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Abstract: In this account, we discuss the use of genetic algorithms in the inverse design process of homo-
geneous catalysts for chemical transformations. We describe the main components of evolutionary experiments,
specifically the nature of the fitness function to optimize, the library of molecular fragments from which potential
catalysts are assembled, and the settings of the genetic algorithm itself. While not exhaustive, this review sum-
marizes the key challenges and characteristics of our own (i.e., NaviCatGA) and other GAs for the discovery of
new catalysts.
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1. Introduction
Homogeneous catalyst landscapes are built from a near-

infinite array of plausible ligands, transition metals, functional
groups, and substituents,[1–3] making their exploration by ‘brute
force’ (i.e., direct screening with high-throughput experiments or
computations) often impractical.[4] Inverse design[5] offers an ef-
ficient alternative: given a desired target property, such as high
catalyst turnover or product selectivity, a structure yielding the
optimal value of that property is searched for. Most inverse design
strategies are gradient-based,[6] either by defining gradients from
first principles or implicitly learning them using neural networks
(NNs).[7–11] In the former case, an initial structure is optimized fol-
lowing the derivative of the target with respect to changes in mo-
lecular structure.Alchemical gradients i.e., following the property
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Hillman (MBH) reaction.[58] The optimization was not con-
strained to a user-defined library of fragments, but rather to the en-
tire chemical space of tertiary amines (from the ZINC database),
leading to the discovery of previously unseen catalytic motifs.

Aspuru-Guzik et al. have combined high-throughput virtual
screening and genetic algorithms e.g., JANUS,[38] for the sys-
tematic exploration of chemical space and the discovery of novel
materials. They demonstrated that augmenting genetic algorithms
with NNs helps increase the diversity of the generated molecules
and avoids getting stuck in local minima.[59] Similarly, Kulik et
al. used a GA coupled with an artificial NN to discover spin-
crossover transition-metal (TM) complexes in a space of over
5600 compounds.[60] Using a modified fitness function, they were
able to balance the exploration of new species with ML model
confidence.

Our group introduced NaviCatGA,[61] a versatile genetic op-
timization pipeline, and showcased its broad applicability in ho-
mogeneous catalysis. NaviCatGA operates using both 2D and 3D
catalyst representations with any suitable fitness function and is
easily adaptable to various tasks. Here, we give an overview of its
(and other GAs’) key components and functionalities, and discuss
practical choices to use such algorithms and solve inverse design
problems.

2. Genetic Algorithms
A GA performs derivative-free optimizations mirroring the

mechanism of biological evolution. Each possible solution to the
optimization problem is called a ‘chromosome’ composed of a
number of ‘genes’. Fig. 1 shows an illustrative example in which
the chromosome corresponds to the organocatalyst in the leftmost
bubble, fragmented into three genes (red, blue, and green struc-
tural units). Each gene can take a number of values (i.e., accept-
able molecular fragments), which is fixed beforehand, so that all
possible solutions may be enumerated combinatorially from the
pool of possible values per gene and the number of genes in a
chromosome. The evolutionary experiment is started with a limit-
ed number of chromosomes, which constitutes the initial ‘popula-
tion’.A fitness value, or score, is computed for every chromosome
in the population, which is then sorted by fitness (second bubble;
Section 4 discusses how to quickly evaluate the fitness function).
The fitness of a given chromosome should not be just the sum of
fixed gene contributions, but rather be affected by the interplay
between different genes. Otherwise, the optimization problem can
be solved through simple sorting.

derivative with changes in nuclear charge distribution,[12–14] offer
an alternative gradient-based optimization strategy. Deep genera-
tive models implicitly learn gradient functions for optimization
instead.[7–11] Popular frameworks include variational autoencod-
ers (VAEs),[15–20] recurrent neural networks (RNNs),[21] reinforce-
ment learning (RL),[22–26] and generative adversarial networks
(GANs).[27,28]

