Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. High Performance Semiconducting Nanosheets via a Scalable Powder-Based Electrochemical Exfoliation Technique
 
research article

High Performance Semiconducting Nanosheets via a Scalable Powder-Based Electrochemical Exfoliation Technique

Wells, Rebekah A.
•
Zhang, Miao  
•
Chen, Tzu-Heng  
Show more
March 15, 2022
Acs Nano

The liquid-phase exfoliation of semiconducting transition metal dichalcogenide (TMD) powders into 2D nanosheets represents a promising route toward the scalable production of ultrathin high-performance optoelectronic devices. However, the harsh conditions required negatively affect the semiconducting properties, leading to poor device performance. Herein we demonstrate a gentle exfoliation method employing standard bulk MoS2 powder (pressed into pellets) together with the electrochemical intercalation of a quaternary alkyl ammonium. The resulting nanosheets are produced in high yield (32%) and consist primarily of mono-, bi-, triatomic layers with large lateral dimensions (>1 mu m), while retaining the semiconducting polymorph. Exceptional optoelectronic performance of nanosheet thin-films is observed, such as enhanced photoluminescence, charge carrier mobility (up to 0.2 cm(2) V-1 s(-1) in a multisheet device), and photon-to-current efficiency while maintaining high transparency (>80%). Specifically, as a photoanode for iodide oxidation, an internal quantum efficiency up to 90% (at +0.3 V vs Pt) is achieved (compared to only 12% for MoS2 nanosheets produced via ultrasonication). Further using a combination of fluorescence microscopy and high-resolution scanning transmission electron microscopy (STEM), we show that our gently exfoliated nanosheets possess a defect density (2.33 x 10(13) cm(-2)) comparable to monolayer MoS2 prepared by vacuum-based techniques and at least three times less than ultrasonicated MoS2 nanoflakes. Finally, we expand this method toward other TMDs (WS2, WSe2) to demonstrate its versatility toward high-performance and fully scalable van der Waals heterojunction devices.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

acsnano.1c10739_AAM.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.22 MB

Format

Adobe PDF

Checksum (MD5)

282e8206a4ef5c5f0a05a1047c80a3ef

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés