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1 ABSTRACT

1 Abstract
The creation of high fidelity synthetic data has long been an important goal in ma-
chine learning, particularly in fields like finance where the lack of available training
and test data make it impossible to utilize many of the deep learning techniques
which have proven so powerful in other domains. Despite ample research into dif-
ferent types of synthetic generation techniques, which in recent years have largely
focused on generative adversarial networks, there remain key holes in many of the
architectures and techniques being utilized. In particular, there are currently no
techniques available which can generate multiple series concurrently while captur-
ing the specific stylized facts of financial time series and which incorporate extra
information that effect the series such as macroeconomic factors. In this thesis,
we propose the Conditional Market Transformer-Encoder Generative Adversarial
Network (C-MTE-GAN), a novel generative adversarial neural network architecture
that satisfies the aforementioned challenges. C-MTE-GAN is able to capture the
relevant univariate stylized facts such as lack of autocorrelation of returns, volatility
clustering, fat tails, and the leverage effect. It is also able to capture the multivari-
ate interactions between multiple concurrently generated series such as correlation
and tail dependence. Lastly, we are able to condition the generated series both on a
prior series of returns as well as on different types of relevant information that typ-
ically effect both the characteristics of the market and factor into asset allocation
decision making. Furthermore, we demonstrate the effectiveness of data generated
by C-MTE-GAN to augment training of a statistical arbitrage model and improve
its performance in realistic portfolio allocation scenarios. The abilities of this archi-
tecture represent a substantial step forward in financial time series generation which
will hopefully unlock many new applications of synthetic data within the realm of
finance.
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2 INTRODUCTION

2 Introduction

2.1 Background

The modeling of financial time series is at the core of any quantitative investing
strategy: whether it is portfolio allocation, return prediction, instrument pricing,
backtesting, or risk analysis, they rely fundamentally on capturing information about
the behaviour of financial time series and then making investing decisions based on
this modeled understanding. Traditionally, the models which were used to capture
and understand information about financial time series were closed form solutions
predicated on explicit definitions of a few variables. However, mirroring the same
process in many other fields, the rise of data driven techniques for financial modeling
has radically changed the landscape of quantitative finance. Machine learning mod-
eling has made it possible to holistically model many behaviours of financial time
markets, but it has also starkly clarified the issue of low data availability in finance.
There have been many attempts to rectify this issue and provide further test or
training data for machine learning models, and one that has recently gained trac-
tion in academic literature as well as in direct application are generative adversarial
networks (GAN) [9].

2.2 Use cases of Synthetic Financial Data

There are many potential use cases of synthetic data within finance; it is a field
whose challenges make generating data particularly useful. In particular, there is
often comparatively very little data available at most relevant time scales, and that
data is often very imbalanced. For example, market crashes are relatively rare events
in the modern history of finance but are perhaps the most important events to un-
derstand and model well if you hope to have success in the long term in finance.
Furthermore, tasks like fraud detection are even more heavily imbalanced with thou-
sands of regular transactions for every fraudulent one. Beyond class imbalances, it
is often advantageous to test models under particular conditions or adjust decisions
based on the status of the market, therefore conditional data is quite useful in the
context of finance. There have been some attempts to use GANs for conditional
forecasting, but other model architectures created specifically for this purpose are
more successful. Generally the use cases for synthetic data in finance fall under 3
main headings: creating extra training data for other models, creating extra testing
data for other models, and calibrating other models.

2.3 Unique Challenges of Financial Data

The generation of synthetic financial returns presents certain unique and specific
challenges that are not relevant when considering other types of time series or data
types in which GANs have shown incredible performance such as images. Firstly,
there is a set of stylized facts about financial time series which must be captured in
order to accurately recreate useful and realistic synthetic series. Secondly, there is
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2 INTRODUCTION

no ’eye test’ for financial series which can be used in lieu of an explicit analysis in
the way there is for other data types. Thirdly, the usefulness of the generated data
is heavily dependent on the expected use case, and thus mediates trade offs that are
not as important when generating other data types.

The main univariate (i.e. on a single series) stylized facts that are important to
capture about financial time series are: lack of auto-correlation of daily returns, fat
tails in the distribution of returns, volatility clustering, and the leverage effect. The
main multivariate (i.e. between multiple series) stylized facts are the correlation
structure and tail dependence between the returns. In real financial time series,
there is no correlation across time between the returns of a single asset. In contrast
to a normal distribution, financial returns exhibit a fat tailed distribution where
there are more very high or very low values (kurtosis). Financial returns also have
heteroskedasticity; the variance of the sample is not constant and specifically appears
as volatility clusters where periods of high or low volatility arise in conjunction with
each other in time. In other words, the returns exhibit auto-correlation of volatility.
Lastly, there is a negative correlation between lagged returns and volatility called the
leverage effect. In multivariate situations it is also crucial to capture the correlation
structure between distinct assets, which is often complex and varies from asset to
asset strongly. Likewise, financial markets exhibit a property of tail dependence, the
dependence between returns of different assets increases at extreme values. When
all returns are within a relatively typical range, they are more uncoupled then when
they are at the tail ends of the distribution. A simple example of this is a market
crash, where most assets in a market simultaneously have very negative returns.

In comparison, generating a series such as energy consumption from an electric grid
is far easier. It has correlation and clear structures like seasonality, it is less random.
The predictive conditioning variables, such as weather data, are far more related to
the actual behaviour of the series then something like macroeconomic data is for
financial series. This data also has more consistent variance that does not cluster in
time. It is clear generating realistic financial series is one of the hardest problems in
time series modeling generally.

Another key challenge in generating financial series is that there is no suitable sub-
jective heuristics for determining quality to guide architecture decisions, particularly
in multivariate cases. A key motivation for utilizing GANs is in situations where it
is not possible to explicitly define what makes data ’realistic’, there is no loss func-
tion that accurately captures all the facets of ’realness.’ For many machine learning
tasks, such as classification, it is possible to say with certainty whether a prediction
is correct relative to a set of labels for the particular sample being analyzed. For
example, in the classic ’hot dog or not hot dog’ example, it is relatively simple to
provide a set of binary labels for images denoting whether they contain a hot dog
or not. Thus, it is far simpler to train a model to predict this information, because
you can make an explicit evaluation of its performance. But what about determin-
ing whether a given image of a hot dog is realistic? This is essentially impossible
to define explicitly, and most attempts at doing so end up focusing on one specific
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Figure 1: Stylized Facts of Financial Time Series [16]

aspect of the data while neglecting others. This broadly defines the importance of
having a learned discriminator for the realistic of generated data: it can capture
many aspects of what it means to be realistic without having to define it and if one
aspect becomes too dominant it can adjust its criteria to better evaluate the gener-
ated data. While this approach is powerful, it does have a downside: it renders the
loss values of the discriminator mostly meaningless and it is not possible to reach an
objective measure of convergence or quality. For data types like images or music, it
is possible to use the rough heuristic of ’the eye test’ to determine quality outside of
statistical measures. You can listen to the generated music and subjectively assess
how pleasing it is, you can look at a generated image of a hot dog and quickly but
roughly evaluate its quality. But this is not really possible with long financial series,
particularly when you are generating multiple series concurrently. Thus it is even
more difficult to evaluate generating financial data relative to other data types.

