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Abstract:
The decentralisation and unpredictability of new renewable energy sources require rethinking our energy sys-
tem. Data-driven approaches, such as reinforcement learning (RL), have emerged as new control strategies
for operating these systems, but they have not yet been applied to system design. This paper aims to bridge
this gap by studying the use of an RL-based method for joint design and control of a real-world PV and battery
system. The design problem is first formulated as a mixed-integer linear programming problem (MILP). The
optimal MILP solution is then used to evaluate the performance of an RL agent trained in a surrogate environ-
ment designed for applying an existing data-driven algorithm. The main difference between the two models lies
in their optimization approaches: while MILP finds a solution that minimizes the total costs for a one-year op-
eration given the deterministic historical data, RL is a stochastic method that searches for an optimal strategy
over one week of data on expectation over all weeks in the historical dataset. Both methods were applied on a
toy example using one-week data and on a case study using one-year data. In both cases, models were found
to converge to similar control solutions, but their investment decisions differed. Overall, these outcomes are an
initial step illustrating benefits and challenges of using RL for the joint design and control of energy systems.
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1. Introduction
1.1. Background and related work
The current transition to renewable energy sources requires rethinking new energy systems, characterized by
decentralized and intermittent production. The development of these systems typically occurs in two distinct
steps, namely the design and control of these systems. The design problem involves identifying the design
variables which are the optimal size of energy system components. The control problem aims to determine
the control variables which are the optimal actions to operate the energy system components. Both design
and control problem should jointly minimize a cost function and are typically solved sequentially. This paper
explores the value of solving the design and control tasks, using a reinforcement learning (RL) method as ap-
propriate design is intrinsically linked to subsequent operation. To evaluate the effectiveness of this approach,
its performance are compared with that of the Mixed Integer Linear Programming (MILP) method.
On the one hand, RL is a data-driven approach where an agent learns to make decisions in a dynamic envi-
ronment through trial-and-error experience. It involves an agent interacting with an environment and receiving
feedback in the form of rewards or penalties based on its actions, with the goal of maximizing its cumulative
reward over time. On the other hand, Mixed Integer Linear Programming (MILP) is a mathematical optimiza-
tion technique used to solve problems with linear constraints and integer variables. It involves formulating a
mathematical model of the problem and using an optimization algorithm to find the best solution. Both RL and
MILP methods will be used to benchmark the results of a one-year time series.
As highlighted in a recent review [1], RL-based approaches have significant potential, yet not fully exploited, in
the energy field. Specifically, the review points out that energy systems are typically designed using either MILP
or heuristic methods, with RL approaches dedicated to their control. Integrating RL beyond energy flow control
would open new interesting research questions. In [2], RL is used to support distributed energy system design
due to its flexibility and model-free nature, which allows it to be adapted to different environments at different



scales. However, they did not simultaneously address the dispatch and design problem as a distributed reward
problem, as done in this work. Instead, they used a cooperative coevolution algorithm (COCE) to assist the
optimization process. Jointly addressing the design and operation of energy systems is a key issue, especially
for multi-energy systems, as discussed in [3], where multi-objective evolutionary algorithms (EMOO) and MILP
are used to integrate biomass technologies in a multi-energy system. In [4], the focus is on evolution algorithms
and their comparison with deep reinforcement learning strategies. After clarifying the fundamental differences
between the two approaches, the discussion revolves around their ability to parallelize computations, explore
environments, and learn in dynamic settings. The potential of hybrid algorithms combining the two techniques
is also investigated, along with their real-world applications.
RL-based frameworks are successfully applied to the operation of energy systems [5], although these methods
have not, to the authors’ knowledge, been extended to solve real-world design problem in energy system. As
reviewed in [6], RL-based frameworks are popular for addressing electric vehicle (EV) charging management,
mostly with variants of the DQN algorithm, and outperform other traditional methods. In [7], various deep RL al-
gorithms are benchmarked against rule-based control, model predictive control, and deterministic optimization
in the presence of PV generation. The study, which aims to increase PV self-consumption and state-of-charge
at departure, demonstrates the potential of RL for real-time implementation. For solving V2G control under
price uncertainty, [8] modeled the problem with a Markov Decision Process (MDP) [9], a mathematical frame-
work for modeling system where stochasticity is involved. Additionally, a linear MDP formulation is also used
in [10] to address the coordination of multiple charging points at once. Finally in [11], a data-driven approach
is defined and evaluated for coordinating the charging schedules of multiple EVs using batch reinforcement
learning with a real use case. In conclusion, these studies provide valuable insights and tools for optimizing
and improving energy systems, demonstrating the potential of RL to tackle the operation of complex energy
systems.
1.2. Contribution
This work aims to evaluate the relevance of jointly designing and controlling an energy system using a deep RL
approach. To achieve this purpose, two methods are benchmarked to address jointly the design and control
problem of a real-world PV-battery system. The first method, MILP, computes the optimal design and control
solution over a sequence of historical data. The second method, RL, computes the optimal design and a
control policy through interactions with a simulator by trial and error. The specific RL algorithm used in this
study is referred to as Direct Environment and Policy Search (DEPS) [12]. DEPS extends the REINFORCE
algorithm [13] by combining policy gradient with model-based optimization techniques to parameterize the
design variables. In this framework, an agent looks for the design and control variables that jointly maximize
the expected sum of rewards collected over the time horizon of interest. The outcomes of both methods are
discussed in the subsequent sections of this paper.
This paper is structured as follows. Section 2. provides two formulations of the energy system, one designed
for MILP and the other for RL, and discusses the methodology used to benchmark the results. In Section 3.,
the outcomes of the study are presented, and these results are discussed in Section 4., with a focus on the
potential of RL for joint design and control of energy systems. Finally, the paper concludes with a summary in
Section 5..

