-
tingent on addressing structural related barriers (lack 
of access) and social barriers (stereotypes) in order to 
reduce performance and perception gaps which affect 
sense of belonging and career decision. Addressing these 
barriers requires a system-wide implementation of CS & 
CT curricula for all students starting early foundational 
years. That is why numerous countries are introducing 
CS & CT into their curricula starting primary school. 
The question is therefore: are these curricular reforms 
contributing to learning and reducing performance 
gaps? Curricular reforms and professional development 
programmes are seldom evaluated at the student-level 
despite the importance of establishing their effectiveness 
in terms of student learning and perception. Therefore, 
in the present article, we evaluate the implementation of 
a regional CS-curricular reform in order to determine if 
the reform contributes to achieving equity goals. More 
specifically, we study how the implementation of the 
CS curriculum by teachers impacts and contributes to 
equity in terms of student learning (with respect to gen-
der and performance gaps, RQ1) and perception (with 
respect to gender and self-efficacy gaps, RQ2). To answer 
these questions, the analysis employs hierarchical linear 
modelling and structural equation modelling using data 
from three studies involving, respectively,  n1 = 1384 , 
n2 = 2433 and n3 = 1644 grade 3–6 students (ages 7–11) 
and their n1 = 83 , n2 = 142 and n3 = 95 teachers.

In terms of student learning impact, the students are 
progressing over time. There is however no direct link 
between what the teachers taught (i.e. adopted) over an 
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extended period of time and student learning. Although 
certain studies have suggested that perception may play a 
mediating role on performance, this is not the case in the 
present study. There is however a link between student 
learning and how teachers perceived the CS-PD program. 
Teacher perception may thus be acting as a mediating 
variable or be confounding with other dimensions such as 
teachers’ assimilation of Technological Pedagogical and 
Content Knowledge (Mishra & Koehler, 2006) obtained 
during the PD, their appropriation of the content and 
the depth of the associated change in their practice, sup-
porting the need to gain better insight into how the con-
tent is taught. As there are known differences between 
intended, enacted and attained curricula (van den Akker, 
2003), the findings indicate the need to investigate not 
just whether, but how teaching the discipline, and indi-
vidual pedagogical content, influences learning. In terms 
of student learning equity, the findings indicating that (i) 
the performance gap between lower and higher achiev-
ing students are closing and that (ii) pre-existing gender 
gaps appear to be closing. Whether in terms of impact or 
equity, it would be important to expand to other dimen-
sions of learning that may be influenced, whether to have 
a more complete evaluation of CT (by including practices 
and perspectives, Brennan & Resnick, 2012), or by look-
ing more generally into the impact on learning in other 
disciplines, or in terms of transversal competences.

Where student perception is concerned, in terms of 
impact, the results are relatively straightforward: students 
in both CS and non-CS schools perceive CS and the tools 
involved with teaching CS positively. Interest in the disci-
pline and perception of robotics is nonetheless more posi-
tive in schools with access to CS-education which may 
contribute to broadening participation in the field. The 
findings in terms of equity indicate that there are gender 
gaps which indicate that boys have a better perception 
of the discipline than girls. However, whether in schools 
with access to CS education or not, the perception of role 
models close to them as doing CS contributing to student’s 
positive perception of the discipline. As teachers are mainly 
women in primary school, introducing CS as a discipline 
taught by all teachers contributes to teachers being more 
often perceived as doing CS, and may ultimately contrib-
ute to gender-equity. Comparing students in schools with 
and without access to CS education indicates that there 
are differences in how the discipline is perceived in both 
types of schools and that there are interaction effects 
with gender: ii) initially smaller gender gaps are widening 
(e.g. CS and tablet interest and self-efficacy, robots utility) 
while initially higher gender gaps are closing (e.g. robotics 

interest and self-efficacy, perceiving teachers as doing CS 
in CS-schools) with access to CS-education. Teaching CS 
thus has a complex influence on perception which requires 
investigating more deeply why students perceive the disci-
pline the way they do and how it is influenced by access to 
CS-education. Monitoring this perception over time is also 
critical in order to understand how it evolves over time and 
influences long-term career decisions.