A good way to determine the realisticness of generated data is to test how beneficial
it is for the downstream test you intend to use it for. In practice, this often is using
the generated data to augment the training dataset or test dataset for a model. In
the case of financial data, the usefulness of the generated data is mediated by the
downstream task you intend to use it for more strongly than in other time series
tasks. We can take electrical load forecasting as a an example again, if you simulated
an electrical load path, most of the downstream tasks are focused on the same
aspects of the data; i.e. its usefulness is primarily predicated on correctly timing the
seasonality to determine peaks and troughs of consumption. For financial series, it is
not so simple. If you intend to use the data for testing the performance of a trading
model, even something as simple as the rebalancing speed influences whether the
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Figure 2: Real Series and a Generated Series without the Relevant Stylized Facts

data you generated is actually useful (i.e. whether it is important to more faithfully
model long term trends or microsecond fluctuations). If you are looking to evaluate
tail risk to a portfolio you need to be able to generate specifically extreme events
whereas if you want to generate long paths relative to particular macroeconomic
conditions, it is better for your model to have a more general representation of
the whole distribution of the data. Because of the way the varied use cases of
financial time series effect the importance of particular aspects of generated data,
the usefulness of prior downstream task specification adds an additional layer of
complexity to generating synthetic financial data.
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Figure 3: Poorly Generated Images of Faces

2.4 Traditional Approaches to Generating Novel Financial
Time Series

There have been many proposed techniques for rectifying data scarcity in finance,
but two of the most widely adopted are utilizing a generalized autoregressive con-
ditional hetereoskedasticity (GARCH) process to create synthetic series or using
bootstrapping to resample the points from real series into novel paths. An ARCH
process can be defined as a process where the variance at time t is conditional on
the previous m data points. Simply put, GARCH is an autoregressive euation that
can be used to generate time series that have close to the real statistics of financial
time series, especially heteroskedasticity (volatility clustering). Though GARCH is
powerful, it does not perfectly recreate the statistics of a real financial time series
and it is overly simplistic (very few parameters) which makes the data it creates
unsuitable for use in augmenting the training set of a model or to accurately create
alternate synthetic backtest data. Especially because it can not be conditioned on
external information like macroeconomic conditions.

Figure 4: Equations for GARCH Process [1]

Another popular approach to generating synthetic financial time series is bootstrap-
ping. At its base, bootstrapping is essentially just the resampling of points in the
series to create novel series. If you resample single data points, you will preserve
the overall distribution of the data, but you will lose many of the stylized facts
of financial time series such as autocorrelation of volatility, that occur across the
temporal dimension of the data. It is therefore common practice to resample the
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data in chunks of a particular length (block bootstrapping), but this can also raise
problems if the blocks are a consistent size. The temporal statistics of the data
will always be disturbed at the junction of the series sample, for instance if your
block size is 10 points then the maximum total memory of autocorrelation is 10.
The larger you make your block, the better you are able to preserve the features of
the series, but the less novel the new series will be. Stationary bootstrap attempts
to solve this issue by resampling with random block sizes, where the size of each
block has a geometric distribution. This technique generates more novel series that
better preserve the statistics of the dataset, but it is limited for multiple reasons.
Firstly, It is not possible to generate a series with any type of of conditioning which
limits its use in many possible applications of synthetic time series. Secondly, it is
still fundamentally just resampling of data, so the actual novelty of the data while
always be far lower than true generation, which also reduces the use cases in which
it is applicable.

There are many other techniques which are used to resample or generate wholly
novel sequences, but the two with the most adoption (which are not based on deep
learning) are ARCH models and stationary bootstrap.

2.5 Deep Generative Models

Generative models based on neural networks have had tremendous success at cre-
ating realistic synthetic data across a range of data types and fields. The main
paradigm in generative neural networks is centered around various self-supervised
techniques, starting with autoencoders in the 1980s [8] before progressing to gener-
ative adversarial networks in 2014 with the landmark paper by Ian Goodfellow [9].
Autoencoders are an architecture of model which is predicated on directly replicat-
ing individual samples of data, and utilizing some form of reconstruction error for
the loss function. Usually, autoencoders receive a sample of data into the encoder
side of the network, which is structured to reduce the dimension of the data with
each successive layer. The output of the final layer of the the encoder is traditionally
called a latent vector. This output is then passed to the decoder which upscales the
data through its successive layers, and then outputs its best attempt at a perfect
mimicry of the the input sample. This approach is relatively successful at recreating
samples, but it has many key deficiencies. Because each sample is mapped to a
latent vector, the decoder becomes good at utilizing the particular vectors which
correspond to the individual samples in the dataset. However, it is usually not good
at utilizing vectors in between those between or not mapped to an input sample.
Essentially, this means that the model is good at generating data that is exactly the
same as the input samples, but not at generating data which is similar (i.e. con-
forming to the relevant statistical properties but otherwise novel). As an attempt
to rectify this, a particular class of model called a variational autoencoder gained
popularity. Instead of mapping the sample data to an explicit latent vector, the
encoder maps the sample to only two values; a mean and standard deviation. A
vector is then sampled from a normal distribution with the corresponding mean and
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standard deviation, and then passed to the decoder, which tries to recreate exactly
the input sample. This regularizes the latent space, and helps the model learn a
more general, less brittle latent representation of the data. This makes it easier to
generate realistic outputs that are similar to the given dataset but not identical. It
is also possible to sample many points from the latent distribution (i.e. the normal
distribution with corresponding mean and standard deviation) and give those points
directly to the decoder, with no input from the encoder. This makes it far easier
to generate many new synthetic samples. However, this model is still not great
at generating truly novel samples that are realistic but otherwise nothing like the
given dataset. Furthermore, it is always limited by the type of reconstruction loss
that is used to measure the ’realness’ of the data. It is possible to use many types
of reconstruction errors, distance measures, or statistical tests to create an explicit
definition of the realisticness of the data, but ultimately all of these rely on expert
knowledge and naturally preclude the model from learning any representations of
the data which does not correspond to the pre-defined measures. Furthermore, in
practice, there is usually no effective and all encompassing distance measure that
results in subjectively realistic data at the level of other approaches.

Figure 5: Encoder-Decoder Architecture [2]

Figure 6: Difference between Autoencoder and VAE [2]
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Figure 7: VAE [2]

Generative adversarial networks are another broad architecture of neural network
that seeks to solve the prior problems and to generate convincing and useful synthetic
data. The structure of a GAN is similar to a variational autoencoder, but with some
key differences. GANs do not have an encoder, and their latent space is made up
of random vectors sampled from a single distribution. The generator of the GAN
(roughly analogous to the decoder of a variational autoencoder) creates a rough
facsimile of the target data from this latent vector. This generated data and the
real data are passed to a binary classifier (usually called the discriminator) which
attempts to determine which samples are real, and which are fake. The loss for the
generator is usually the inverse of the binary cross entropy of the classifications, in
other words: how effectively it is able to fool the discriminator into classifying the
fake samples as real. The loss for the discriminator is the BCE on the classifications
of the fake and real samples; how well the discriminator is able to classify fake and
real samples. This dual network structure creates an inherent tension (adversarial
relationship) between the generator and discriminator, and allows them to push each
other to more effective performance. Because the efficacy of the generator is not tied
to a one to one comparison of an input and output sample, it ideally learns a far
more general and regular representation of the target dataset. Furthermore, because
the measure of realisticness is not explicitly defined, it allows the generator to learn
novel facets of the target dataset that would not have been measured (and thus not
captured) by a non-discriminator based loss. GANs have shown their efficacy across
many different domains, and have been able to generate convincing and useful data
for many applications.