While generally convenient and efficient, gradient-based in-
verse design has some limitations: first, the global optimum is dif-
ficult to find; second, such property gradients may not be meaning-
ful (i.e., leading to non-physical molecules);[6,29,30] third, the struc-
ture–property space may not be continuous.[31,32] The latter point is
particularly problematic in catalysis as small modifications (e.g.,
ligand modification) may result in a sharp drop in performance for
non-obvious reasons (activity cliffs).[33] Furthermore, fairly distinct
catalysts may be equally efficient for a given reaction, which im-
plies the existence of different optimal regions within the catalyst
space. Derivative-free global optimizers circumvent these issues at
the cost of an increased number of evaluations. Examples include
particle-swarm, polytope, and evolutionary methods.[34] From the
latter family, genetic algorithms (GAs)[35–39] stand out for their
simplicity coupled with their superior performance in benchmark-
ing studies.[7,39–42] Correspondingly, they are a cornerstone of de
novo drug design and lead optimization campaigns, with numerous
examples on the improvement of drug-like properties (e.g., logP)
of medium-sized organic molecules predicted directly from their
2D structure.[43–46] GAs have also found widespread use in other
optimization problems in chemistry, ranging from the selection of
training instances for molecular models of quantum chemical prop-
erties,[47] the identification of low-energy minima on complex po-
tential energy surfaces,[48] structure elucidation,[49] the parametriza-
tion of force fields,[50] feature selection in multiple linear regression
models,[51] and curve fitting.[52] Within the past few years, several
applications of GAs to inverse material and catalyst design have
been reported.[53] In 2012, Jensen, Alsber, and co-workers coupled
an evolutionary algorithm with an automated molecular builder of
olefin metathesis catalysts, scored against a ‘productivity’ fitness
function obtained via QSAR.[54,55] This algorithm was later re-
named DenoptimGA and included in the general-purpose software
package DENOPTIM.[56] Despite being able to precisely control
themetal-coordinating environment, the authors reported thatmany
of the complexes generated by the GA contained undesirable func-
tional groups or were otherwise synthetically inaccessible.[57]

More recently, Seumer and Jensen used a graph-based GA
(GB-GA)[39] to discover organocatalysts for the Morita–Baylis–

Fig. 1. (Top) Schematic catalyst
optimization pipeline enabled
by NaviCatGA and other genetic
algorithms. (Bottom) Optimization
loop mirroring the mechanism of
biological evolution.
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stage of the genetic run, a given fit individual may be repeatedly
found in the population, and crossover of identical individuals
is ineffective. However, having a top-ranking individual partake
in several different crossovers and propagating its advantageous
genes is beneficial.As a rule of thumb, duplicates are increasingly
problematic if a deterministic selection strategy is used, especial-
ly in settings with small population sizes and a small number of
genes per chromosome. The DENOPTIM package[56] automati-
cally prunes duplicate molecules.

Properly defining the crossover operation is the most impor-
tant step of an evolutionary experiment. Conceptually, crossover
is the driving force that steers the optimization towards the best
candidates, under the assumption that combinations of good genes
may be even better. Therefore, the effectiveness of the crossover
operator is critical. Many possibilities that ultimately rely on the
structure of chromosomes exist. In the most general case, cross-
over is achieved by replacing some parts of a parent chromosome
with some formally equivalent parts from another parent chro-
mosome. In string-based algorithms where genes are character
tokens (e.g., SMILES, SELFIES) this is achieved by splicing two
parent strings in two or more fragments, and reshuffling the re-
sulting parts into offspring strings. Graph and 3D structure-based
chromosomes require an explicit definition of equivalence (i.e.,
which fragment can substitute which) to avoid combinations that
lead to invalid molecules: this is achieved based on valence rules
or belonging to the same fragment subset. Elaborate algorithms
for handling 3D fragments as genes, while maintaining molecular
validity, have been developed by Jensen and co-workers and com-
bined in the DENOPTIM software.[56,57,67,68]

Finally, it is possible to steer the optimization towards inter-
esting chemical subspaces by starting the run from a population
drawn from a selected region of space or from copies of a refer-
ence catalyst. The STONED algorithm[62] proposed by Aspuru-
Guzik et al. is a convenient way of generating pools of similar
molecules based on a given SMILES string. In the same spirit,
the initialization and the composition of the fragment libraries can
be used to enforce the chemical validity and the synthetic acces-
sibility of the resulting species, which is typically a problem of
uncontrolled generative models.[71,72]