2. Method
2.1. Problem statement
The study is carried out for the energy system illustrated in Figure 1, whose components are detailed in the
subsections below. Overall, the system refers to an office building that has been fitted with a PV installation and
a stationary lithium-ion battery to meet its own electricity consumption. Additionally, the building is connected
to the electricity grid.
The objective of the study is to jointly propose a design of the PV and battery components, as well as a control
strategy of the described energy system in order to minimize the total cost of its ownership. In the following
Subsection 2.2., the system is expressed as a mathematical program made-up of constraints and objectives.
To be more precise, it is tackled as a Mixed-Integer Linear Program. Subsection 2.3. formulates a surrogate
environment as an MDP. The latter represents the same dynamics and rewards as the original problem but the
objective is to maximize the sum of rewards gathered over one week on expectation over the 52 weeks of the
year of data. By doing so, it allows the use of the RL algorithm and expects the optimal solution to be close to
the solution of the original problem. Results are discussed in Section 3.. Finally, for both methods, the energy
system is studied over a finite time horizon T , on which all costs are evenly distributed across each time step
t . The methodology and the context of the experiments conducted are specified in Subsection 2.4..



Figure 1: The energy system to be jointly designed and controlled is characterized by an electrical consump-
tion, a battery, a photovoltaic system, and a grid connection. The design problem consists of determining the
photovoltaic power and battery capacity, while the control problem aims to regulate the charging and discharg-
ing of the battery, as well as the import (resp. export) of electricity to (resp. from) the grid. The overall objective
is to meet the electrical consumption needs while minimizing the costs of installing and operating the system.

2.2. Energy system
This subsection describes the physical constraints that apply to the components of the energy system. Theses
components, in sequential order, consist of the PV panels, the battery, the electrical load and the power grid.
The set of design and control variables and the parameters of the whole system, which is modeled as a
discrete-time system, are gathered respectively in Table 1 and 2, respectively.

Variable Set Unit Description

G
R

ID P IMP RT
+ kW imported power (from the grid)

PEXP RT
+ kW exported power (to the grid)

P
V PNOM R+ kWp nominal power of the PV installation

B
AT

T
E

R
Y B R+ kWh nominal capacity of the battery

SOC RT
+ kWh state of charge of the battery

PB RT kW power exchanged with the battery

Table 1: Set of design and control variables of the energy system studied.

PV system

The objective of the PV installation is to generate electricity on-site to fulfill the local electricity demand. The
design of this component is one of the two design variables that will result from the optimization process.
The range of the suitable nominal power PNOM, corresponding to its design variable, is set in Eq. (1) and the
production at time t is directly proportional to this nominal design variable as shown in Eq. (2). The normalized
annual curve pPROD

t corresponds to the actual hourly averaged PV production power of the building.

PNOM
MIN ≤ PNOM ≤ PNOM

MAX (1)

PPROD
t = PNOM · pPROD

t (2)

The CAPEX and OPEX values, which are respectively the initial investment and the annual maintenance cost,
of the installation are made up of a fixed and a variable part to take account of potential scale effects.

CXPV = CXFIX
PV + CXVAR

PV · PNOM (3)
OXPV = OXFIX

PV + OXVAR
PV · PNOM (4)



Parameter Value Set Unit Description

G
R

ID

C IMP
GRID 1 R e/kWh imported electricity price

CEXP
GRID -0.05 R e/kWh exported electricity price

CGRID RT e electricity network cost
PMAX

GRID 10’000 R+ kW grid connection power

P
V

PNOM
MIN 0 R+ kWp minimal nominal PV power

PNOM
MAX 200 R+ kWp maximal nominal PV power

PPROD RT
+ kW generated PV power

P
PROD RT

+ kW expected generated PV power
pPROD RT

+ kW normalised PV power
LPV 20 N years PV lifetime
RPV R+ - annuity factor
OXFIX

PV 3 R+ e OPEX PV fixed cost
OXVAR

PV 10 R+ e/kW OPEX PV variable cost
CXFIX

PV 50 R+ e CAPEX PV fixed cost
CXVAR

PV 200 R+ e/kW CAPEX PV variable cost

B
AT

T
E

R
Y

BMIN 0 R+ kWh minimal nominal battery capacity
BMAX 200 R+ kWh maximal nominal battery capacity
ηB 0.9 ]0, 1] - battery efficiency
LB 30 N years battery lifetime
RB R+ - annuity factor
OXFIX

B 5 R+ e OPEX Battery fixed cost
OXVAR

B 6 R+ e/kW OPEX Battery variable cost
CXFIX

B 30 R+ e CAPEX Battery fixed cost
CXVAR

B 110 R+ e/kW CAPEX Battery variable cost

S
Y

S
T

E
M

T N - time horizon
∆t 1 RT

+ h time steps
ht [0 : 23] h hour of the time step
r 0.05 R - discount rate
PLOAD RT

+ kW uncontrollable electricity consumption
P

LOAD RT
+ kW expected electricity consumption

Table 2: Set of parameters of the energy system studied.

Battery

To maximize the potential for on-site self-consumption, a stationary lithium-ion battery is available. The design
of this component, corresponding to its capacity B, is the second design variable to determine during the
optimization process. This battery capacity can vary in the range of Eq. (5).

BMIN ≤ B ≤ BMAX (5)

The state of charge variable, SOCt , changes as a function of the power exchanged with the battery denoted PB
t .

This power is constrained, for charging, by the nominal capacity, Eq. (6), and, for discharging, by the energy
stored, Eq. (7). Additionally, the battery efficiency, denoted ηB, is assumed identical for both the charging and
the discharging processes.

PB
t ≤ B − SOCt

∆t
if PB

t ≥ 0 (6)

PB
t ≥ −SOCt

∆t
if PB

t ≤ 0 (7)

Knowing the power exchanged with the battery, the state of charge can be updated:

SOCt+1 =

{
SOCt + PB

t · ηB ·∆t if PB
t ≥ 0

SOCt + PB
t

ηB ·∆t if PB
t < 0

(8)

At the beginning of the optimization, i.e., t = 0, the battery SOC is set to half of its capacity value, to initialize
the model. Moreover, to avoid any artificial benefit, the final SOC is constrained to be equal to the initial value,



as formulated in Eq. (10).

SOCt=0 =
B
2

(9)

SOCt=0 = SOCt=T (10)

Similar to the PV plant, the CAPEX and OPEX of the battery consist of both fixed and variable parts.

CXB = CXFIX
B + CXVAR

B · B (11)
OXB = OXFIX

B + OXVAR
B · B (12)

Electrical load

The electrical load used in this project is real data from an office building in Switzerland. This consumption is
monitored on an hourly basis and reflects the consumption patterns of office days. This building load power,
PLOAD

t , is provided as input and corresponds to an actual measurement sampled by hours over a year.
Electrical grid

To absorb excess solar production or to meet the electricity consumption in the absence of local production,
the system is connected to the low-voltage electrical grid. This connection is modeled here as a single balance
equation, called the conservation of electrical power, shown in Eq. (13). The power imported from the grid is
referred to as P IMP

t and the power injected is referred to as PEXP
t .