Despite their strong ability to generate synthetic samples, GANs have multiple lim-
itations and challenges. The training of GANs is far more difficult and less straight-
forward than a typical machine learning problem due to their adversarial structure.
Because the loss value for both the discriminator and generator are related to each
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Figure 8: GAN Architecture [3]

Figure 9: GAN Training [3]

other, their values are essentially meaningless. In a traditional machine learning
task, such as classification, a lower loss value always represents better performance
(outside of overfitting). However, in the training of a GAN, it is possible for the
discriminator loss or generator loss to be either very high or very low while the gener-
ated samples still improve in quality with ever successive epoch. There is essentially
no way to accurately determine when a vanilla GAN has converged to the optimal so-
lution possible. In simple cases, reaching the point where the discriminator is simply
guessing can mean that the generated data has achieved sufficient quality that is is
indistinguishable from the real data, however in practice with complicated datasets
this rarely happens or means that the training of the GAN has just broken down.
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It is generally preferable to keep the loss values of the generator and discriminator
close to each, to prevent degenerate training from one of the networks ’winning’ their
battle. If the discriminator is able to perfectly delineate the real and fake samples,
no information will be passed back to the generator during back propagation and
the generated samples will not improve. Likewise, if the generator is able to fool the
discriminator into simply guessing, especially early in training before the discrim-
inator has learned much about the target data, it prevents the discriminator from
improving itself and making more accurate classifications. An ineffective discrimi-
nator is easy to fool, and thus the actual realisticness of the generated data will be
low even if judging by the loss values it seems to be very effective. In the training of
GANs there is also usually an imbalance between the discriminator and generator.
With a sufficiently complicated target dataset, it is usually far harder to generate
realistic to data than it is to discriminate which data is real and fake. To rectify
this imbalance, sometimes unbalanced architectures are used where the discrimina-
tor is smaller or less complex than the generator. Outside of divergent discriminator
and generator architectures, it is usually necessary to have differential learning rates
and dropout rates for the two networks in favor the generator. Another potential
pitfall in the training of GANs is the prevention of mode collapse. Mode collapse
refers to a peculiar situation where the generator only learns to generate a subset
of the target dataset. In this case, the generated samples are realistic and able to
fool the discriminator but do not accurately recreate the total distribution of the
target data. An example of this can be found in trying to generate fake samples of
the classic MNIST handwritten digits image dataset. The images in this dataset all
correspond to a single handwritten digit from 0 to 9. An effectively trained GAN
would map each digit to a different part of the latent space, and could generate syn-
thetic samples of each digit that are realistic. A GAN suffering from mode collapse
would learn to generate only one type of digit realistically rather than every type,
and thus not accurately model the target data. This problem will be discussed in
more detail in the section discussing model architectures, because it influenced some
of our decisions about the model. In general, the training of GANs is very unstable
and requires careful monitoring in addition to a series of specific tricks to stabilize
it.

An extension of the vanilla GAN architecture is a conditional GAN in which some
extra information is passed to the generator along with the latent vector at each
step, in order to influence the generated output. After generation, the real input
condition is attached to the corresponding generated sample before it is passed to the
discriminator in conjunction with the real conditions and corresponding real samples.
The discriminator is then able to make judgements about not only the realisticness
of the samples themselves, but also the realisticness of their relationship to the
conditioning data. The conditioning can be any type of information, such as some
sort of descriptive data that provides context; in finance it could be macroeconomic
data, for image generation it could be the time of day for understanding lighting
conditions. The idea of conditioning is more important and profound in the context
of sequential data, because the condition can be the prior step in your sequential

11



2 INTRODUCTION

Figure 10: Generated MNIST Digits from a properly trained GAN.

Figure 11: Generated samples from a GAN exhibiting mode collapse and only cre-
ating the digit 8.

data. In the context of video generation, it would be the preceding still frame. In
the context of financial time series, it would be the prior steps in the sequence or
sequences. This allows the network to have a better idea of what realistic data
is across the time dimension and gives more control over the generation to create
more specific sequences. Conditional generation also makes it possible to generate
new sequences starting from a particular point in time, which is useful for many
applications in finance if you want to simulate a particular point in time, including
the present moment. Furthermore, it allows for auto-regressive generation of long
sequences, instead of generating a sequence of hundreds or thousands of steps in
one shot, smaller length sequences can be generated and then passed back as a
conditioning input until a sequence of the desired length is achieved. This gives
more flexibility to the generated data across the length of the sequence.

2.6 GANs in Finance Literature Review

In recent years, there has been a surge of interest in the application of GANs to finan-
cial data and financial time series. It is beyond the scope of this paper to complete
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Figure 12: Conditioning the Generator (C = Condition Data, Z = Latent Vector, G
= Generator, X = Generated Sample)

Figure 13: Conditioning on Prior Series

Figure 14: Autoregressive Generation of Long Sequences using Conditioning

a total survey of every application of GANs in finance, especially considering there
are already good references for this [6]. Instead, this section will focus on relevant
papers for the generation of synthetic time series both for establishing benchmarks
and tracing the genealogy of our approach. An early and relevant GAN paper in
finance was Quant GANs: Deep Generation of Financial Time Series by Magnus
Wiese et al [18]. This paper is based on the landmark Wavenet paper from Deep-
mind [14], and utilizes temporal convolutional networks in both the generator and
discriminator to capture the temporal dynamics of the target data more accurately.
There will be a deeper explanation of the TCN architecture in the modeling section
of this paper. The key improvement of this technique were the ability of the TCN to
capture long term dependence in the series, and thus model more complex stylized
facts like autocorrelation of volatility while generating the series sequentially. This
model architecture was able to capture the univariate stylized facts of financial time
series, but it has some key limitations. Firstly, the model is relatively large and even
more unstable in training than a traditional GAN. Secondly, The architecture explic-
itly is structured to only receive series, which makes both autoregressive generation
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from a latent space awkward and conditioning unnatural. The TCN architecture is
designed for sequence to sequence problems where a prior sequence is given as input
and then the next value in the series is predicted and then used as input again to
generate autoregressively. However, this approach is predicated on the assumption
that the input series is of the same type as the output series. In the case of the
QuantGAN, the input sequence is a latent vector and the output is a real series, so
it is not possible to append the output value to the end of the latent vector for au-
toregressive generation. It is necessary instead to shift the latent vector back by the
generation step size, and append new latent variables to the end in order to make a
partially novel latent vector. Then the corresponding new datapoints in the sample
are appended to the previously generated series. This approach is not totally inef-
fective but it has two main limitations: first, the relative value of a particular latent
variable at the position t=0 is not the same as at t=1 and so forth. In other words,
when you slide the latent vector backwards in time, the corresponding generates
series is not perfectly consistent with the series that was generated from the same
latent variables at a different position in the time dimension. Second, the memory
of the network is limited by the network window size, so any feature, stylized fact,
or relationship in the series that is longer than the size of the sample generated at
each step can’t be captured. This can be mitigated by conditioning the network
on the prior series as well as the latent vector, but this is also ungainly given the
structure of the network, either the series must be appended to the latent vector or
vice versa, implying they form one consistent sequence. Though this approach was
successful for the univariate case and without conditioning, we found it insufficient
for our purposes.

Another impressive paper also published in 2019 was Modeling financial time-series
with generative adversarial networks by Shuntaro Takahashi et al [16]. The author
propose a joint multilayer perceptron / convolutional neural network architecture
for the generator that utilizes both network architectures concurrently and then
combines their output before passing it to the discriminator, presumably with the
fully connected network modeling large scale or long term relationships in the data
and the convolutional network modeling more local relationships in the series. This
approach is highly effective in its ability to capture stylized facts about the data, but
it likewise also has some limitations. The generation window size of this approach
is n=8192; it generates a single long series at once. This approach precludes local
conditioning, or any sort of control over the series over time. Furthermore, their
approach is univariate, and many applications of synthetic data require multivariate
data or the synthesis of a market.

In 2020, Hao Ni et al published Conditional Sig-Wasserstein GANs for Time Series
Generation [13]. Their apporach centered on conditional auotregressive generation
using a feed-forward architecture for the neural network component. The condition
data and generated data both were regular series but the loss was measured on the
signatures of the real and fake data rather than its native form. A total exploration
of the signature of a path is outside of the scope of this thesis, but it fundamentally
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Figure 15: QuantGan Results

Figure 16: FINGAN results

an embedding technique using iterated integrals to capture moments of the path.
This makes the learning problem simpler for the generator, and allows them to use a
fairly simple critic predicated on linear regression rather than a deep neural network.
Since this is a wasserstein GAN, the loss function is not BCE and there is a critic
instead of a discriminator. Instead of classifying each sample, the generator is seeking
to minimize the wasserstein distance (earth mover’s distance) between the outputs
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of the critic for the real and synthetic data. The critic is trying to differentiate
the samples, and maximize the distance. The motivation for using wasserstein loss
is that it prevents mode collapse and forces the model to attempt to generate the
whole distribution. All of these innovations mean the model is able to capture
the distribution and temporal dynamics relatively well, though they provided little
information about the stylized facts we have mentioned outside of autocorrelation
and correlation between the multiple series they generated (Standard and Poor 500
Index and Dow Jones Index). Another positive result is their ability to generate
extremely long series that still conform to a realistic distribution, even up to 80,000
steps. However, since there is no explicit map from a signature of a path back to a
path, all paths must be approximated by monte carlo simulation.

One month after the CSWGAN paper was published, Thierry Roncalli et el. pub-
lished Improving the Robustness of Trading Strategy Backtesting with Boltzmann
Machines and Generative Adversarial Networks [11]. This paper largely summa-
rized the state of RBM and GAN generated synthetic series, but their headline
model was a conditional deep convolutional wasserstein GAN that utilized a neural
network discriminator and utilized real return data rather than signatures. Their
model generated 2 series, with a generation window size of 5, and a latent vector
dimension of 100. They did not provide information regarding the stylized facts of
their generated series outside of autocorrelaton of returns (which they captured ac-
curately). Our own implementation of this architecture confirmed that it was unable
to capture more complex stylized facts, and did not scale well to more series. They
demonstrate the usefulness of their generated data for estimating the probability
distribution of performance and risk statistics in a simulated backtest, validating its
usefulness in a more applicable scenario.

In July of 2021, Florian Eckerli et al. made Generative Adversarial Networks in Fi-
nance: An Overview [6] available. This paper neatly summarizes many of the appli-
cation of GANs in finance, especially the more specific or targeted use cases that have
evolved around the core problem of time series generation. The authors also make
a comparison between 3 architectures of GANs for univariate, non-autoregressive
generation of financial time series in the spirit of Modeling financial time-series with
generative adversarial networks. They compare a simple deep convolutional GAN,
a a wasserstein GAN with gradient penalty, and a self-attention GAN. They found
that self-attention GAN was best able to capture the volatility clustering and general
characteristics of the time series. Though the paper was not cutting edge in their
approach to modeling, this result further confirmed the efficacy of self-attention and
was prescient towards our own success utilizing self-attention in our networks.

In March of 2022, Paul Jeha et al. continued to demonstrate the usefulness of
self-attention in the context of time series generation with their paper: PSA-GAN:
Progressive Self-Attention GANs for Synthetic Time Series [15]. Though the fo-
cus of this paper was not explicitly financial time series, it introduced several key
innovations that influenced our work. They utilized a relatively deeper architec-
ture than other approaches, predicated on a main block with a spectral normalized
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convolutional layer and residual self-attention. The width of the layer size of their
blocks grows progressively with each successive block, allowing them to build step
by step from a smaller space to a long series. The training schedule of the blocks
follows Karras et al. (2017) [10], the model trains for 1000 epochs at the smallest
resolution, then a new block is appended with a larger size and the model resumes
training at this higher level of resolution. They also incorporate conditioning on
prior series values to enable autoregressive generation in their PSA-GAN-C model.
The model also receives time features like time of day, day of the year, day of the
week, etc. which are relevant for the type of time series they are looking to generate.
This model showed great results for simulating multiple different time series that
were generally seasonal and related to load balancing (i.e. solar panel output and
electricity usage) and some of their techniques have proven useful when applied to
financial time series in our research.
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3 Datasets and Pipelining
We used multiple target datasets in our experiments in order to confirm the ability or
inability of our models to capture specific stylized facts under controlled conditions,
their ability to model multiple time series from different assets classes, or to utilize
the generated data on downstream tasks. In this section we will explore the various
datasets we utilized and the pipelining process we created to prepare these datasets
for modeling.

3.1 Synthetic or Sampled Target Data

In order to capture the simplest efficacy of our models, we utilized two broad types
of fake data as targets for our models. The first were series made of random variables
sampled from either Student-t or gamma distributions. Both of these distributions
were relatively easy to capture for any of our models because they had no temporal
dynamics and were not extremely divergent from the normal distribution the latent
vector was sampled from.

Figure 17: Gamma Distribution [4]

Figure 18: t Distribution [5]

We moved on from this to time series modeled from a GARCH process, testing
multiple different parameter settings to elucidate the types of features that caused
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our GANs to fail. In particular, we created univariate and multivariate series that
had small levels of or no autocorrelation, autocorrelation of volatility with differing
levels of decay, leverage effect, trends in the returns, and differing levels of correla-
tion between the distinct series in the multivariate cases. The largest multivariate
dataset we created with a GARCH process had 32 time series. We will expand more
deliberately on the performance of the relevant GANs on these different datasets
with different parameters in the results section.

Table 1: GARCH Datasets

Dataset Name Composition Length
Autocorr. of Vol GARCH 1 GARCH series 40960 Days
Return Trend GARCH 1 GARCH series 40960 Days

3.2 Real Target Data

From here, we started testing our GANs on real financial time series. We always
used the daily total returns rather than prices for all of these series. Our univariate
series of choice was the history of the S&P 500 Index, and our initial multivariate
dataset also included the Dow Jones Industrial Index, the Volatility Index (VIX),
and the US Dollar - Japanese Yen currency pair. To expand to 8 series, we added the
US Dollar - Euro currency pair, the NASDAQ Index, the MSCI World Index, and
the Euro - Japanese Yen currency pair. Lastly, we expanded to 16 dimensions of real
series by adding the US Dollar - Great British Pounds pair, GBP - EUR pair, US 10
year treasury bond, US 2 year treasury bond, United Kingdom 10 year bond, Japan
10 year bond, German 10 Year bond, and German 2 year bond. Having a broad
mix of asset classes and geographic locales created a complicated set of relationships
between the different series to provide a real challenge to the GANs.

We utilized another real dataset in order to test the efficacy of our generated data
on a downstream task. The task we chose to test was the training of a statisical
arbitrage model predicated on a simple neural network. This same model had shown
strong results out of sample when trained on real data numbering in the thousands of
assets, and tested by predicting optimal portfolio weights on the same cross section
of assets. This model needed a decomposed set of 3 series for each asset: the base
returns, active returns, and residual returns. The base returns of an asset are just
the normal returns on a day to day basis, the active returns are the component of the
base returns attributable generally to the market (i.e. the monthly beta for the asset
times the whole market returns), and the residuals are the part of the returns that
are unique to each individual asset (i.e. the base returns minus the active returns).
In order to generate a convincing facsimile of this data, we took the total return
series of all the equities in the universe and clustered then into 8 different buckets
using K-means. Then we randomly selected 8 random assets from these buckets (!!
look up actual asset vals!!) and decomposed them into active and residual returns.
We then passed the 8 active return series and 8 residual return series histories to
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the GAN to generate data for use in training and testing our statistical arbitrage
model.

Table 2: Real Datasets

Dataset Name Composition Length
Standard and Poor’s 500 Index 1 Equity Index 8925 Days
4 Real Multi-Asset 2 Equity Indices, Volatility Index, 1 Currency Pair 8192 Days
8 Real Multi-Asset 4 Equity Indices, VIX, 3 Currency Pairs 5888 Days
16 Real Multi-Asset 4 Equity Indices, VIX, 5 Currency Pairs, 6 Bonds 5888 Days
16 Decomposed Equities 8 Equities (Active Returns and Residual Returns) 4945 Days

3.3 Conditioning Data

We used multiple types of conditioning data beyond just the prior steps in the series
to influence the generation from our networks. Firstly and most simply, we used a
binary conditioning representing business cycles taken from the US National Bureau
of Economic Research. The two binary options are expansion and contraction, with
an expansion being defined at the period from the last trough of the series to the peak
of the series, and a contraction is the opposite: from peak to trough. This data occurs
at a monthly time frame, and tracks US economic activity. In particular it "is based
on a range of monthly measures of aggregate real economic activity published by the
federal statistical agencies. These include real personal income less transfers (PILT),
nonfarm payroll employment, real personal consumption expenditures, wholesale-
retail sales adjusted for price changes, employment as measured by the household
survey, and industrial production. There is no fixed rule about what measures
contribute information to the process or how they are weighted in our decisions."