2.3 NaviCatGA
In NaviCatGA, chromosomes are assembled from the cor-

responding genes using any suitable molecular representation,
including SMILES and SELFIES strings and XYZ coordinates
through the corresponding child classes (SmilesGenAlgSolver,
SelfiesGenAlgSolver, and XYZGenAlgSolver using
AaronTools.py geometry objects[73]). The child classes define the
data type of the genes and contain all the possible values any gene
can take, called an ‘alphabet’. Genes with the same alphabet are
considered equivalent. Depending on the user’s needs, new child
solver classes can be easily defined, as the core shared function-
alities are kept separately in the base solver class (the core ge-
netic loop, which is data-type agnostic). Different data structures,
supported by other libraries (e.g., Molassembler[74] or molSim-
plify[75]) could be used as alternative back-ends.

Five different selection strategies are provided, including two-
by-two, pairwise tournament, random, and roulette wheel method.
The latter is the default, however temperature-based schemes (i.e.,
Boltzmann-weighted) in which the selection becomes increasing-
ly greedy as the experiment progresses are also available. In case
of duplicate chromosomes, NaviCatGA supports both options of
pruning identical catalyst candidates and preserving them to par-
take in the crossover of their advantageous genes. It is also pos-
sible to lock specific genes, so that they remain unchanged during
the optimization procedure.Additionally, our package also imple-
ments the STONED[62] algorithm to initialize the search process
from a specific neighborhood of the chemical space.

From the fitness-sorted population, a number of top-ranking
chromosomes are selected and the rest discarded. The selected
pool is ‘crossed-over’ by combining their genes to generate new
chromosomes, replacing the discarded ones in the population
(third bubble). Finally, a few genes are replaced randomly (right-
most bubble). A new population is produced after fitness evalu-
ation, selection, cross-over, and mutation, and evaluated anew to
continue the process iteratively. Each iteration is called a ‘genera-
tion’, and the process is stopped after a fixed number of genera-
tions has passed, a certain fitness value is reached, or the average
fitness plateaus.

An advantage of evolutionary experiments over ‘direct’
screening is that the genetic optimization process provides in-
sight on the structural modifications that prove to be beneficial
for catalyst performance.[61] The appearance or disappearance of
certain functional groups or chemical moieties over many genera-
tions may be associated with sudden changes in catalyst fitness.
Thus, evolutionary experiments help rationalize design principles
for further exploration.

2.1 What is a Chromosome?
In the context of inverse homogeneous catalyst design,

chromosomes are molecules e.g., transition-metal species, li-
gands for organometallic complexes, or organocatalysts, rep-
resented by character strings,[38,62,63] 2D graphs,[39,64–66] or 3D
coordinates.[54,56,67,68] The infrastructure of the evolutionary ex-
periments can be adapted depending on how the chromosomes are
represented.[61] Genes are fragments of the chosen representation
e.g., characters to be concatenated into a larger SMILES string.
All possible arrangements of genes must lead to a valid chromo-
some for which a fitness value may be computed. Furthermore,
the mapping from the genetic composition of a chromosome to its
fitness should be injective. For this reason, representingmolecules
with SELFIES[69] is becoming increasingly popular, as they guar-
antee validity and uniqueness with respect to permutations of their
composing characters.

Choosing how to represent a chromosome depends on the
availability of suitable fragment libraries and how easy it is to eval-
uate the fitness function using that representation. SMILES and
SELFIES are often preferred given the abundance of string-based
chemoinformatics tools[38,69,70] (which also help estimate synthetic
accessibility),[71,72] and the possibility of using alphabets of char-
acters as fragments library. Alternatively, 3D-based GAs rely on
manipulating libraries of (Cartesian) coordinates of fragments, but
the molecular conformation can be controlled precisely.

2.2 Designing the Evolutionary Experiment
Several design choices determine the efficiency of an evolu-

tionary experiment. Depending on the problem, the desired out-
put, and the molecular representation used for chromosomes and
genes, different settings may be beneficial. We will review some
of the key ones.

Selection strategies control the greediness of the optimization.
The most common and straightforward selection rule is to sim-
ply preserve the top N candidates, which will lead to a thorough
exploration of the chemical subspace around them, possibly ne-
glecting other regions.An alternative strategy is the roulette wheel
method, which randomizes selection while assigning higher prob-
abilities based on fitness, leading to better exploration of areas
corresponding to slightly suboptimal candidates.[58] JANUS[38]

combines exploration and exploitation by using two selection
strategies in a parallel tempering scheme, with one focusing on
the target fitness function (for exploration of the global landscape)
and one maximizing similarity to current candidates (for local
optima exploitation).

The existence of duplicate chromosomes must also be con-
sidered when choosing a selection strategy. At any intermediate
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over 300 k species and trained ML models to predict their confor-
mationally relevant physicochemical descriptors. Combined with
high-throughput experimentation, kraken has now been used to
find optimal ligands for several reactions.[84–88]

TheKulik group has conducted extensive work on the explora-
tion of transition-metal space and the development and validation
of computational tools to accurately predict its properties.[89,90]
Among the datasets curated for these tasks, the octahedral homo-
leptic ligand database[91] (OHLDB: 11,325 theoretical ligands, ca.
700 complexes fully characterized with DFT) stands out for the
enumerative strategy behind its construction and its coverage of
previously unexplored regions of chemical space (only 71 ligands
were previously included in common organic molecule libraries).
Extending this approach to fused five- and six-membered rings,
they generated 2.8M homoleptic complexes for multi-objective
redox flow battery design.[92] Kulik et al. showed that enriching
ML models with training data from the smaller datasets (e.g.,
OHLDB) improved ML performance on larger TM-complexes
from experimental sets,[93] like the Cambridge Structural Database
(CSD).[94,95] This platform likely hosts the most diverse collection
of synthesizable molecules. Recently, our group developed the
cell2mol software[96] to characterize molecular crystals from CSD
and retrieve the connectivity, charge, and oxidation state infor-
mation. cell2mol enables the construction of quantum chemistry-
ready datasets, such as a library of 31 k TM-complexes and 13 k
ligands with incomparable chemical diversity.[96]

The space of ‘small’ organic molecules i.e., closed-shell up
to 10–20 heavy atoms, has been extensively mapped.[97,98] The
generated database GDB-17 lists ca. 166.4 billion molecules of
up to 17 C, N, O, S, and halogen atoms from systematic enumera-
tion following simple rules of chemical stability and synthetic
feasibility.[99–102] Other popular datasets for drug discovery are

3. Structures and Fragments Libraries
The total combinatorial space explored during the evolution-

ary experiments is determined by the extent of the database of
catalyst components and the scheme chosen to fragment them into
genes (i.e., building blocks). Its size typically ranges from 104 to
106 candidates.[58] Of course, the efficiency of GAs lies in poten-
tially finding the best combinations of fragments in relatively few
iterations, rather than evaluating the entire library. Two approach-
es have been used (Fig. 2): screening user-defined libraries of
fragments,[61] or subsets of larger regions of chemical space.[58] In
the former, a fragmentation scheme is first defined based on struc-
tural patterns observed in a smaller pool of catalysts; fragments
are then listed manually and used to build candidates on-the-fly
during the evolutionary experiments. The latter relies on having
access to bigger databases of compounds, with the molecular sites
for mutation and crossover being identified afterwards.[58] Below,
we report some of the most popular databases that can be used for
this second ‘top-down’approach.We then discuss fragment-based
strategies enabling the first ‘bottom-up’ approach.