PPROD
t + P IMP

t = PLOAD
t + PB

t + PEXP
t (13)

The grid power value at each time t is derived from Eq. 13, and the power limit can be described as follows.

0 ≤ P IMP
t ≤ PMAX

GRID (14)
0 ≤ PEXP

t ≤ PMAX
GRID (15)

Based on the import and export power, the total cost of supplying electricity through the network CGRID can be
computed.

CGRID =
T−1∑
t=0

CGRID,t =
T−1∑
t=0

P IMP
t · C IMP

GRID,t − PEXP
t · CEXP

GRID,t (16)

Objective function

The objective of this study is to propose a design for the PV and battery components, along with their dispatch,
with the aim of minimizing the total cost of ownership. This objective function, of minimizing the overall cost of
the system, can be formulated as follows.

min TOTEX (17)

The total cost of the system, denoted TOTEX, is composed of the CAPEX and OPEX of both PV and battery
components, as well as the grid cost.

TOTEX = OPEX + CAPEX + CGRID (18)
OPEX = OXpv + OXB (19)

CAPEX = CXpv · Rpv + CXB · RB (20)

The OPEX and grid cost are computed over a finite time period T . However, the CAPEX is an investment cost
that is independent of T . To enable the adaptation of the investment cost to the project duration, an annuity
factor R adjusts the CAPEX for the finite time horizon T . This annuity factor is computed according to Eq. (21),
by taking into account the values of T , the annual discount rate r , and the lifetime L of the component. This
formula includes a scaling factor T

8760 to adapt R to the period T , based on the assumption that T is expressed
in hours since 8760 is the number of hours in a year.

R =
r · (1 + r )L

(1 + r )L − 1
· T

8760
(21)

2.3. MDP formulation
This section presents an alternative formulation of the problem as a Markov Decision Process (MDP), which is
a well-established framework for modeling sequential decision-making problems. This alternative formulation
is required for applying DEPS. More precisely, an MDP(S, A, P, R, T ), as presented below, consists of the
following elements: a finite set of states S, a finite set of actions A, a transition function P, a rewards function
R, and a finite time horizon T .



State Space

The state of the system can be fully described by

st = (ht , dt , SOCt , P
PROD

t , P
LOAD

t ) (22)
∈ S = {0, ..., 23} × {0, ..., 364} × [0, B] × R+ × R+ (23)

• ht ∈ {0, ..., 23} denotes the hour of the day at time t . The initial value is set to 0.

• dt ∈ {0, ..., 364} denotes the day of the year at time t . The initial value is set randomly.

• SOCt is the state of charge of the battery at time t , this value is upper bounded by the nominal capacity
of the installed battery B. The value is set initially to a random value during the training process and to
half of its capacity during the validation process.

• P
PROD

t represents the expected PV power at time t . This value is obtained by scaling normalized historical
data pPROD

t with the total installed PV power (PNOM) and considering ht and dt values.

• P
LOAD

t denotes the expected value of the electrical load at time t . The load profile is determined using
historical data that corresponds to the same hour and day as the PV power.

Action Space

The action of the system corresponds to the power exchanged with the battery.

ãt = (P̃B
t ) (24)

After projecting the action to fall within the acceptable range specified by Eq. (6) and (7), the resulting value is
used as at , as shown in Eq. (25). This corresponds to the power exchanged with the battery, denoted PB

t , this
value is positive when the battery is being charged and negative when it is being discharged.

PB
t =


B−SOCt

∆t if P̃B
t > B−SOCt

∆t
SOCt
∆t if P̃B

t < − SOCt
∆t

PB
t otherwise

(25)

Transition Function

Each time step t in the system corresponds to one hour, which implies the evolution specified in Eq. (26) of
the state variable h and every 24 time steps, the day is incremented by 1.

ht+1 = (ht + 1) mod 24 (26)

dt+1 = Int(
ht + 1

24
) (27)

where the function Int takes the integer value of the expression in Eq. (27).
The SOCt of the battery is updated as Eq. (8), based on the projected action value, and all other state variables
are taken from input data.