We also used more fine grain and international macroeconomic markers to condition
our networks. We took the short term interest rate (three month ICE LIBOR) of
the US dollar, GB pound, Swiss franc, Japanese yen, and the Euro. Likewise, we
used the term spread of these same currencies (price of the yield on 10 year bonds
minus the short term interest rate). We included the US consumer comfort index
which "measures Americans’ perceptions on three important variables: the state of
the economy, personal finances and whether it’s a good time to buy needed goods
or services." and the US Manufacturing Purchasing Managers Index (PMI) which
measures the activity level of purchasing in the manufacturing sector. We also used
the US default yield spread, and the 1 year difference in US money supply. Lastly,
we took some data about the MS World Index to have a general picture of the stock
market: the earnings to price ratio, the price to book ratio, the dividend yield, the
net proceeds, and the net issue.

3.4 Data Pipelining and Preprocessing

Regardless of the type of data we passed through our network, we had a relatively
consistent pipeline for processing and preparing the data for training. Firstly, any
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data being passed to the model was min-max scaled to values between 0 and 1. We
then partitioned the data into discrete samples of the relevant generation window
size from a continuous time series or set of time series. There were two options in the
pipeline at this step: whether to use overlapping samples or not. In some datasets
and with some problems, such as when trying to concurrently generate conditions
with a monthly sampling rate, it made more sense to use non overlapping samples as
the input and target data, whose generation window size corresponded to the sample
rate (i.e. 2 months of data starting on the day of first sample for the macroeconomic
conditions). However, in most cases, we used overlapping samples of data as our
target to expand our dataset as much as possible. In this case, we create a new
generation window starting at each day in our series. s
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4 Modeling

4.1 General Model Architecture

As discussed in the introduction, our approach is predicated on a generative adver-
sarial network structure and most of our modeling research focused on improving
the training of the two networks or modifying the network of the generator, discrim-
inator, or both. Each of the models was designed to be input size agnostic; i.e. the
outputs of the models / size of some layers scale automatically to match the target
data shape. The tables detailing the layers of each model below all correspond to
an generation window size of 128, a latent vector size of 32, and a single input series
unless otherwise specified. It is important to note that in multivariate examples,
each series had a corresponding latent vector; so for a set of N series, the latent
vector would be of size(32, N). We also included a network size flag in our imple-
mentation to set the interior size of the network independently of the target size,
unless otherwise specified this variable was set to 512 in each of the network size
descriptions.

4.2 Training

The training loop we utilized is predicated on a balanced update rule, with the
same number of training steps per epoch for the generator and discriminator. In the
discriminator update step, the discriminator sees a set of real samples and a set of
fake samples from the generator. The loss is calculated by summing the binary cross
entropy of the real predictions relative to a set of targets of only 1, and the BCE
from the generated samples relative to a set of targets of only 0, and dividing it by
two. In the generator update step, the discriminator sees a set of generated samples
and the loss that is propagated at that step is just the BCE of the predictions on
the generated samples relative to a set of targets of only 1 (i.e. the inverse of the
discriminator step). In general, we tended to utilize imbalanced learning rates in
favor of the generator but this was a decision made on a model by model basis. We
always added dropout to our networks, usually with a balance favoring the generator
as well but likewise dependant on the architecture.

4.3 Stabilizer

As part of our exploration into stabilizing the training of GANs, we built a learning
rate stabilizer to manage the training of our networks rather than setting a learning
rate schedule a priori. The stabilizer takes a measurement of the loss values for the
generator and the discriminator every ten epochs, and if they are imbalanced in favor
of either network, adds a tally in favor of the losing network. If the tally of either
network makes it to fifteen (i.e. 150 epochs of imbalanced training), the learning
rate of the winning network is penalized by 0.00002 and the the learning rate of the
losing network is boosted by 0.00002. Though this generally did not lead to different
training results than manual monitoring of the the training of the network, it did
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prevent degenerate training where one network overpowered the other, and made it
easier to train over the long term without closely monitoring the models.

4.4 Deep Convolutional GAN

The first network we implemented was a simple deep convolutional GAN, with an
imbalanced archtiecture between the generator and discriminator. The generator
had a single fully connected layer as the first layer, one 1d convolutional layer fol-
lowed by two 1d transpose convolutional layers, and another fully connected final
layer before a sigmoid activation function for the output (this was consistent across
all networks because the target values were min-max scaled). The generator had
batch normalization and dropout after the linear, convolutional, and first transpose
convolutional layers. The nonlinearities were leaky ReLUs across the board. The
discriminator had 2 1d convolutional layers followed by one linear layer and a sig-
moid activation (because it was a binary classifier). There was dropout and batch
normalization after each of the convolutional layers.

Table 3: DCGAN Generator

Layer Name Size Details Kernel Stride Padding Bias
FC 1 Input: 96, Output: 16384 N/A N/A N/A True
Conv 1 In Channels: 512, Out Channels: 256 2 2 0 False
Transpose Conv 1 In Channels: 256, Out Channels: 128 2 1 0 False
Transpose Conv 2 In Channels: 128, Out Channels: 1 2 1 1 False
FC 2 Input: 16, Output: 64 N/A N/A N/A True

Table 4: DCGAN Discriminator

Layer Name Size Details Kernel Stride Padding Bias
1d Conv 1 In Channels: 1, Out Channels: 256 4 2 1 False
1d Conv 2 In Channels: 256, Out Channels: 512 2 1 0 False
FC 1 Input: 16384, Output: 1 N/A N/A N/A True

4.5 Temporal Convolutional Network

The implementation of a TCN GAN (roughly analogous to QuantGAN) we made
was significantly different than the DCGAN. Before we dive into the specifics of this
model, it is pertinent to discuss the general structure of a temporal convolutional
network.

TCNs rely on dilated convolutions to carry information forward in time and capture
long range dependencies in sequential data. The dilation size is small at first, so
that the convolutional filters focus on local relationships, but they become larger
and larger with each with each successive layer. The greater the dilation size, the
greater the step in between the variables which are passed into each convolutional
filter.
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Figure 19: DCGAN Architecture

Figure 20: Demonstration of dilation [14]

Figure 21: Vanilla TCN with D = 1 [14]

Our implementation of a TCN based GAN is slightly different than the one employed
in the QuantGAN paper. The interior of their generator was also based on TCNs,
and they also tested a pure TCN based network, but the final architecture they
used was named a stochastic volatility network. It was composed of two separate
TCNs, one of which generated the drift and volatility terms at each time step for the
target series, and another which generated just the innovation term. In conjunction,
these 3 terms made it possible for them to create a time series from their SVNN
generator. The discriminator was a standard TCN binary classifier. The QuantGAN
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Figure 22: Vanilla TCN with D = 2 [14]

architecture was successful in modeling the heavy tails of the distribution, the lack
of autocorrelation in returns, and the volatility clusters up to a certain memory
threshold.

In our implementation, we used a slightly larger single generator that went directly
from the latent space to the return series, rather than the SVNN. The latent dimen-
sion for this model is of a different shape than the others. It was the total length
of the generation window size (in this case 128) with a width of 4. In other words,
there were 4 latent variables for each time step in the sequence. The backbone of
the architecture was a temporal block, each of which contain a stack of 2 sets of
multiple components: a 1d convolutional layer (with a kernel size of two, stride of 1,
a variable dilation term, and padding of 1) with weight normalization, followed by a
’chomp’ layer which essentially removes the padding from the convolution, a para-
metric ReLU activation function, and dropout. The whole network is made up of a
stack of these temporal blocks (in this case 6 for both networks) with the dilation of
each block starting at two and increasing by a power of 2 with each successive block.
Lastly, there is a single linear layer and a sigmoid activation for both the generator
and discriminator.

We were able to achieve strong results in the univariate case with this approach, but
ultimately it failed when trying to expand to multiple series and was very unstable
in training (i.e. likely for one network to defeat the other). As mentioned previously,
it was also awkward / ineffective to introduce conditioning into this network because
of the inherent sequential assumption.

