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Current methods for near real-time estimation of effective reproduction numbers
from surveillance data overlook mobility fluxes of infectors and susceptible individuals
within a spatially connected network (the metapopulation). Exchanges of infections
among different communities may thus be misrepresented unless explicitly measured
and accounted for in the renewal equations. Here, we first derive the equations
that include spatially explicit effective reproduction numbers, Rk(t), in an arbitrary
community k. These equations embed a suitable connection matrix blending mobility
among connected communities and mobility-related containment measures. Then,
we propose a tool to estimate, in a Bayesian framework involving particle filtering,
the values of Rk(t) maximizing a suitable likelihood function reproducing observed
patterns of infections in space and time. We validate our tools against synthetic data
and apply them to real COVID-19 epidemiological records in a severely affected
and carefully monitored Italian region. Differences arising between connected and
disconnected reproduction numbers (the latter being calculated with existing methods,
to which our formulation reduces by setting mobility to zero) suggest that current
standards may be improved in their estimation of disease transmission over time.

infection spreading mechanisms | human mobility | disease generation interval | particle filtering |
COVID-19

The effective reproduction number of a community k at time t, Rk(t), defines the
expected number of secondary infections caused by a single infector residing in a
nonnaive community k. It is adopted to measure the level of transmission when
the pool of susceptibles may have changed from its disease-free equilibrium value or
transmission dynamics of the infectious disease may have shifted, owing to variations
in viral transmissibility or to the effects of containment interventions (1–5). With
reference to COVID-19 epidemic spread, values of Rk(t) are currently estimated from
cohort studies (4–10) or epidemiological models (11–17). Rk(t) of COVID-19 has
been used extensively to monitor and predict near real-time changes in transmission by
mechanistic models of disease dynamics, possibly spatially explicit and individual based
(12–16, 18, 19).

Direct estimates of Rk(t) from epidemiological data (8, 14, 19–22) are variably
endowed with statistical insight and accuracy (9). However, existing methods are known
to provide robust estimates of Rk(t) incorporating uncertainties in the distribution of
serial and generation intervals, latency, and notifications of death and recovery/discharge
(7, 9, 10, 17, 22, 23). When observational data are collected over a limited period of
time, and several parameters need to be estimated, sources of bias abound (7). Limits
to the reliability of stochastic methods have been carefully verified in particular for
the recommended (9) standard computational method (8). The latter is shown to lose
meaning for the k-th community when the newly reported cases reduce below a critical
threshold, thus setting a practical limit to the possible spatial granularity of the analyses.
Over time, Rk(t) detects changes in disease transmission within the k-th community.
Although less prognostic than the reactivity of the system to the seeding of new infections
(19), its immediacy (say, its possible exceedance of the unit value threshold) makes it
universally understandable—and used. During the COVID-19 pandemic, Rk(t) thus
became the standard indicator of the effects of epidemiological interventions and of how
changes in containment policies, population immunity, and other factors affect disease
transmission.

Results

We introduce a rigorous spatial extension of an integro-differential Lotka-like approach
to COVID-19 modeling (Materials and Methods and SI Appendix). We consider a
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metapopulation composed of N communities connected by
human mobility where the incidence of infected individuals
is suitably monitored in time by recording the number of
(reported) new infections at time t and location l (l = 1, . . . , N ).
Specifically, we consider the case of individuals resident in
community l infecting or getting infected in the same community
or, being mobile, in another connected site. Thus, our estimation
ofRl (t) allows us to evaluate how mobility may contribute to the
epidemic spread within a metapopulation. A key distinction is
made, however, between estimates of the time evolution of local
reproduction numbersRc

l (t) in each of theN communities when
mobility is accounted for and the standard method that estimates
the disconnected reproduction number,Rd

l (t). In the latter case,
the effective reproduction number is estimated by neglecting
secondary infections produced via contacts with residents outside
l (8, 9), thus assuming that all infections are generated in situ by
the disease demography. Obviously, when internally generated
infections are dominant in a given geographic context, one ex-
pectsRc

l (t) ' R
d
l (t). The effective reproduction numberRc

l (t)
of the l-th community accounts for the secondary infections
produced by a resident of l either in the same community l or
elsewhere in any other connected one, assuming that the residents
retain the same number even when they produce infections in
a foreign node. Alternative formulations entailing a different
meaning of Rc

l (t) may be adopted to account for different
roles of, and reflecting different transmission routes for, foreign
infections (SI Appendix, section 3). Our main methodological
result (Materials and Methods) is an integral equation producing
an estimate F̂l (t) of the incidence of the new cases in node
l at time t. It involves the connected reproduction numbers,
Rc

k(t), and a stochastic connection matrix, Cjl (t), quantifying
the probability that one susceptible/infected individual resident
in l is found at location j at time t (possibly with j = l), i.e.,

F̂l (t) =
N∑
j=1

pjl (t)
N∑
k=1

Cjk(t)Rc
k(t)

∫
∞

0
β(τ )Fk(t−τ )dτ , [1]

where pjl (t) is the fraction of residents of l temporarily present in
node j, pjl (t) = Cjl (t)nl/[

∑N
m=1 Cjm(t)nm]; nl is the number of

residents in node l ; Fl (t) is the incidence of reported new cases
in node l at time t; and β(t) defines the probability distribution
function of the disease generation times, i.e., the time elapsed
between an infector’s contagion and that of their infectees,
treated as a random variable (Materials and Methods). Standard
estimates of the disconnected effective reproduction number
Rd

l (t) are obtained by setting the connection matrix C = I, thus
yielding

F̂l (t) = Rd
l (t)

∫
∞

0
β(τ )Fl (t − τ )dτ . [2]

To compute the connected and disconnected effective re-
production numbers, we solve Eqs. 1 and 2, respectively, in a
sequential Monte Carlo framework (SMC, or particle filtering)
(24–27) to estimate from epidemiological and mobility data the
various reproduction numbers that best explain the monitored
incidence. To estimate the effective reproduction numbers, we
employ normalized incidences Ik(t) = Fk(t)/nk which require
a lognormal likelihood instead of the classical Poisson one
(Materials and Methods and SI Appendix). We thus estimate
directly the external drivers of infections in any node l (i.e.,
the seeding of new cases in time) generated by, or induced on,

nonresidents in l through contacts made possible by human
mobility and by the lack of personal protection. Imported
infections may originate outbreaks within naive populations and
force disease dynamics through evolving avenues for susceptible-
infected contacts. Spreading of infections is therefore studied in a
more general manner than implied by current standards, however
still being estimated directly from incidence data.

The first test application of our approach uses a synthetic
dataset generated on an interconnected three-node network
(Fig. 1D), explicitly constructed by assigning fictitious timeseries
of reproduction numbers Rtrue

l (t) to each node (Fig. 1A).
Incidences are then generated by using the fictitious Rtrue

l (t)
and a connection matrix C in Eq. 1 (Fig. 1B). In this case, C
is constructed by assigning the outgoing probability ξl (t) for
each node l (Fig. 1E) and the relative fraction of ξl (t) that
reaches each connected node (Fig. 1D, Section D of Materials
and Methods). The filtering procedure is then applied to the
generated epidemiological data to provide an estimate of the
originalRtrue

l (t).
The purpose of the first example, based on imposed effective

reproduction numbers (Fig. 1A) and on given connections and
time-varying mobility (Fig. 1 D and E), is to prove the accuracy
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Fig. 1. Application of the SMC approach to a fictitious network of three
nodes (of n1 = 80,000, n2 = 450,000, and n3 =700,000 residents). (A) Temporal
evolution of the effective reproduction numbers assigned to each node (true:
Rtrue
l , estimated connected:Rc

l , and estimated disconnected:Rd
l ). (B) daily

number of infections in each node generated by using Eq. 1 with Rtrue
l

(grey shaded area), and the estimatedRc
l (solid lines for median and shaded

ribbons for 90% confidence interval, C.I.); (C) Mean absolute percentage error
(MAPE) between Rtrue

l and the estimates obtained using the disconnected
approach ( = 0), the connected approach with the correct mobility ( = 1),
and lower or higher outgoing mobility ( = 0.5 or 2, respectively, Section B of
the Materials and Methods); (D) Three-node network and its assigned baseline
relative fractions of the outgoing mobility that reach the other nodes; (E)
Assigned outgoing mobility and its temporal variations.
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Fig. 2. Time evolution of COVID-19 monitored incidence of new
positive tests (curated data from reported infections) in the seven
provinces of Region Veneto (IT). A detailed map of the region
highlighting the smallest possible administrative subdivision (the
municipalities) is shown together with the color code identifying each
province. The spatial granularity chosen for the application of the
method proposed in this paper is based on the applicability of the
method in the given epidemiological context, i.e., the lower limit of
the number of new cases reported (8). In the case at hand, many
municipalities would be often below the limit, whereas provinces
(color-coded here), on average aggregating dozens of municipalities,
would not. However, the tools may be adapted to any spatial
arrangement of connected communities depending on the recorded
attack rates and on the computational power available.

of the proposed tools in retrieving the correct values of Rl (t)
and to highlight the importance of including the mobility in the
estimation process. We find that the spatially explicit estimates
Rc

l (t) of the known values Rtrue
l (t), obtained using the SMC

method and the correct connectivity, accurately reproduce the
imposed values in each node (Fig. 1 A and B). On the contrary, if
we had used the traditional disconnected valuesRd

l (t) that ignore
the effects of mobility, both the trends and the absolute values
of the true reproduction numbers would have been significantly
under or overestimated in nodes 1 and 2 (Fig. 1A). However, our
method is predicated on mobility being known with sufficient
accuracy. The errors on the estimate grow substantially with
the importance of the miscalculation of mobility (Fig 1C ), here
epitomized by a dimensionless multiplier, ψ , of the fraction of
mobile individuals. Estimates prove less precise also during lull
phases of the epidemic, in line with current methods (8). In any
case, the relevance of the accounting for spatial effects in this
example is clear. The test example thus shows that, under specific
feasible conditions, Rc

l (t) 6= R
d
l (t) and that the computational

procedure set up to solve Eq. 1 is sound.
The second example refers to the recorded COVID-19 cases

in Region Veneto in Northern Italy (Fig. 2), home to 4.9 106

residents and severely affected by the pandemic. Whenever one
deals with real data, the problem arises of how to account for
measured incidence (the data) as compared to real incidence
(our model). The filtering procedure proposed in the previous
example is appropriate if the proportion of real incidence
identified via swab testing is fairly homogeneous in space and
time (thus, possible heterogeneities, e.g., due to laboratories’
capacity, healthcare policies, and general willingness to get
tested, are neglected). In this sense, Region Veneto is quite
appropriate because in Italy, the health system is organized at
the regional level and throughout the pandemic, Veneto has
adopted a strong policy of large-scale swab testing (as of October
2021, a total of 2.59 tests/resident have been carried out in
this Region, as opposed to a much lower country-wide value of
1.64 tests/resident, https://github.com/pcm-dpc/COVID-19).
The epidemiological timeseries studied here are shown in Fig. 2
and are limited until October 2021. This is directly linked to our
assumptions (Materials and Methods): As the Omicron variant
of SARS-CoV-2 began its ascent at the end of 2021, questions
arise on whether the distribution of generation times, expressed
by variable β in Eq. 1, should have been modified had we
decided to extend the computations further (but refs. 28 and
29). To estimate mobility between communities, we combined
various sources, including mobile phone tracking data (Materials
and Methods).

The results shown in Fig. 3 confirm that estimates of dis-
connected effective reproduction numbers from epidemiological
data alone may misrepresent changes in disease transmission
over time when mobility involves a significant fraction of the

0

1

2

3

Ve
ro

na

0

500

1000

Observed
Simulated

0

1

2

3

Vi
ce

nz
a

0

500

1000

0

1

2

3

Be
llu

no
0

500

1000

0

1

2

3

Tr
ev

is
o

0

500

1000

0

1

2

3

Ve
ni

ce

0

500

1000

0

1

2

3

Pa
du

a

0

500

1000

Jul20 Jan21 Jul21
0

1

2

3

R
ov

ig
o

Jul20 Jan21 Jul21
0

500

1000

Fig. 3. Differences arising in the estimation of the effective reproduction
numbers when human mobility is accounted (Rc

l , in orange) or not (Rd
l ,

in blue). (Left): the effective reproduction numbers for the seven nodes
corresponding to the provincial aggregation shown in Fig. 2. (Right): daily
reported data (gray) and the simulated infections as inferred by our SMC
method (red). For all plots, solid lines represent the median of the particles’
sets and shades represent their 90% C.I. The fractions of mobile individuals
for each node, �l(t) (with l = 1,7) and the associated fractions of infections
caused by mobility, �l(t) are shown in Fig. 5.
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population of the connected communities. The particle filtering
approach applied to the disconnected formulationRd(t) (which
closely approximates the epidemiological golden standard of the
computation of the effective reproduction number (8, 9), SI
Appendix, Fig. S9) may in fact overestimate (or, more rarely,
underestimate) the actual value of Rc(t). Differences emerge
when human mobility, subsumed by the connection matrix C
(SI Appendix), is responsible for a number of new infections that
proves significant compared to the internally generated ones. As
lockdown policies were affected by near real-time, unit-exceeding
estimates of Rd(t) from data, attention should be paid to the
range of values—often exceeding the unit value threshold—
obtained in specific nodes when mobility patterns generate a sig-
nificant number of infections that are inappropriately attributed
to the node (below for a quantification). Fig. 4 summarizes
the main differences between the spatially connected and the
spatially disconnected effective reproduction number timeseries.
While the mean absolute percentage deviation maintains below
10% for six out of seven provinces, we identify a 15% deviation
for the province of Rovigo. At the same time, we highlight for
three out of seven provinces (Vicenza, Padua, and Rovigo) a
fraction of time, where the two timeseries of Rd (t) and Rc(t)
lie on opposite sides of the unit threshold, close to, or higher
than, 10%.

Locally reported cases synchronize relatively soon after the out-
break, correlating with a relatively uniform seeding of the epi-
demic in the various provinces and in response to the lockdown
imposed after March 2020 (Fig. 2). The results for Rc(t)
and Rd(t) are often indistinguishable for the most populous
provinces, which show large figures of recorded infections
(in particular, the province of Verona). Noteworthy instead
are the differences between the connected and disconnected
reproduction numbers for the province of Rovigo and less
significantly for Padua and Vicenza (Fig. 3). Discrepancies are
to be ascribed to different origins of the inbound/outbound
mobility compared to the resident population responsible for
the internal infections. In fact, Fig. 5 shows the coefficients ξl (t)
of outgoing mobility along with the fraction ηl (t) of mobility-
induced infections for each province. The outgoing mobility
vastly reduces after the onset of the pandemic and then rises back
during summer 2020, to decrease afterward during the 2020 to
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Fig. 4. Blue: mean absolute percentage deviation (MAPD) between the
spatially connected and spatially disconnected versions of the effective
reproduction number, as displayed in Fig. 3. Orange: percentage fraction
of time where the two versions of the effective reproduction number yield
values that are opposite in side with respect to the unit value of the
reproduction number.
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Fig. 5. Outgoing mobility coefficients �l (smoothed timeseries in purple,
prepandemic mobility in gray) and fraction of mobility-induced infections
�l(t) (orange) for the example shown in Fig. 3. Because the outgoing mobility
is estimated by modulating prepandemic levels with Google mobility trends
(SI Appendix), which are susceptible to weekly fluctuations, we smoothed the
data with a 7-d moving average.

2021 winter COVID-19 waves, following containment measures
decided by the government. The proportion of mobility-induced
infections, in turn, accounts for the quota of infections that
are not generated locally (that is, infector and infectee both
residents of the same node where the infection occurs). The
proportion of outgoing mobility ξl (t) for the arbitrary node
l (Fig. 5) usually proves lower than the proportion ηl (t) of
mobility-induced infections, reflecting how infections may not
only be imported via resident mobile individuals but also due
to contacts with infected individuals belonging to a different
community exporting the virus. This is a combined result of
mobility and the time-varying values of the effective reproduction
number. We observe that, at the beginning of the epidemic, ηl (t)
decreased drastically during the spring of 2020, when Italy was
locked down, to bounce back during the summer and following
the introduction of new variants into the territory of Veneto
Region. This parameter shows that in many cases, local infections
have sparked up because of imported infections from other
communities, therefore suggesting that local temporary flare-
ups could have seeded infections elsewhere, thus propagating
the epidemic. The cases of the provinces of Belluno and Vicenza
during the summer of 2020 are interesting in that they display
flare-ups of imported cases (Fig. 5). This example highlights
another important feature of our method: even if Rd(t) and
Rc(t) are almost indistinguishable, in fact, the spatial approach
allows us to quantify and distinguish the temporal evolution and
the origins of the infections.