P
PROD

t+1 = pPROD
ht+1,dt+1

· PNOM (28)

P
LOAD

t+1 = pLOAD
ht+1,dt+1

(29)

Reward Function

The reward signal to optimize the agent’s actions in RL serves a similar aim as the objective function in the
MILP formulation. Therefore, the reward here is the opposite value of the TOTEX defined at Eq. (18). This
cost is composed of (i) the investment cost, (ii) the operating cost and (iii) the cost from the purchase and
resale of electricity from the grid defined in Eq. (16).

rt = −TOTEXt (30)
= −CAPEX − OPEX − CGRID,t (31)
= −CAPEX − OPEX − P IMP

t · C IMP
GRID,t + PEXP

t · CEXP
GRID,t (32)

where the grid cost is the only time-dependent factor, while CAPEX and OPEX are fixed values for a specific
value of PNOM and B.



2.4. Methodology
This subsection discusses the fundamental differences between the two methods (i.e., MILP and RL), along
with the experimental protocol that was employed to compare the results. As discussed briefly earlier, although
the same problem is aimed to be solved, the methods under study are fundamentally different.
MILP is a method for solving problems that involves optimizing a linear function of variables that are either
integer or constrained by linear equalities, as the problem described in Subsection 2.2. The MILP algorithm
solves the optimization problem by iteratively adjusting the values of the design and control variables, subject to
the constraints, until it finds the optimal solution that maximizes or minimizes the objective function, depending
on the problem’s goal. This method is applied to the problem described in Subsection 2.2. over a one-year
time horizon (T = 8760). The solution is said to be computed with perfect foresight meaning that all variables
are selected accounting for the future realization of (normally unknown) events in the time series, providing
an optimistic upper bound on the true performance of the control and design. Concretely, the MILP problem
is here encoded in the Graph-Based Optimization Modelling Language (GBOML) [14] paired with the Gurobi
solver [15].
In contrast, RL is a stochastic optimization method that learns from experience through trials and errors. In
this study, we use DEPS [12], an algorithm optimizing design and control variables in an MDP, as the one
described in Subsection 2.3., with a finite-time horizon. The agent receives feedback in the form of rewards
when it selects a particular design and performs specific actions. The objective of the agent is to maximize the
expected cumulative reward, which drives it to learn a design and a control policy. Ideally, as with MILP, the time
horizon should be annual, or cover the entire lifetime of the system, taking into account seasonal production
and consumption fluctuations and/or equipment aging. However, such extended time horizons are unsuitable
for this RL approach. Therefore, to strike a balance between a horizon that is short enough for DEPS and long
enough to observe the consequences of decisions on the system, a horizon of T = 168 hours, i.e., 7 days,
is defined. Additionally, for each simulation, the initial day is sampled uniformly from the year-long data set
and the initial state-of-charge of the battery is also sampled uniformly at random. As the reward is optimized
on expectation over all days, the resulting design and control policy is expected to account for the seasonality
and other different hazard in the historical data. The DEPS algorithm is trained on a predetermined number of
iterations. The PV power and battery capacity values obtained from the last iteration of the algorithm are then
taken as the values of the design variables and the final policy is used for the control.
Unlike MILP, the RL method does not secure optimality, therefore the experimental protocol aims to compare
both results to see how far the RL solution is from the optimal one. The experimental protocol is conducted in
two distinct scenarios to differentiate the impact of adding the design variables in the joint problem. The first
control-only scenario (CTR) assessed the control variables when the design variables are fixed. The second
scenario, considering both the control and design (CTR & DES) problem, allows for flexibility in designing the
battery capacity and PV power, the two design variables. To benchmark the performance of both methods in
each scenario (i.e., CTR and CTR & DES), the reward and income value are reported. The reward value is
computing according to Eq. (32) for the RL method. To estimate the average reward value for the MILP method,
all reward values rt are averaged over time horizons of T = 168. Comparing the average cumulative reward
value of the MILP method to that of the RL method provides a first benchmark for evaluating the performance
of both approaches. However, as shown in Eq. (32), only the grid cost is time-dependent, while the CAPEX and
OPEX depend solely on investment decisions. Therefore, the income value is defined as the average reward
value, but it only includes the grid cost and can be computed as follows:

Income =
T−1∑
t=0

−P IMP
t · C IMP

GRID,t + PEXP
t · CEXP

GRID,t (33)

Finally, the experiments are performed in two steps. First, to perform a simple comparative study, working
on a same finite time horizon T = 168, both methods are conducted using data from a single summer week.
Second, the data set is extended to include the one-year data set.