4.6 Wasserstein GAN with Gradient Penalty

Wasserstein GANs are a special class of GANs who have a significantly different
loss function than a regular GAN. While a regular GAN uses a discriminator (i.e.
binary classifier) and binary cross entropy loss. The Wasserstein loss is based on
the Wasserstein distance (also known as earth mover’s distance) between the two
distributions which come from the critic network. The critic network is usually not
hugely different from a discriminator network in terms of architecture, but does not
have an activation layer as the final part of the network (i.e. the critic network output
is unbounded). The job of the critic is not to predict the individual class of each
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sample, but rather to have the distribution of the outputs relative to the generated
samples be as far as possible by Wasserstein distance from the distribution of outputs
relative to the real samples. Likewise, the generator is attempting to minimize the
distance between the distributions.

Figure 23: Wasserstein Distance between distributions Pr and Pg.

This approach provides two main benefits: it forces the generator to consider the
whole distribution and thus prevents mode collapse and it provides an informa-
tive loss value that converges in an intelligible manner (in contrast to typical GAN
losses which do not provide much information about convergence or the quality of
generated samples). Unfortunately, optimizing the Wasserstein distance across all
lambdas is computationally intractable. Because of this, it is necessary to enforce
1 lipschitz continuity on the discriminator, so that the space of possible lambdas
is constrained. In the first implementation of Wasserstein GANs, weight clipping
was used to explicitly constrain the weights within the correct range. This approach
was inelegant, and often resulted in vanishing or exploding gradients up to the max
and min available values of the clipping. It also limits the complexity of the func-
tions that the network can map. So a gradient penalty was proposed as a solution
by Gulrajani et al (2017). The gradient penalty is calculated by taking a linear
interpolation between the real and generated samples, and then passing these inter-
polated samples to the critic. Then you take the l2 norm of the gradients relative to
these critic outputs, subtract one from them, and square these terms. Then the loss
is augmented by the mean of this modified gradient norm, as a way to penalize the
model learning weights that fall outside of the 1 lipschitz constraint. This process
is captured in the loss term below:

Figure 24: Critic loss function for a Wasserstein GAN with gradient penalty.

The architecture we implemented to test the efficacy was the same as the archi-
tecture for the standard DCGAN, with the exception of the output activation in
the discriminator / critic as mentioned. Obviously, the loss function was different
as described above. The main motivation in using a Wasserstein GAN is to pre-
vent mode collapse, stabilize training, as well as ensure a more general and flexible
training of the generator network. We ultimately opted to solve these issues using
spectral normalization, which we will detail in the next section.

4.7 Spectral Normalization

Spectral normalization controls the lipschitz constant of both the generator and
discriminator explicitly but in a much more effective and elegant way than sim-
ple weight clipping and a much more computationally efficient way than gradient
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penalty. Unlike other common normalization techniques used in deep learning, spec-
tral normalization is applied to the weights of each layer rather than the outputs of
layers (i.e. the hidden state). At its essence, spectral normalization is just replacing
the weights (W) of a layer with W/ σ(W), where σ(W) is the largest singular value
of W.

Figure 25: Spectral Normalization of matrix A.

Figure 26: Singular Value Decomposition of matrix A.

In practice, utilizing spectral normalization is enough to prevent mode collapse and
encourage the network weights to maintain a healthy distribution that allows the
generator and discriminator to learn higher quality and more general representa-
tions of the target dataset. Both because of its demonstrated efficacy in other GAN
implementations and our success using it, we chose to progress with a regular dis-
criminator / BCE loss in conjunction with spectral normalized weights rather than
using wasserstein loss with gradient penalty.

4.8 Self Attention GAN

Self-attention GANs were introduced in 2018 by Han Zhang, Ian Goodfellow, Dim-
itris Metaxas, and Augustus Odena for use in image generation techniques [19].
Self-attention modules have gained a lot of hype in recent years due to their incor-
poration in large scale language and vision modules, and their flexibility at learning
representations that occur non-adjacently in the data. In particular, their success
in modeling long range dependencies in language models seems to make them an
obvious choice to boost performance of our GANs which are focused sequences. In
addition, self attention has been shown to be useful for time series generative model-
ing in general in the PSA-GAN paper [15] and for financial time series in particular
in Temporal Fusion Transformers [12] and Generative Adversarial Networks in Fi-
nance [6], amongst others. Before diving into our own usage of self attention in this
particular architecture, it is necessary to understand a basic self attention model
and multihead self attention.
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Figure 27: Empirical definition of the attention module.

Figure 28: Self Attention Module Diagram [17]

A single head attention module involves passing your data into 3 separate sub-
networks; the query, key, and value networks. The query output is matrix multiplied
with the transpose of the key network output, the output of this term is usually called
the ’energy.’ After taking the softmax of this matrix, it is called the ’attention.’ After
matrix multiplying the ’attention’ matrix by the value network output, you receive
what is generally called the ’attention map.’ In practice, this network structure is
extremely flexible and is able to find relationships in the data that a regular feed
forward or convolutional structure would not be able to. It is able to replicate
convolutional maps where necessary and find relationships in adjacent data points,
but also is particularly adept in finding filters that relate distant points.

Even more powerful than a single head self attention is multihead attention, which
is simply multiple single head attention modules in parallel whose output is then
summed and passed into a single linear layer to output one single output. In practice,
this allows the network to learn multiple sets of attention maps i.e. one focused on
local relationships, one on distant relationships in the same series, and one focused
on relationships between different series in a multivariate problem. This approach
is over-powered, and can be over-parameterized for univariate series so we generally
used only single head attention when generating a single series. It is also important
to note that both types of self-attention modules return outputs of the same shape
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Table 5: Single Head Self Attention Module

Layer Name Size Details Kernel Stride Padding Bias
Query 2d Conv. In Channels: 512, Out Channels: 64 1 0 0 True
Key 2d Conv. In Channels: 512, Out Channels: 64 1 0 0 True
Value 2d Conv. In Channels: 512, Out Channels: 512 1 0 0 True

Table 6: Multi Head Self Attention Module

Layer Name Size Details Kernel Stride Padding Bias
Query Linear Input: 512, Output: 512 N/A N/A N/A True
Key Linear Input: 512, Output: 512 N/A N/A N/A True
Value Linear Input: 512, Output: 512 N/A N/A N/A True
Output Linear Input: 512, Output: 512 N/A N/A N/A True

Table 7: SAGAN Generator

Layer Name Size Details Kernel Stride Padding Bias
FC 1 Input: 96, Output: 16384 N/A N/A N/A True
Conv 1 In Channels: 512, Out Channels: 256 2 2 0 False
Single Head Self Attn. Input: 512, Output: 512 N/A N/A N/A N/A
Single Head Self Attn. Input: 512, Output: 512 N/A N/A N/A N/A
Transpose Conv 1 In Channels: 256, Out Channels: 128 2 1 0 False
Transpose Conv 2 In Channels: 128, Out Channels: 1 2 1 1 False
FC 2 Input: 16, Output: 64 N/A N/A N/A True

Table 8: SAGAN Discriminator

Layer Name Size Details Kernel Stride Padding Bias
1d Conv 1 In Channels: 1, Out Channels: 256 4 2 1 False
Single Head Self Attn. Input: 512, Output: 512 N/A N/A N/A N/A
1d Conv 2 In Channels: 256, Out Channels: 512 2 1 0 False
FC 1 Input: 16384, Output: 1 N/A N/A N/A True

as the input, essentially an in place transformation of the data. This makes it easy
to incorporate residual connections (i.e. adding the input back into the output of
the module) which are important for maintaining informational flow from the input
to the later layers in particularly deep networks.