3.1 Subsets of Chemical Space
Pioneering work in the mapping of ligand spaces for organo-

metallic catalysis has been conducted by Fey and et al. with the li-
gand knowledge bases (LKB).[76–81]These include ca. 1.3 kmono-
and bidentate P, C, N, O, P,P and P,N ligands with associated ste-
ric and electronic descriptors. They have showcased the use of
Principal Component score plots as ‘maps’ of ligand space,[82]
facilitating the observation of reactivity trends and the optimi-
zation of reaction properties. Building on this, Sigman, Aspuru-
Guzik and co-workers recently introduced the kraken platform for
monodentate organophosphorus(iii) compounds.[83] Using ~1.5 k
ligands from the literature, they built combinatorial libraries of

Fig. 2. Bottom-up and top-down
strategies to define the total com-
binatorial space explored during
genetic optimization and the
molecular fragments used to as-
semble catalyst candidates.
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ChEMBL (>1.6M structures with 14M activity values),[103] ZINC
(886M),[104] PubChem50 (101M molecules up to 50 atoms),[105]
COCONUT (402k natural products),[106] and DrugBank (>2k
FDA-approved drugs).[107] Going beyond druglike molecules, the
COMPAS Project was recently curated, consisting of ~34k cata-
condensed polybenzenoid hydrocarbons, with the aim of enabling
the data-driven development of improved organic electronic ma-
terials.[108]

3.2 Fragment-based Strategies
While the space of organic molecules is continuously being

enumerated, its subset of organocatalysts is far less frequently
explored. To obviate the lack of data-driven tools that facilitate
the exploration of wider regions of organocatalyst space, we in-
troduced OSCAR.[109] This repository of organic molecules lever-
ages the modularity of organocatalysts, offering a route to build
datasets up to 1M structures. This was achieved by automatically
mining species containing pre-defined function-based fragments
from the literature and CSD and re-assembling the building blocks
in a combinatorial fashion. The fragment-based nature of organo-
catalysts was further exploited in combination with activity maps
and statistical modelling to suggest structural modifications for
activity enhancement.[110]

Transition-metal catalysts are more frequently viewed in
a modular fashion as a combination of active metal center and
ligands, which are further decomposed into metal-coordinating
groups, backbone/bridging units, and substituents. Indeed, pio-
neering studies on the automated generation of TM-species from
fragments relied on this tailored feature.[81,111] Subsequently,
Jensen et al. introduced the concept of ‘organometallic fragment
space’ as the combination of annotated molecular fragments and
connection rules for organometallic species.[57] They harvested
building blocks from CSD and used them to automatically gener-
ate synthetically accessible TM-complexes with both 2D and 3D
representations.[57,67]

3.3 NaviCatGA
NaviCatGA combines fragments with the utmost flexibility

through a user-defined assembler function. The assembler func-
tion takes a given individual (a list of genes of the specified data-
type) and assembles it into a potential catalyst. If genes are rep-
resented as SMILES strings, assembly is as simple as concat-
enating their characters, otherwise 3D geometry objects[73] may
be handled as well through the XYZGenAlgSolver child class.
Depending on the specific optimization problem, any assembler
function is supported, enabling the generation of more complex
graph structures from the corresponding chromosomes.

4. The Fitness Function
The role of the fitness function is to evaluate how close a cata-

lyst candidate is to achieving optimal performance, which is often
exemplified in terms of activity and/or stereo/regio/chemoselec-
tivity. Measures of activity and selectivity can be obtained either
from experiments or computations. The product yield, turnover
number (TON), and turnover frequency (TOF) are the most com-
monly used experimental quantities that describe activity.[112]
Selectivity is generally reported as product ratio (enantiomeric/
diastereomeric ratio) or converted to ∆∆G‡ values according to
Transition State Theory. Quantum chemical computations are
frequently used to estimate both ∆∆G‡ and TOF,[113,114] however,
predicting the TOF of large libraries of catalysts is highly costly.
Linear free energy scaling relationships and volcano plots allow
the TOF to be estimated solely from a descriptor variable, such
as the relative energy of a catalytic cycle intermediate, which can
then be used directly as fitness.[115,116]