Answering the overarching question “how does the cur-
ricular reform impact student-level outcomes and equity in 
the field?” is therefore not as straightforward as it seems. 
On the one hand, introducing CS for all in the curricu-
lum and being taught CS has a positive impact and affects 
equity by:

• Promoting student learning and contributing to per-
formance-equity by reducing (i) differences between 
initially high and low performing students; (ii) the per-
formance gender gap; and (iii) the impact of teacher 
demographics on student learning.

• Contributing to perception gender-equity by reduc-
ing the largest gender-related perception gaps (namely 
those pertaining to robotics).

On the other hand, the curricular reform does not auto-
matically lead to improvements on all fronts. The impact 
is neither direct, as shown by the student learning results 
which lack a direct link between what was taught and 
learning; nor straightforward, as shown by the fact that 
there is an interaction effect between gender and access to 
CS education, with initially smaller (or not initially present) 
gender gaps increasing.

The findings of the study therefore demonstrate that the 
following elements are important to achieve equity and 
broadening participation in the field:

• Introducing CS for all students starting the first years 
of formal education.

• Preparing the teachers to teach CS, removing the influ-
ence of teacher demographic and teacher motivational 
factors on student learning.

• Having activities that signal to girls and boys equally 
and that are in students’ Zone of Proximal Develop-
ment in order to help all achieve the desired learning 
objectives.

• Investigating the impact of CS curricular reform and 
PD program implementations at the student level, and 
including teacher-level insight, all the while consider-
ing that the complex dynamics that may be involved in 
CS-education.
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Appendix A: Appendix for study 1

A.1 Student demographics for study 1b

A.2: Hierarchical linear regression model for study 1b

A.3: Analysis of variance on the student learning data for study 1a

Table 10 Student learning demographics for the data subset which considers n=989 students with complete January and June test 
data and adoption data (study 1b)

Please note that the grade 3 students in the “control” group (i.e. those who have not had access to CS education between the pre and the post‑tests) have slightly 
higher scores than those in the CS‑education classes but this difference is not significant according to an ANOVA neither in the pre‑test ( � = 0.158pts , p = 0.8502 , 
Cohen’s D = 0.031 ), nor in the post‑test ( F(1) = 0.77 , p = 0.38 , � = 0.752pts , Cohen’s D = 0.167)

Grade 3 Grade 4 Total

Metric No CS education 
classes

CS‑education classes No CS education CS‑education

Students Count 71 409 113 396 989

Classes Count 4 24 6 21 55

Activities M±SD 0.00± 0.00 3.29± 2.02 0.00± 0.00 3.12± 1.59

Range [0; 0] [1; 9] [0; 0] [1; 6]

Hours spent M±SD 0.00± 0.00 16.12± 11.25 0.00± 0.00 12.54± 6.80

Range [0; 0] [1; 48] [0; 0] [2; 26]

January cCTt Score M±SD 12.37± 5.42 12.21± 4.92 14.51± 4.38 14.78± 4.78

Range [1; 23] [1; 23] [3; 23] [1; 24]

June cCTt Score M±SD 15.66± 4.26 14.91± 4.75 16.12± 3.92 16.87± 4.51

Range [3; 23] [3; 24] [2; 23] [4; 24]

Table 11 Hierarchical linear model for student learning (dependent variable: Delta between pre‑ and post‑ test scores, n=989) with 
significant variables in bold 

R2 = 0.285 , RMSE = 2.89 , AIC = 5132 , BIC = 5225 , log‑likelihood= −2547 . NCS number of CS activities taught. Random effects σ 2 = 8.85 , τclass = 0.00 , 
τschool = 1.50 for 55 classes in 7 schools

Estimate 95% ci Std. error Degrees of 
freedom

t‑value p‑value

(Intercept) 7.11 [5.08, 9.15] 1.04 922 6.86 p < 0.0001
Pre‑test score − 0.379 [−0.52,−0.24] 0.0722 922 −5.25 p < 0.0001
Gender (girls) 0.697 [−1.62, 3.01] 1.18 922 0.591 0.555