Discussion

The less populated node, Rovigo, undergoes a substantial net
import of infections (Fig. 5), arguably because of commuting. In
these cases, Rd(t) may (Rovigo) or may not (Belluno) overesti-
mate Rc(t) (Fig. 4). Spatially connected effective reproduction
numbers may therefore differ significantly from their spatially
disconnected counterparts that are currently used in some cases.
Conditions conducive to this result are far from rare. They
basically imply marked heterogeneities among the connected
human communities also reflected in different population sizes
and shares thereof engaging in commuting. These results assume
a certain importance because near real-time estimates of Rc(t)
would often not exceed unity as opposed to the related Rd(t),
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Fig. 6. Daily cases estimated in each province imposing the connected
effective reproduction numbersRc

l (t) shown in Fig. 3 and different scenarios
of mobility, namely no ( = 0), halved ( = 1/2), or doubled outgoing mobility
( = 2). The square in each figure highlights the time of the onset of modified
mobility. The shaded area indicates the measured cases in each province.
Lower − Right plot: for each province, the percentage change in the number
of total cases relative to the three mobility scenarios.

which might mislead the interpretation of the actual changes
occurring in disease transmission over time.

The significance of spatial effects in the estimation of repro-
duction numbers is strengthened by the results displayed in
Fig. 6, where we show the number of infections that would
have occurred if mobility had been altered by a dimensionless
factor ψ after a given time (in the example, at the onset of
the second wave in October 2020). We note that changes in
mobility may enhance or reduce the number of new infections,
depending on the nature and the relevance of mobility effects,
thus supporting our tenet. Most notable is the nearly complete
collapse of estimated infections in the Province of Rovigo in the
case of shutdown of all forms of mobility.

Obviously, our approach is not devoid of assumptions. In
particular, whatever geographic context one focuses on, some
possibly relevant mobility is neglected—even at the continental
scale, airborne travel from remote places may be the cause of
epidemic seeding within naive populations (14). A geographical
limitation of our study is posed by the restriction of the chosen
area of interest. In Region Veneto case, all connections to
and from neighboring regions are neglected to contain the
computational burden. A sensible choice of geographical context
would need to be dictated by the relative proportion of internally
generated cases facing infection drivers to/from the exterior,
usually not known a priori. A different set of assumptions
concerns the manner in which possibly different restrictions
apply to connected nodes, reflected in the respect of restrictions
belonging with the departure or the arrival nodes (Materials
and Methods). In addition, we assume that the Veneto region
adopted a homogeneous swab testing effort across its provinces,
which is supported by the fact that healthcare policies in Italy
are managed at a regional scale. Also, Veneto is remarkable for
its policy requiring a much higher swab testing rate than most
other regions in Italy. However, if this were not the case, the
results provided by our spatially connected framework would
require adjustments to the fundamental Eq. 1 to account for the
heterogeneity of the local sampling efforts in different nodes. A
generalization of the present framework is certainly worth further
investigations in future developments.

The nature of this exercise, which is intended to be a
demonstration of the application and relevance of the spatially

connected framework at hand, should not be intended as a direct
evaluation of the containment measures that were implemented
in Italy in 2020 and 2021, due to the nature of our assumptions.
We also cannot advocate for any application scale of our
framework as it is dependent on an array of factors that falls
outside the scope of our work. We stress, however, that this paper
highlights the potential importance of the spatially connected
framework when computing the effective reproduction number
of a pathogen spreading within a metapopulation.

In conclusion, our results suggest that regardless of the
computational technique adopted to solve Eq. 1, challenges
arise for planning containment measures guided by detected
changes in disease transmission if spatially disconnected repro-
duction numbers are employed. These are straightforward to
compute in near-real time from epidemiological data. Connected
reproduction numbers require additional information and are
more involved to compute, yet, they better portray the actual
origins of the infections and thus give a more accurate view of
the unfolding epidemic by including mobility data/proxies that
are often publicly available. Practical consequences of particular
importance arise when local containment measures are made to
depend on estimates of the reproduction number exceeding the
unity threshold because they may be influenced by the neglected
connectivity.