Beyond activity and selectivity, the overall performance of
a catalyst must satisfy a multitude of other objectives, such as

stability, solubility, synthesizability, toxicity, and cost. Therefore,
catalyst optimization is a multiobjective problem, where improv-
ing an individual requirement often results in the deterioration of
another.[86,117] Finding solutions in the Pareto front requires scal-
ing the fitness function appropriately.[118] The relative weights of
each requirement may be chosen manually (as done by Jensen
with the activation energy of the MBH reaction rate-determining
step and a synthetic accessibility measure)[58] or using a scalarizer
like Chimera.[119]

Evaluating the fitness function is the bottleneck of evolutionary
experiments. Obtaining activity/selectivity measures experimen-
tally is time- and resource-intensive, and only tractable in closed-
loop optimizations with robotized HTE methods and self-driving
laboratories.[120,121] DFT-based catalyst performance predictions
often require computing the complete free energy profile associ-
ated with a catalytic cycle, which becomes expensive for more
than a handful of systems.[122] To accelerate this process, statisti-
cal models are used to predict the candidates’ fitness. They may
be trained using either experimental or computational data. The
first approach is often limited by the small size of the experimental
datasets available and by their inherent noise,[123]while the second
suffers from the difficulties associated with reproducing difficult-
to-compute targets e.g., e.e. values.[124]Regardless of the nature of
the target, the fast evaluation of the fitness function involves two
aspects: the representation used to encode a catalyst’s structure/
composition, and the statistical model used to make predictions
(linear, multilinear, or nonlinear). These two aspects are depicted
in Fig. 3 and described in the following sections.

4.1 Representing Catalyst Candidates
Popular topologicaldescriptorssuchasMorganfingerprints[125]

(also known as extended connectivity fingerprints, ECFPs)[126] en-
code a given compound using its 2D structure. This family of
‘hashed’ fingerprints[127,128] enumerate through the molecule to
identify chemical substructures up to a certain radius or number
of bonds from central atoms. The location and counts of substruc-
tures are converted to feature vectors using a hash function. These
fingerprints, particularly the ECPFs, have been widely used for
catalytic properties predictions,[129–131] also in combination with
evolutionary experiments.[58] Part of their popularity stems from
their accessibility: to generate them, only the SMILES string of a
molecule is needed.

The field of physics-based ML assumes that molecules should
be represented as 3D objects instead.[132–134] The core principle
is that the representation replaces the role of the Hamiltonian
in the Schrödinger equation, and should therefore require the
same information as input (for neutral molecules, atom types
and 3D coordinates). Physics-based representations describe
interactions between atomic environments in a molecule, typi-
cally using either non-linear potentials inspired from the early
days of molecular dynamics,[135–139] atom-centered continuous
basis functions,[140–144] or cheap estimates of quantum-chemical
objects.[145–148] Invariances with respect to molecular symmetry
are naturally incorporated, and modified representations exist to
handle equivariance.[149] An additional level of complexity can
be incorporated in the representation by considering the fact that
molecules at finite temperature do not exist in a single conforma-
tion. Conformational ensembles may be represented, for example,
using Boltzmann-weighted physics-based representations of ma-
ny conformers[150] or features describing the conformer-averaged
occupancy over a 3D grid.[151] Our group recently illustrated the
relevance of ‘reaction-inspired’ representations, whereby con-
sidering structural changes from reactant(s) to product(s) is par-
ticularly effective for predicting both thermodynamic and kinetic
reaction properties.[152,153]

An alternative way of representing molecules or reactions,
which involves fewer and generally more intuitive features, is by
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5. Conclusions and Outlook
Genetic algorithms are a suitable strategy to explore large and

complex homogeneous catalyst landscapes and find good candi-
dates within a few iterations in the absence of analytical gradients.
To ensure their successful application to inverse catalyst design
tasks, three aspects have to be carefully considered: (1) the op-
timization problem must be robustly defined, especially when
multiple catalytic properties should be improved simultaneously;
(2) if surrogate statistical models are used to predict a candidate’s
fitness, they must be fast and affordable, including the represen-
tation used as input; (3) the nature of the search space must be
thoroughly addressed, particularly if candidates are built from
fragment libraries. Currently, a lot of effort is placed in improving
the last two aspects, but not often in the context of evolutionary
experiments, leading to suboptimal performance when they are
coupled to genetic algorithms. With NaviCatGA, we aim at con-
sidering these three aspects simultaneously for their successful
implementation in a closed-loop optimization pipeline.