Grade (4) 1.15 [−1.97, 4.27] 1.55 45 0.741 0.462

NCS 0.122 [−0.43, 0.68] 0.275 45 0.442 0.661

Pre‑test score:gender (girls) −0.0221 [−0.20, 0.16] 0.0906 922 −0.243 0.808

Pre‑test score:grade (4) −0.0383 [−0.24, 0.16] 0.101 922 −0.377 0.706

Gender (girls):grade (4) −0.880 [−4.52, 2.76] 1.86 922 −0.474 0.636

Pre‑test score:NCS −0.00386 [−0.04, 0.04] 0.0198 922 −0.194 0.846

Gender (girls):NCS −0.346 [−0.96, 0.26] 0.311 922 −1.11 0.267

Grade 4:NCS −0.260 [−1.22, 0.70] 0.478 45 −0.544 0.589

Pre‑test score:Gender (girls):Grade (4) 0.0308 [−0.23, 0.29] 0.131 922 0.235 0.814

Pre‑test score:gender (girls):NCS 0.0224 [−0.03, 0.07] 0.0255 922 0.876 0.381

Pre‑test score:grade (4):NCS 0.00979 [−0.05, 0.07] 0.0326 922 0.300 0.764

Gender (girls):grade (4):NCS 0.195 [−0.91, 1.30] 0.562 922 0.347 0.729

Pre‑test score:gender (girls):grade (4):NCS −0.0129 [−0.09, 0.07] 0.0412 922 −0.313 0.755
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B.2: Structural equation model for the link between perception and learning (study 2)

Table 13 Unstandardised factor loadings and regression slopes for the perception SEM (n = 2116, November 2021)