Materials and Methods
A. Derivation of the Spatially Connected Effective Reproduction
Number. The computation of the local (i.e., spatially disconnected) effective
reproduction numberRd

l (t) in isolated nodes l is typically devised on theoretical
considerations and specific COVID-19 studies (3, 5, 7, 8, 30). The equation
governing the expected new cases, F̂l(t), at time t based on previous infections
is given by Eq. 2. However, if the community l is not completely isolated, it is
reasonable to assume that a quota of the new infections in l might be due to
contacts with infectors residing in other communities and thus likely determined
by different values of the effective reproduction number. To formalize this
concept, we assume that the metapopulation is subdivided intoN communities
of size nl (l = 1, . . . , N). Due to local restrictions or different levels of awareness
and personal protection, each node is associated with a different (connected)
effective reproduction numberRc

l (t).
In the following, we posit a coupled mechanism of infection where the

infector (primary infection) and the infectees (secondary infections) come from
two different communities, k and l, respectively, and meet in a third community
j possibly different from both. Obviously, two or all of these communities may
coincide in particular cases. The number of secondary infections produced by one
infector residing in k is estimated byRc

k(t). This is motivated by the idea that the
infector behaves in accordance to the restrictions and the level of awareness of
their own node of origin. The flow of primary infectors residing in k and reaching
node j

(
Cjk(t)

∫
∞

0 β(τ )Fk(t − τ )dτ
)

mixes with a fraction of individuals

coming from l
(
Cjl(t)nl

)
. The secondary infections generated in j by infectors

residing in k are therefore Cjk(t)Rc
k(t)

∫
∞

0 β(τ )Fk(t − τ )dτ . They occur in
individuals of node l proportionally to the quota of individuals of l temporarily
present in j, Cjl(t)nl/

∑N
m=1 Cjmnm. This yields to the formula shown in Eq. 1

and reported below:

F̂l(t) =

N∑
j=1

Cjl(t)nl
N∑

m=1

Cjm(t)nm

N∑
k=1

Cjk(t)Rc
k(t)

∫
∞

0
β(τ )Fk(t − τ )dτ .

We illustrate the rationale of this approach in Fig. 7.
In practice, our generalization accounts for the occurrence of three types of

infections detected and recorded at an arbitrary node (say l):
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• the case of primary and secondary infections occurring in l;
• the case of a secondary infection of a commuting resident of l occurred at any

other interconnected node j, for a contact with an infected resident of j or any
other infected traveler say, from node k;

• noncommuting residents in l infected by any infected traveler from a node k
connected to l.

Another approach to the generalization of Eq. 2 exists and is derived in SI
Appendix, Eq. S4. We stress that, when mobility is neglected and the connection
matrix reduces to the identity matrix, estimates of the new infections reduce to
the standard expression shown in Eq.2 that also features in the popular EpiEstim
code (8, 9).

B. Derivation of the Time-Varying Connection Matrix. To represent the
daily fluxes of individuals (and thus the possible contacts) among communities,
we introduce a connection matrix, C, whose elements Cjl represent the fractions
of individuals resident in community l that are temporarily present in community
j (with j = l being possible and Cll representing the fraction of noncommuting
individuals). The connection matrix is stochastic, i.e.,

∑N
j=1 Cjl = 1 for all N

nodes (l = 1, . . . , N).
To evaluate the temporal changes of matrix C(t), we introduce the fraction

of mobile individuals in each node, ξl(t), defined as,

ξl(t) =
∑
j 6=l

Cjl(t) = 1− Cll(t) , ∀l = 1, . . . , N.

For simplicity, here, we represent the temporal changes in mobility as changes
in the fraction of mobile individuals, ξl(t), while keeping unchanged the
probabilitiesof reachingtheirdestination.Letusthenintroducetheprepandemic
connection matrix C0 (i.e., the connection matrix reflecting the conditions that
existed before the onset of the COVID-19 outbreak). The proportion of outgoing
mobility from node l is therefore

ξl(t) = ξ0
l ψl(t),

where ξ0
l = 1− C0

ll is estimated through the prepandemic connection matrix
and ψl(t) measures the change in time of outgoing mobility. Because of
the property of column-stochasticity, the diagonal term needs to be equal to
Cll(t) = 1− ξl(t) ∀l. Given the auxiliary matrixQ = (C0

− I+ �0)(�0)−1,
where I is the identity matrix of size N and �0 is a diagonal matrix whose
nonnegative terms are the elements ξ0

l . The time-varying connection matrix

l

j

k

Fig. 7. Rationale of the spatially connected framework described by Eq. 1.
Only three nodes are considered here: the originating node of still uninfected
healthy individuals (node l, in blue), the originating node of the fraction of
infected individuals (node k, in red), and the node where the infection occurs
(node j, in yellow). All nodes serve simultaneously the three purposes.