3. Results
The energy system presented in Section 2. is solved using the RL and MILP approaches with parameter values
listed in Table 2. To differentiate the performance of the DEPS algorithm for control and design aspects, the
study is conducted in two distinct scenarios. The first control-only scenario (CTR) assessed the control aspect
for fixed design variables, meaning that the PV power and battery capacity are fixed. The second scenario,
considering both the control and design (CTR & DES) aspects, allows for flexibility in designing the battery
capacity and PV power. The two following subsections describe the results of the study performed in two steps,
over the one-week and one-year data set, respectively.



3.1. A one-week toy example
In order to perform a simple comparative study, both CTR and CTR & DES analyses were conducted using
data from a single summer week. This enables to optimize both methods on the same time horizon. This
means training the RL algorithm on the same 168 time steps, with an initial day uniformly randomly selected
over the week but an initial hour fixed at midnight. Additionally, during the training phase, the battery’s initial
SOC is uniformly sampled such that the RL algorithm is presented with a large variety of scenarios for improving
the quality of the learned policy. The results for both the CTR scenario, where the design variables (i.e., the
PV power and battery capacity) are fixed, and the CTR & DES scenario, where the PV and battery design
variables are optimized in addition to control, are presented in Table 3.

Unit Optimal RL Optimal MILP MILP solution based
solution solution on RL design

C
T

R

T hours 168 168
Reward e -66 -66
Income e -30 -30

C
T

R
&

D
E

S T hours 168 168 168
Reward e -40 -46 -53
Income e -4 0 -17

Battery capacity kWh 62 40 62
PV power kWp 41 103 41

Table 3: Results of RL and MILP solutions on one-week data for control-only (CTR) and control and design
(CTR & DES) scenarios. T denotes the time horizon in hours, while income represents the cost of buying and
selling electricity from the grid, reward is the average cumulative reward value, and battery capacity and PV
power indicate the values of design variables, which were set to 31.89 kWh and 55.81 kWp, respectively, in
the CTR scenario. In the RL model, reward and income values were obtained by reloading the trained model
with the determined design variables. Results were computed using an initial state of charge of the battery set
to 50% of its capacity for both models. However, the RL model does not take into account the Eq. (10).

3.1.1. RL and MILP optimal objective values are similar in both scenarios but with different designs
in the control and design scenario.

Table 3 shows that in the CTR scenario, the results of the RL approach are similar to those of MILP. This
confirms that the DEPS algorithm is able to converge to the optimal solution of this specific problem. In the
CTR & DES scenario, RL design variables differ from the MILP solution, resulting in an unexpected higher
reward value (-40) than the MILP optimal one (-46). A detailed analysis reveals that this unexpected higher
value is due to Eq. (10), which is not imposed in the MDP. In order to validate this analysis, the additional grid
cost needed to fulfill Eq. (10) has been computed, taking into account the battery’s final SOC obtained with the
RL approach. As a result, the reward value has increased to -67 (instead of -40). This clearly highlights the
importance that Eq. (10) plays in term of overall objective.
3.1.2. The CTR & DES scenario highlights differences in RL and MILP strategies.

It is seen from Table 3 that in the second scenario, the optimal design variables of the RL and MILP solutions
differ. Finding different values in design variables shows that the DEPS algorithm is able to identify solutions
with comparable reward but using different design strategies. In order to study the sensitivity of the optimal
solution, the MILP method was applied by imposing the design variable values obtained with the RL, as it can
be seen in the last column of Table 3. This indicates that the RL design solution is less optimal (-53) than the
MILP one (-46).
3.2. A one-year case study
Optimal solutions of RL and MILP methods in both scenarios are now computed using data from a full year.
The time horizon for the RL algorithm is still equal to T = 168, but the starting days are uniformly randomly
selected over the year. The RL algorithm is trained over a pre-determined number of 100’000 iterations and
the values of the RL design variables considered are the ones from the final iteration. The results are shown
in Table 4.
3.2.1. The difficulty of generalizing a policy with stochasticity in the model and on the estimation of

the expectation

It can be seen from Table 4 that in both the CTR and CTR & DES scenarios, the optimal reward obtained
by the RL method is poorer than the MILP optimal rewards. Furthermore, as depicted in Fig. 2, due to the
significant variations in the input data, the reward and income values exhibit substantial fluctuations across