Estimate Std. Err. Z p R2

Factor loadings
 Discipline perception Tablets 0.83 0.11 7.37 0.000 0.41

Robots 0.76 0.10 7.85 0.000 0.37

CS 1.98 0.70 2.82 0.005 0.81

 CS CS interest 0.17 0.05 3.25 0.001 0.25

CS utility 0.16 0.05 3.19 0.001 0.25

CS self‑efficacy 0.20 0.06 3.31 0.001 0.28

 Role models Role models—teacher 0.17 0.01 15.60 0.000 0.13

Role models—mother 0.23 0.01 25.37 0.000 0.28

Role models—father 0.30 0.01 32.03 0.000 0.36

Role models—student 0.13 0.01 15.47 0.000 0.11

Role models—nobody −0.24 0.01 −22.85 0.000 0.41

 Tablets Tablets interest 0.25 0.03 7.97 0.000 0.22

Tablets utility 0.30 0.03 9.29 0.000 0.37

Tablets self‑efficacy 0.24 0.03 8.96 0.000 0.31

 Robots Robots interest 0.44 0.04 10.70 0.000 0.33

Robots utility 0.36 0.04 9.36 0.000 0.29

Robots self‑efficacy 0.49 0.04 11.34 0.000 0.42

Regression slopes
 Discipline perception Role models 0.15 0.05 2.94 0.003

 CS Role models 0.30 0.12 2.41 0.016

Number of CS education periods −0.01 0.01 −0.62 0.536

 Role models Number of CS education periods −0.01 0.01 −1.18 0.238

Number of ICT instruction periods −0.00 0.00 −0.13 0.896

Number of robotics instruction periods 0.03 0.02 1.22 0.224

 Tablets Number of ICT instruction Periods −0.00 0.00 −0.80 0.426

 Robots Number of robotics instruction periods 0.00 0.01 0.06 0.949

 CS interest Gender (boys = 0 girls = 1) −0.20 0.03 −5.75 0.000

Grade −0.02 0.02 −1.12 0.262

General self‑efficacy 0.09 0.03 3.29 0.001

 CS utility Gender (boys = 0 girls = 1) −0.05 0.03 −1.60 0.110

Grade 0.09 0.02 5.49 0.000

General self‑efficacy 0.09 0.02 3.99 0.000

 CS self‑efficacy Gender (boys = 0 girls = 1) −0.01 0.04 −0.33 0.741

Grade 0.01 0.02 0.74 0.459

General self‑efficacy 0.15 0.03 5.19 0.000

 Role nodels—teacher Gender (boys = 0 girls = 1) 0.06 0.02 2.98 0.003

Grade −0.04 0.01 −3.78 0.000

 Role models—mother Gender (boys = 0 girls = 1) 0.01 0.02 0.35 0.723

Grade −0.06 0.01 −5.84 0.000

 Role models—father Gender (boys = 0 girls = 1) −0.06 0.02 −2.84 0.005

Grade −0.01 0.01 −1.07 0.286

 Role models—student Gender (boys = 0 girls = 1) 0.00 0.02 0.04 0.971

Grade −0.00 0.01 −0.56 0.572

 Role models—nobody Gender (boys = 0 girls = 1) 0.01 0.02 0.43 0.667

Grade −0.03 0.01 −3.70 0.000
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Appendix C: Appendix for study 3

C.1 Structural equation model between students in schools with and without access to CS education (study 3)

Table 13 (continued)

Estimate Std. Err. Z p R2

 Tablets interest Gender (boys = 0 girls = 1) −0.09 0.03 −2.70 0.007

Grade −0.04 0.02 −2.45 0.014

General self‑efficacy −0.00 0.02 −0.07 0.946

 Tablets utility Gender (boys = 0 girls = 1) −0.05 0.03 −1.66 0.097

Grade 0.03 0.01 2.33 0.020

General self‑efficacy 0.08 0.02 3.91 0.000

 Tablets self‑efficacy Gender (boys = 0 girls = 1) −0.07 0.03 −2.55 0.011

Grade −0.01 0.01 −1.07 0.283

General self‑efficacy 0.06 0.02 3.29 0.001

 Robots interest Gender (boys = 0 girls = 1) −0.32 0.04 −7.32 0.000

Grade 0.03 0.02 1.44 0.151

General self‑efficacy 0.09 0.03 2.50 0.012

 Robots utility Gender (boys = 0 girls = 1) −0.19 0.04 −4.95 0.000

Grade 0.07 0.02 3.78 0.000

General self‑efficacy 0.16 0.03 4.98 0.000

 Robots self‑efficacy Gender (boys = 0 girls = 1) −0.25 0.04 −5.90 0.000

Grade 0.02 0.02 0.71 0.477

General self‑efficacy 0.19 0.03 5.52 0.000

Table 14 Unstandardised regression parameters for the perception and background to learning SEM ( n = 1583 , November 2021, 
χ2(124) = 221.462 , p < 0.001 , chi2/df = 1.79 , CFI = 0.951 , TLI = 0.923 , RMSEA = 0.022 , ci = [0.017, 0.027] , SRMR = 0.026)

Estimate Std. Err. Z p R2

Factor loadings

 Discipline perception Tablets 0.76 0.10 7.70 0.000 0.37

Robots 0.82 0.11 7.22 0.000 0.41

CS 1.51 0.38 3.93 0.000 0.71

 CS CS interest 0.21 0.05 4.62 0.000 0.28

CS self‑efficacy 0.27 0.06 4.57 0.000 0.32

 Role model Role models—teacher 0.18 0.01 14.77 0.000 0.17

Role models—mother 0.24 0.01 23.17 0.000 0.30

Role models—father 0.30 0.01 29.01 0.000 0.37

Role models—student 0.14 0.01 13.72 0.000 0.11

Role models—nobody −0.23 0.01 −19.99 0.000 0.39

 Tablets Tablets interest 0.27 0.04 7.73 .000 0.24

Tablets utility 0.36 0.03 10.34 0.000 0.44

Tablets self‑efficacy 0.27 0.03 9.00 0.000 0.36

 Robots Robots interest 0.42 0.05 8.92 0.000 0.34

Robots utility 0.36 0.04 8.38 0.000 0.31

Robots self‑efficacy 0.46 0.05 9.50 0.000 0.41

Regression slopes

 Discipline perception Role models 0.17 0.06 2.94 0.003

 CS Role Models 0.13 0.10 1.33 0.182

Number of CS education periods −0.01 0.01 −1.09 0.275
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 As CS utility did not correlate highly with interest and self‑efficacy it was removed from this model