C(t) can then be computed as

C(t) = (I − �(t)) + Q�(t),

with �(t) being a diagonal matrix whose terms are the elements ξl(t). The
column-stochasticity is preserved.

C. Fraction of Mobility-Induced Infections. We define here another
indicator, say ηl , that represents the fraction of infections in node l that are
caused by contacts due to mobility. To compute this indicator, we provide an
exact solution to an approximate model by considering the incidence F̂loc

l (t)
of local infections, i.e., both infector and infectee residing in node l, with the
infection occurring in node l as well. The result (SI Appendix) is

1− ηl(t)

(1− ξl(t))2

N∑
m=1

Cl,m(t)nm

nl
=
Rc

l (t)

Rd
l (t)

. [3]

Eq. 3 links the ratio of the spatially explicit and spatially implicit reproductive
numbers to the parameters ξl and ηl . It thus provides insight into when and
why it is important to consider the connectivity among communities, as well as
on whether a given community is a net importer or exporter of infections. The
various cases are

• Rc
l (t) < Rd

l (t): Community l behaves as a net importer of infections,
i.e., the amount of local secondary infections caused by primary infections
elsewhere exceeds the secondary infections elsewhere caused by a primary
infection in l;

• Rc
l (t) > R

d
l (t): Community l behaves as a net exporter of infections, i.e.,

there are more infections caused in another node k 6= l due to a primary case
in l than the other way around;

• Rc
l (t) = Rd

l (t): Community l imports as many infection as it exports; or
(unrealistic case) it is completely disconnected from other communities.

SI Appendix, Fig. S6 illustrates the comparison of computational results with
Eq. 3.

D. Setup of the Synthetic Example. In the example shown in Fig. 1, the initial
connection matrix is defined as

C0 =

0.91 0.05 0.10
0.05 0.83 0.05
0.04 0.12 0.85

 .
By assigning a suitable time-varying, sinusoidal mobility pattern (SI

Appendix, section 5), we obtain elements Cjl(t) of the matrix that read:

Cjl(t) =
C0
jl

ξ0
l

ξl(t), l 6= j;

so that the full matrix becomes (SI Appendix)

C(t) =


1− ξ1(t)

0.05
0.05 + 0.12

ξ2(t)
0.10

0.10 + 0.05
ξ3(t)

0.05
0.05 + 0.04

ξ1(t) 1− ξ2(t)
0.05

0.10 + 0.05
ξ3(t)

0.04
0.05 + 0.04

ξ1(t)
0.12

0.05 + 0.12
ξ2(t) 1− ξ3(t)

 .
By design, we wanted the population size of the three nodes to be heteroge-

neous: We used 80,000, 450,000, and 700,000 inhabitants, respectively. The
true values of the effective reproduction number for the three nodes that are used
to generate fictitious case reports also follow a seasonal pattern (SI Appendix).
Those for the first and second nodes are defined in a sinusoidal manner (SI
Appendix and Fig. 1). The effective reproduction number for node 3 is chosen
arbitrarily from the repository https://github.com/covid-19-Re/dailyRe-Data and
its values are multiplied by a factor 1.05 for convenience.
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E. Setup of the Application to the Epidemic in Region Veneto. Incidence
and mobility data have been collected at the provincial level (second tier
administrative division in Italy). We choose to run our analyses on this granularity
because we estimated that the finer one, municipalities (Fig. 2), would be
inappropriate for a credible inference of the effective reproduction number. In
fact, many municipalities reported new cases only sporadically, thus preventing
a meaningful estimation of the effective reproduction numbers, especially when
the disconnected method is implemented (8). In Region Veneto, there are seven
nodes at the second level division: the provinces of Verona, Vicenza, Belluno,
Treviso, Padua, Rovigo, and the Metropolitan City of Venice. Data available at
finer granularity are properly aggregated.
Epidemiological data. In the second experiment on the Italian COVID-19
epidemic, we considered the daily SARS-CoV-2 infections reported by the Italian
Civil Protection Department available from https://github.com/pcm-dpc/COVID-
19 at a provincial level to date. To prevent issues arising from inhomogeneous
daily testing efforts, namely due to fewer swab tests taking place during
weekends, we apply a 14-d moving average to the data. The data in input to the
proposed algorithm are consequently artificially smoothed by a widely accepted
procedure for curated data (https://www.epicentro.iss.it/coronavirus/sars-cov-2-
sorveglianza-dati).
Generation of the connection matrix. The connection matrix between
provinces is assigned on the basis of commuting data provided by the Italian In-
stitute of Statistics (ISTAT) (accessible at: https://www.istat.it/it/archivio/139381)
that reports the number of individuals commuting between two different nodes
for work or study reasons. To limit our selection to the mobility fluxes happening
within the region of Veneto, we select the submatrix corresponding to the seven
nodes at the second administrative level within the region. We further proceed
to normalize the matrix by the reported mobile population of the corresponding
node so that the resulting matrix C0 is column-stochastic, i.e., the column-wise
sums are all equal to 1. This choice takes into account the fact that in the reported
commuting population (which on average, in Region Veneto, is 45 to 55% of the
actual resident population) only mobility to the workplace or school is taken into
account, while leisure mobility is neglected. The resulting entries, C0