Regarding the size and diversity of the search space, generat-
ing candidates from user-defined libraries of molecular fragments
may introduce a bias in the experiment and limit the discovery of
entirely new chemical motifs.A possible workaround is to include
more diverse fragments in the database, however the statistical
model may not extrapolate well beyond the training set, meaning
that selecting diverse compounds should be done before themodel
is trained.Alternatively, active learning approaches, like Bayesian
optimization,[171,172] enable a model to adapt as it navigates the
search space, balancing the exploration of areas of high uncer-
tainty with the exploitation of available data.

While implementing genetic algorithms and other generative
models has become more routine, developing affordable models
to accurately and quickly predict complex catalytic properties still
remains a challenge. This is partially due to the scarcity of large
experimental datasets in machine-readable formats, and to the dif-
ficulties associated with generating reliable reactivity data with
ab initio methods, a topic of active research in our group.[124,173]

Finally, improvements in the decision-making protocol in
multiobjective scenarios will be beneficial to the catalyst design
process. One approach would be to use complex fitness functions
that take into account more than just the reaction yield and se-
lectivity, such as the previously reported Asymmetric Catalyst
Efficiency (ACE) metric.[174] Alternatively, the definition of per-

their properties.[154] In the early days, these descriptors were de-
rived largely from experiments e.g., the Hammett substituent con-
stants;[155] in recent decades, stereoelectronic parameters obtained
via quantum chemical computations of low-energy structures or
ensembles of conformers have become popular.[156]

4.2 Statistical Models for Fitness Evaluation
The choice of theMLmodel used in combinationwithmolecu-

lar fingerprints varies from support vectormachines (SVM),[129,157]
random forests (RF),[130,158–160] to neural networks.[161–164]
Typically, physics-based representations are used in combination
with kernel ridge regression (KRR) models, which rely on a (dis)
similarity metric between molecules.[165] Such machine learning
models have been successfully trained to predict catalytic proper-
ties.[166] Models combining electronic and steric descriptors with
interpretable multivariate linear regression analysis (MLR) have
been extensively developed for reaction outcome predictions, es-
pecially ∆∆G‡.[167–169] Yet, such models, which depend on DFT
computations of relatively expensive properties (e.g., vibrational
frequencies and intensities, polarizabilities)[170] are not adapted
to the purpose of fast (GA) optimization for which bypassing the
DFT bottleneck is key.

4.3 NaviCatGA
The choice of fitness function depends on the specific appli-

cation. NaviCatGA favors fitness functions that map a candidate
catalyst’s chemical structure to a measure of its performance in
a given reaction. In this sense, molecular volcano plots[115] are
ideally suited as they provide a way of connecting the descriptor
variable, typically the energy change associated with a step of the
reaction mechanism (x-axis), to the overall catalytic performance
(y-axis, expressed in terms of energy span or TOF). This inexpen-
sivemapping between structure and reactivity constitutes a natural
fitness function to be exploited in close-loop optimizations. The
descriptor variable is easily evaluated using quantum chemical
computations or predicted using MLmodels.[122,166]Alternatively,
MLR expressions for activity (i.e., the volcano descriptor) and se-
lectivity (∆∆G‡) with inexpensive steric and electronic parameters
have also been used within NaviCatGA. Our package imposes no
constraints on the form of the fitness function and any alternative
defined by the user is possible.

Fig. 3. Components needed to
quickly and affordably evaluate
the fitness of a catalyst candi-
date, namely a way of represent-
ing its structure (in 1D, 2D, or 3D
format) and a statistical model
that predicts a target property,
such as the turnover frequency,
or the reaction selectivity.
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formance, rather than being fixed prior to the optimization experi-
ment, can be dynamic and able to respond to new knowledge gen-
erated on-the-fly, such as the unforeseen stability and reactivity of
novel compounds.[117] These are some of the foreseen directions
for future applications of NaviCatGA.
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