Table 14 (continued)

Estimate Std. Err. Z p R2

 CS interest Gender (boys = 0, girls = 1) −0.19 0.04 −4.85 0.000

Grade −0.02 0.02 −1.05 0.292

General self‑efficacy 0.09 0.03 3.08 0.002

 CS utility Gender (boys = 0, girls = 1) −0.06 0.04 −1.69 0.091

Grade 0.05 0.02 2.71 0.007

General self‑efficacy 0.10 0.03 3.76 0.000

 CS self‑efficacy Gender (boys = 0, girls = 1) 0.05 0.05 1.10 0.270

Grade −0.01 0.02 −0.63 0.527

General self‑efficacy 0.14 0.03 4.15 0.000

 Role models—teacher Gender (boys = 0, girls = 1) 0.08 0.02 3.30 0.001

Grade −0.06 0.01 −4.79 0.000

 Role models—mother Gender (boys = 0, girls = 1) −0.00 0.02 −0.13 0.900

Grade −0.06 0.01 −5.55 0.000

 Role Models ‑ father Gender (boys = 0, girls = 1) −0.07 0.03 −2.56 0.010

Grade −0.01 0.01 −1.16 0.247

 Role models—student Gender (boys = 0, girls = 1) 0.01 0.02 0.55 0.585

Grade −0.00 0.01 −0.23 0.821

 Role models— nobody Gender (boys = 0, girls = 1) 0.01 0.02 0.68 0.497

Grade −0.02 0.01 −2.36 0.018

 Tablets interest Gender (boys = 0, girls = 1) −0.07 0.04 −1.86 0.063

Grade −0.04 0.02 −2.08 0.037

General self‑efficacy 0.01 0.03 0.37 0.713

 Tablets utility Gender (boys = 0, girls = 1) −0.05 0.04 −1.45 0.148

Grade 0.02 0.02 1.10 0.270

General self‑efficacy 0.07 0.02 2.97 0.003

 Tablets self‑efficacy Gender (boys = 0, girls = 1) −0.06 0.03 −2.17 0.030

Grade −0.01 0.02 −0.63 0.527

General self‑efficacy 0.08 0.02 3.58 0.000

 Robots interest Gender (boys = 0, girls = 1) −0.35 0.05 −6.83 0.000

Grade 0.04 0.03 1.35 0.176

General self‑efficacy 0.09 0.04 2.15 0.031

 Robots utility Gender (boys = 0, girls = 1) −0.16 0.04 −3.67 0.000

Grade 0.06 0.02 2.44 0.015

General self‑efficacy 0.16 0.04 4.20 0.000

 Robots self‑efficacy Gender (boys = 0, girls = 1) −0.21 0.05 −4.39 0.000

Grade 0.00 0.03 0.04 0.970

General self‑efficacy 0.20 0.04 5.31 0.000

 Role models Number of CS education periods 0.00 0.00 0.13 0.896

 Tablets Number of ICT education periods −0.00 0.00 −0.52 0.601

 Robots Number of robotics education periods −0.01 0.02 −0.79 0.429

 Percentage (/100) 0.136

CS perception −0.29 1.31 −0.22 0.824 0.707

Tablets perception −0.04 0.99 −0.04 0.969 0.372

Robots perception 0.96 1.11 0.86 0.387 0.411

General self‑efficacy 1.54 0.69 2.22 0.027

Gender (0 = boys, 1 = girls) −1.57 1.06 −1.47 0.141

Grade 7.53 0.53 14.19 0.000

Number of CS education periods SI 0.09 0.13 0.70 0.483

Number of ICT education periods −0.02 0.08 −0.20 0.842

Number of robotics education periods −0.29 0.42 −0.68 0.496
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