jl , represent

the daily fraction of mobile individuals originating in node l that reach j as
their destination node. Because our work only considers the provinces of Region
Veneto, we disregard connections to and from nodes that are not part of it. Matrix
C0 is shown in SI Appendix, Fig. S3 (SI Appendix). The population resident in
the Veneto’s provinces is also obtained through the Italian Institute of Statistics
(accessible at http://dati.istat.it/Index.aspx?QueryId=18549).

Finally, to describe the changes in the mobility patterns during the
course of the pandemic, portrayed by the function ψl(t), we modified the
fraction of mobile individuals in each province in accordance with the changes
of “Workplace mobility” provided by Google’s Community Mobility reports
(https://www.google.com/covid19/mobility/).

F. Distribution of the Generation Times. In this example, we assume
gamma-distributed with a mean of 5.20 d and a SD of 1.72 d (31). This
mean generation time is only slightly lower than estimates computed upon
the first COVID-19 wave in the neighboring Region Lombardy (17, 23). In
the convolution integral of Eq. 1, we evaluate this probability distribution
function up to a cutoff upper bound of 21 d, past which we assume
β(τ > 21 days) = 0.

G. Inference through a Sequential Monte Carlo Method. Our procedure
involves a sequential Monte Carlo method (SMC), also known as particle
filter, to infer the nodal effective reproduction numbers. We assume that the

normalized incidence (ratio of new cases to the local population) recorded on day t
in node l is affected by a lognormal noise (model error), that is Il(t) = Îl(t)εl(t),
with ln(εl(t))being normally distributed with mean equal to zero and unknown
variance σ 2

l . We assume statistical independence among the errors occurred in
different instants and different nodes. These assumptions allow us to define the
likelihood function that is implemented in the algorithm. By recalling Eq. 1,
we consider the estimated incidence as a function of the effective reproduction
numbers at all nodes: Îl(t) = fl(t,R(t),�), whereR(t) is a vector containing
the values at time t of the nodal effective reproduction numbers and� is a vector
of unknown parameters. Let also I(t) be the vector containing the values of the
nodal Il(t). The following relationship holds:

ln
(

Il(t)
fl(t,R(t),�)

)
= ln (εl(t)). [4]

The assumption of independent errors among nodes allows us to write the
likelihood function of the recorded incidences on all nodes l = 1, ..., N given
the values of effective reproduction numbers as:

L(I(t),R(t)) =

N∏
l=1

1√
2πσ 2

l Il(t)
exp

(
−

1

2σ 2
l

[
ln
(

Il(t)
fl(t,R(t),�)

)]2
)
.

[5]

We address the above problem through the implementation of a specific
particle filter (SMC) (24, 26, 27). We assume that, at each day t, the probability
distributionof thenodaleffectivereproductionnumbers,R(t) = {Rc

l (t)}
N
l=1,

is described by the empirical weighted distribution of Np realizations,

(R(i)(t), w(i)
t ), where w(i)

t is the weight representing the importance of
the i-th particle in the distribution at time t. We refer the reader to (SI
Appendix) for additional details regarding the implementation of the particle
filter.

Data, Materials, and Software Availability. All data and all implemented
code are archived at the following Zenodo repository: https://doi.org/10.5281/
zenodo.7869249 and are also available at the following GitHub repository:
https://github.com/COVID-19-routes/Spatially-Connected-Rt (32).
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