Unit Optimal RL Optimal MILP MILP solution based
solution solution on RL design

C
T

R

T hours 168 8760
Reward e -268 -228
Income e -220 -196

C
T

R
&

D
E

S T hours 168 8760 8760
Reward e -250 -205 -247
Income e -208 -164 -218

Battery capacity kWh 44 95 44
PV power kWp 57 81 57

Table 4: Results of RL and MILP solutions on one-year data for CTR and CTR & DES scenarios. T denotes
the time horizon in hours, while income represents the cost of buying and selling electricity from the grid,
reward is the (expected) cumulative reward value, and battery capacity and PV power indicate the design
variable values, which were set to 64.9 kWh and 63.65 kWp, respectively, in the CTR scenario. The RL
solution is based on the trained model to determine the reward and income values, based on an average of
1’000 simulations over T = 168. The MILP solution is computed for a one-year time horizon (T = 8760). Both
models use an initial state of charge (SOC) of the battery set to 50% of its capacity. However, the MILP model
has an additional constraint specifies in Eq. (10).

iterations.

Figure 2: Value of reward and income obtained by the DEPS algorithm at each iteration for both scenarios.
The left plots show the reward and income values for the CTR scenario, while the right plot shows the same
values for the CTR & DES scenario. The light curve shows the exact values for each time step, while the dark
curve displays the corresponding smoothed values. In the CTR scenario, the difference between the reward
and income values remains constant at 31.93 due to fixed design variables, with a battery size of 64.9 kWh
and a PV power of 63.65 kWp. However, in the CTR & DES scenario, the battery size and PV power output
vary from 0 to 200 kWh and kWp, respectively.

During training in the CTR scenario (Fig. 2, left), the RL model achieved maximum reward and income values
of -180 and -131, respectively, which are significantly better than the final results obtained from both methods in
Table 4. This could suggest that depending on the set of weeks that are averaged at each iteration, it is possible
to obtain a better or worse reward. Therefore, it seems important to work with a sufficiently representative
number of weeks throughout the year. A similar observation can be made in the CTR & DES scenario, where
the maximum reward and income values achieved were -195 and -148, respectively (Fig. 2, right).



3.2.2. The RL method seems to promote lower design variable values

From Table 4 it is also seen that the RL approach seems to promote solutions involving lower values of design
variables. To further investigate the reasons underlying this result, the design variables for the evolution of the
battery capacity and PV power, during the training process, are reported in Fig. 3 in the CTR & DES scenario.

Figure 3: Value of design variables in the RL approach at each iteration, in the CTR & DES scenario. The RL
algorithm converges at the final iteration to a battery capacity of approximately 44 kWh and a PV power output
of around 57 kWp.

As indicated in Table 2, the design variable values can range from 0 to 200. However, it can be seen that higher
values are not explored by the RL method. This latter resulted, at the last iteration, in design variables of 44
kWh for battery capacity and 57 kWp for PV power. During the training phase, the maximum values reached
were 59 kWh and 90 kWp for battery capacity and PV power, respectively. This maximal explored battery
capacity value is lower than the optimal one found by the MILP approach (95 kWh). Thus, the RL solution of
the PV power value is expected to be lower. Indeed, the reward value is penalized if the RL agent injects PV
production into the grid, since the cost of exported energy into the grid (Cexp

grid ) is defined as a negative value in
Table 2. Consequently, limited battery capacity intrinsically causes a lower PV power value.

4. Discussion
This section discusses the main observations that can be drawn from solving a battery-PV system with both
RL and MILP approaches using the one-week and one-year data set.

4.1. The promises of RL for joint design and control of energy systems
The motivation for this study was to explore the potential of RL to enable joint control and design of energy
systems. Tables 3 (one-week data) and 4 (one-year data) show that RL provides a solution that is close to
the optimal MILP one. This is encouraging as it suggests that despite RL relying on a different optimization
strategy, it is able to identify a meaningful solution in a simple case. However, the difference of reward value
between MILP and RL increases when integrating design variables to the optimization problem, i.e., CTR &
DES scenarios in Tables 3 and 4. Interestingly, the solutions for design variables are consistently smaller in
RL as compared to MILP. Furthermore, from Fig. 3, it can be seen that the RL algorithm did not explore higher
design variable values in the one-year case study. This observation can be explained by two possibilities: first,
DEPS is a local-search method that is thus subject to converging towards local extrema. Once the control policy
is too specialised to the investment parameters (under optimization too), these parameters are thus expected to
be locally optimal and the algorithm is stuck. Second, the RL algorithms is subject to many hyperparameters to
which the final results are sensible, it is possible that a different policy architecture, learning rate, or simply more
iterations would ameliorate the performance of the method. Supporting the first explanation is the similarity
between the reward values of the RL (-250) and MILP, based on same investments, (-247) approaches for the
CTR & DES scenario with T = 8760 (Table 4). Hence, in this specific energy system case study, it could be
likely that the RL algorithm did not deem it advantageous to enhance the value of the design variables for either
one or both of the two reasons stated.
Overall, these results show that RL provides realistic control and design strategies. Based on this, RL could
be used to define new real-time control strategies integrating design constraints, and that are less sensitive
to linearization inaccuracies [16], [17]. Given the differences in how uncertainties are accounted for by both
methods, RL could also be a better candidate to integrate resources coming with high levels of uncertainty
such as electric mobility.



4.2. Technical challenges and future directions
The main technical challenges encountered in this study are essentially the ones inherent to RL methods.
First, various parameters need to be tuned: neural network architecture for the policy, the batch size for the
optimization, the learning rate, or the different scaling among others. These parameters were tuned by trial and
error and would need to be adapted to each new application. For example, the number of layers required in the
one-year case study was larger than for the one-week toy example. Second, convergence of the RL method is
not guaranteed, and when convergence happens, the solution is not guaranteed to be globally optimal. Third,
as illustrated here above for the results of Figure 3, determining the number of iterations (set to 100,000 for the
training phase in all our experiments) is also crucial and might affect RL solutions. Therefore, comparing RL
and MILP solutions is not trivial because its is difficult to compare perfect foresight with policy based decisions.
This should be accounted for when analyzing results from Tables 3 and 4.

From a technical point of view, future work will aim at using more advanced RL methods. In particular, the RL
algorithm used here is a modified version of the REINFORCE algorithm [13], which was developed in 1992
and is one of the earliest RL algorithms. Today, more advanced algorithms are available for control problems,
which can converge more rapidly or account for infinite time horizons, such as actor-critic algorithms (e.g.,
PPO [18] and GAE [19]), but are yet to be adapted to joint design and control. In terms of applications, future
work will aim to better evaluate the added value of RL by assessing the long-term performance of real-time
sized systems. For example, a control framework could be developed to establish an operation strategy for
the MILP-sized system. The framework would then be evaluated using several years of real-time data from
the same system used for design. The same exercise would be applied to the trained model of the DEPS
algorithm and performance obtained from several years of system control would be benchmarked, and the
impact of design decisions could be discussed with more perspective.

5. Conclusions
In most studies, MILP is used for the design of energy systems and RL for the control. On the one hand, MILP
assumes a perfect foresight of the future and is difficult to generalize to new data. On the other hand, RL
methods proved to be efficient in other tasks linked to design and control but not on energy systems. In this
study, we assessed the potential of an RL method, DEPS, i.e. an RL algorithm proven efficient for designing
and controlling complex systems, for the joint design and control of energy systems.
The energy system studied is a PV-battery system used to answer a real-life demand in order to minimize
the overall cost. In order to assess the efficiency of the RL method, we compared the outcomes with those
obtained with a MILP. As these two approaches are fundamentally different, the optimization problem was
formulated in two distinct ways: first as a MILP and second as an MDP. The methodology and experimental
context were clarified to facilitate the discussion of results and have a fair comparison. Both approaches are
discussed in terms of their strengths and weaknesses.
The findings show that RL can produce control strategies that are close to optimal, while using different values
of design variables. This highlights the potential of RL for joint design and control of energy systems, particu-
larly in scenarios where stochasticity is a key factor. However, the study also highlights the difficulty of tuning
and using theses methods. Moving forward, there are several challenges to address, including the need to en-
sure that the RL solution converges to a global optimum. However, the promising results obtained in this study
suggest that RL has the potential to be a valuable tool for jointly designing and controlling energy systems.
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