In our implementation, we added single head self attention modules with residual
connections to both the generator and discriminator of the DCGAN structure we
defined earlier. In the generator, we placed two modules after the first convolutional
layer. In the discriminator, we placed one module also after the first convolutional
layer. We determined that this interior placement was more effective than using
the self attention module as the first layer (where its impact was largely washed
out by later layers) or as the final layer (where it was too powerful in changing the
output and would overfit to the target set). In addition, we spectral normalized all
of the layers in the network. In our single head attention network, we changed the
traditional structure of a self attention module to convolutional layers for the query,
key, and value networks instead of linear layers.
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Figure 29: Multi-Head Self Attention [17]

4.9 Transformer Encoder GAN

The last architecture we implemented took inspiration from transformer architec-
tures which have seen great success in many sequence modeling tasks, as well as
NLP and image related tasks. We stopped short of implementing the self supervised
training paradigm traditionally associated with transformers, and likewise did not
use a codebook or vector quantization like the VQGAN-Transformer Model from
Taming Transformers for High-Resolution Image Synthesis [7]. Our approach was
simpler, we recreated a transformer block from a vanilla BERT, and then used a
succession of these blocks for both the generator and discriminator. We tested mul-
tiple structures of blocks; some using convolutional self attention and some using
linear layers for the query, key, and value, and also tried both convolutional and
linear layers in the upscaling / downscaling subsection of the transformer block. We
also tried various block arrangements: different depths, imbalanced depths where
the discriminator had fewer blocks than the generator, and growing and shrinking
block sizes (where the hidden size of the layers in each block started small (roughly
equivalent to the input size), became larger by a power of two for every block until
the central block, and then the blocks decreased in size until they were at the output
size). Ultimately the architecture that had the best results was using linear layers
in all the positions we mentioned, with 6 blocks for the generator and 4 for the
discriminator. As with the prior model, we utilized spectral normalization for all
the layers.

The transformer block architecture started with a multihead self-attention module
followed by a linear layer with dropout. The residual from the input was added
after this linear layer. This was followed by layer normalization. Then there was
a group of two linear layers, the first upscaling the hidden value followed by gelu
activation, and then another linear layer that downscaled back to the original size.
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Table 9: Transformer Block

Layer Name Size Details Kernel Stride Padding Bias
MultiHead SA Input: 512, Output: 512 N/A N/A N/A N/A
Projection Linear Input: 512, Output: 512 N/A N/A N/A True
Upscale Linear Input: 512, Output: 2048 N/A N/A N/A True
Downscale Linear Input: 2048, Output: 512 N/A N/A N/A True

Figure 30: Transformer Encoder Block

This was followed by dropout and a residual connection from the value prior to the
upscale-downscale group. With the growing / shrinking blocks architecture, there
was another linear ’scaler’ which changed the hidden size to the needed scale for the
next block.

4.10 Generating Conditions and Series with the Transformer
Encoder Architecture

When conditioning on outside information, we simply pass the conditions into the
normal architectural structure of the network at an increased size. However, we
also wanted to test our ability to generate conditions for completely synthetic long
term market simulations. Initially we tried to generate the conditions from the
same generator we used for series generation. We did this by simply expanding the
generation window size of the generator and considering the trailing outputs as the
conditions, reshaping them for the discriminator. We also tried adding a separate
set of layers at the end of the transformer blocks which created the conditions in
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Figure 31: Transformer Encoder GAN

parallel with the last layers that created the series. This approach was moderately
successful, but always impacted the series generation negatively because some of the
capacity of the network was being reserved for information on the conditions that was
potentially not relevant to the series themselves. So lastly we tried a totally separate
GAN where the generator only made the conditions given the prior series and prior
conditions, and the discriminator saw the real prior series and conditions, the real
target series and the generated conditions relative to that data. This approach was
far more successful in maintaining the quality of the generated series while still
producing synthetic conditioning data as well. By default the conditioning GAN
had the same architecture as the series GAN but with 1/8 of the hidden size (i.e.
64 in the case of a hidden size of 512 for the main network).
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5 Results
We found that we were able to train our TCGAN and SAGAN to capture the styl-
ized facts of univariate financial time series For multivariate series the SAGAN with
good quality up to 4 assets and the TEGAN with good quality up to 16 assets. We
demonstrated that the TEGAN model was able to generate multi-asset markets as
well as just equities. Furthermore, we were able to train with macroeconomic condi-
tions as inputs, and match by clustering the generated and real series relative to the
macroeconomic conditions. Lastly, we showed that our data was of sufficient quality
to increase the performance (measured by sharpe ratio) of a statistical arbitrage
strategy by augmenting the real training data with our generated data.

5.1 Univariate Series

We tested series modeled from a GARCH model as test series with explicit charac-
teristics in order to determine the strengths and weaknesses of particular models. In
this section we will look at the DCGAN, TCGAN, the SAGAN, and the TEGAN.
Though we tested multiple different GARCH series, the primary series we tested
had a heavy tailed distribution, no autocorrelation in the returns and a decay of
autocorrelation for volatility. Without conditioning, the DCGAN fails to capture
autocorrelation of volatility where other models are able to accurately model it.
With conditioning it is even more apparent that long term trends are not captured
by the DCGAN.

Figure 32: DCGAN GARCH Distribution

We can see from the above graphs that the SAGAN is the most effective for the gen-
eration of univariate series. They do much better capturing the temporal dynamics
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Figure 33: DCGAN GARCH Series

Figure 34: SAGAN GARCH

such as the autocorrelation of volatility or leverage effect. The TEGAN overfits
to the target data, and is unable to generate sequences that have any variation in
autocorrelation or autocorrelation of volatility - i.e it generates many series that
are almost identical. Because much of the transformative power of the TEGAN
comes when many blocks are stacked together but stacking many blocks essentially
overparamaterizes for univariate series, it is not the best architecture for this task.

We also tested a GARCH process with trends to see if the model could learn from
only situationally specific series (i.e. in this case a crash and recovery)

We see here again that the SAGAN is effective for univariate generation and most
accurately recreates the v shaped trend we introduced into our GARCH process,
especially evidenced by comparing the autocorrelation plots of the different samples
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Figure 35: TEGAN GARCH Distribution

Figure 36: TEGAN GARCH Series

of generated data.

All of the prior examples have been comparisons of short series generated inde-
pendently, rather than generated as a long sequence autoregressively. Likewise the
training did not incorporate any training based on conditioning using the prior steps
in the series. The following examples were trained and generated with a condition
on prior steps in the series. Here we only compare our TCGAN and SAGAN models,
as we determined they were the most effective at modeling univariate series.

Once again, we see the SAGAN outperforming the TCGAN, though the SAGAN
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Figure 37: SAGAN GARCH V Distribution

Figure 38: SAGAN GARCH V Series

does introduce a small ’kink’ in the center of the autocorrelation function because
it tends to generate similar series between generation window steps - i.e. the model
generates a series that is more similar to its condition in an exact rather than sta-
tistical fashion. This effect is less pronounced with the regular GARCH series than
with the trend GARCH, potentially because there is actually a natural spike in the
autocorrelation of the series in the center of the time dimension. It is also less
pronounced with shorter generated series, however, as the autoregressive generation
goes through more and more steps, it tends to settle into a homogeneous series
which creates higher autocorrelation between samples. We can see that the SAGAN
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Figure 39: Autoregressive TCGAN GARCH

Figure 40: C-SAGAN GARCH V Distribution

model is able to capture the longer term autocorrelation of volatility that the TC-
GAN cannot because the way the TCGAN series are generated precludes them from
capturing any memory beyond the length of the generation window size.

When testing on the total returns of the S&P Index, the SAGAN outperforms:

5.2 Multivariate Series

When generating multivariate series, we first tested the 4 series multivariate dataset
consisting of the S&P Index, the Dow-Jones Index, the Volatility index, and the
USD-Yen currency pair. We found the SAGAN and TEGAN to be most effective
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Figure 41: C-SAGAN GARCH V Series

Figure 42: C-SAGAN S&P Distribution

for this task.

Both models were able to capture the inter-series correlation relatively well, will also
generating series that had differing levels of various other stylized facts relative to
each of the corresponding assets.

We continued our multivariate testing using 8 assets, and here we begin to see the
higher capacity and flexibility of the TEGAN take prominence over the SAGAN. The
quality of the individual series degraded slightly the more assets we add because
there is some tradeoff between correlation for particular series and having highly
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Figure 43: C-SAGAN S&P Series

Figure 44: C-SAGAN 4 Assets

Figure 45: C-SAGAN 4 Assets

differentiated stylized facts.
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Figure 46: C-MTE-GAN 4 Assets Distribution

Figure 47: C-MTE-GAN 4 Assets Distribution

As we proceed to 16 series, the SAGAN begins to break down in its ability to learn
independent series and devolves to generating the same series for asset, while the
TEGAN is able to maintain its ability to generate multiple assets independently.

We also tested 32 and 64 series, but because the performance degraded for all models,
we decided to exclude them from this report. Regardless, we demonstrated the
ability to faithfully generate multi asset markets autoregressively in which the series
maintain their stylized facts to a relatively high degree of fidelity.

5.3 Conditioning on Macroeconomic Features

Our next test of our GAN models was to try to condition the series on macroeco-
nomic data, and from here on out we only utilized the TEGAN model because we
determined that it was the most effective for multivariate generation. As mentioned
in the data section, we used 20 total macroeconomic features for conditioning, with
a total of 213 unique condition sets. Below are the summary statistics for the con-
ditioning data prior to the min-max scaling we used to make them more palatable
to the GAN:
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Figure 48: C-MTE-GAN 8

Figure 49: C-MTE-GAN 16 Series

E2P_MSWLD P2B_MSWLD DY_MSWLD NET_PROCEEDS_MSWLD
mean 4.927508 3.722322 2.366313 2.453906e+09
std 1.136927 1.122281 0.325488 2.277287e+09
min 1.453079 1.340361 1.811659 4.335296e+08
max 6.934146 6.605351 3.435784 1.051643e+10
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NET_ISSUE_MSWLD CHF_SHORT_RATE USD_SHORT_RATE
mean -2.905748e+09 0.239369 1.643787
std 3.338342e+10 1.045565 1.640385
min -1.311380e+11 -0.855400 0.188380
max 1.386030e+11 2.955000 5.621250

GBP_SHRT_RT JPY_SHRT_RT EUR_SHRT_RT CYCLE
mean 2.017983 0.134735 1.106463 0.906494
std 2.090709 0.243009 1.598845 0.291173
min 0.025500 -0.191000 -0.566290 0.000000
max 6.692500 0.996250 5.273750 1.000000

CHF_TERM_SPREAD USD_TERM_SPREAD GBP_TERM_SPREAD
mean 0.851988 1.278643 0.769799
std 0.630768 1.181119 1.183459
min -0.443000 -1.162250 -1.974250
max 2.551330 3.584370 3.506000

JPY_TERM_SPREAD EUR_TERM_SPREAD USD_DEFAULT_YLD_SPRD
mean 0.677122 0.875790 107.271846
std 0.514426 0.823572 45.827057
min -0.175860 -1.261750 49.120000
max 1.833750 2.728000 349.130000

USD_CONS_CMFRT USD_MAN_PMI USD_MONEY_SPLY_DIFF
mean 40.877594 53.465633 716.438965
std 10.700742 4.696770 704.598870
min 23.000000 34.500000 157.300000
max 67.300000 61.400000 4157.200000

We wanted a flexible way to determine the efficacy of the conditioning, particularly
how well the generator was able to generate series that were similar to the real series
relative to each condition. The way we approached this comparison was by using
k-means clustering to determine how similar the series were: we flattened the real
and generated multivariate series into a single long array, and then clustered all of
them together into 20 different clusters. Then we lined up the real samples and
generated samples relative to a particular macroeconomic condition, and compared
the clusters assignments of the real and generated samples. This was not a trivial
problem, and it actually formed a decent approximation of generator convergence
for training as it took thousands of epochs of training before any of the generated
samples started to be assigned to matching clusters for their target.

In order to visualize these cluster matches, we take all the macroeconomic conditions
and use t-SNE to reduce them into a 3 dimensional subspace. We then plot those 3
dimensions, with blue corresponding to an incorrect cluster match and orange to a
correct cluster match. This makes it possible to see which subsets of conditions the
model fails to recreate an accurate series in relation to.
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We see here that with 16 assets, the model is able to capture the relevant statistical
behaviour to a relatively strong degree as well as responsiveness to the macroeco-
nomic conditions.

Figure 50: C-MTE-GAN 8 Active / 8 Residual Dsitribution + Clusters

This level of control of synthetic financial time series or accurate conditioning on
macroeconomic conditions is unprecedented in the literature centered around the
deep learning based generation of synthetic financial data. We demonstrate its
usefulness in the next section regarding statistical arbitrage.

5.4 Statistical Arbitrage Data Augmentation

In order to determine the efficacy of generated data in a real world use case, we
decided to augment the training data of a statistical arbitrage model to determine
if we could improve its performance with our generated data. To this end, we took
a universe of equities and clustered their returns using k-means into 8 buckets, then
selected one equity from each cluster in order to capture an uncorrelated subset of
the possible equity universe. When then decomposed this 8 equity returns into and
active return component and a residual return component as described in the data
section, and trained our C-MTE-GAN model on these 16 series.

The statistical arbitrage model we used was based on a relatively simple neural
network, with two 1d convolutional layers, one self attention module (also based
on 1d convolutional layers), and two linear layers. We trained an ensemble of 8
models and then used them as a voting classifier for making investing decisions.
The models make independent predictions for each possible asset in the portfolio,
which were then used as weights for the custom loss function. The loss function for
the models was based on the sharpe ratio relative to the portfolio weights, so the
models were optimized to construct optimal portfolios.

Layer Name Size Details Kernel Stride Padding Bias
1d Conv 1 In Channels: 1, Out Channels: 8 2 1 0 true
1d Conv 2 In Channels: 8, Out Channels: 8 2 1 0 False
Single Head Self Attn. Input: 8, Output: 8 N/A N/A N/A N/A
Linear 1 Input: 8, Output: 16 N/A N/A N/A True
Linear 2 Input: 16, Output: 1 N/A N/A N/A True

The training of the model was designed to test the effect of increasing the quantity of available
data for the model. We took training samples of 100 days, 200 days, 500 days, 1000 days, and 2000
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days. We used a limited subset series for the training data, but a full investing universe of 1000
equities when evaluating the model’s portfolio construction abilities after training.

Figure 51: Performance by Sharpe Ratio of Augmented Statistical Arbitrage Strat-
egy

We then tested a version of the statistical arbitrage ensemble where each of the sub networks was
trained on the same 8 real assets and a different set of 8 series of synthetic returns (all taken from
the same model). So each model saw a different set of synthetic series, and we hoped this would
make their predictions more generalizable for the out of sample testing.

Lastly, we used our conditional generator to create long series based on real economic conditions.
In general, the series were lower quality than the series which were generated normally, however
we used the conditioning to generate some specific types of series. Firstly we generated an equal
number of returns corresponding to either expanding or contracting business cycles, and used those
to augment individual models in the ensemble. Secondly, we generated only samples corresponding
to business cycle contractions to augment our training data with.
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6 Conclusion
Through our research, we were able to explore the current state of synthetic data
research in finance and create our own novel architectures that generated multi-
asset markets conditionally on prior series and on macroeconomic data. We were
able to capture stylized facts in univariate series, and in generating multiple series
at once though to a lesser extent. Still we were able to generate relatively high
fidelity series at a higher dimension than had been achieved in previous research.
We were also able to accurately control the generation of series corresponding to
macroeconomic conditions, and utilized k-means clustering to confirm the similarity
of these conditionally generated series. We tested the efficacy of our models in
augmenting the training of a statistical arbitrage model, where it had particular
success in very low data availability environments. There are many more experiments
and use cases that could extend from this research and the architectures we have
developed. In conclusion, we have moved progress in the generation of synthetic
financial time series forward.
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