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Abstract: Hydrogenated amorphous silicon (a-Si:H) can be produced by plasma-enhanced chemical
vapor deposition (PECVD) of SiH4 (silane) mixed with hydrogen. The resulting material shows
outstanding radiation hardness properties and can be deposited on a wide variety of substrates.
Devices employing a-Si:H technologies have been used to detect many different kinds of radiation,
namely, minimum ionizing particles (MIPs), X-rays, neutrons, and ions, as well as low-energy protons
and alphas. However, the detection of MIPs using planar a-Si:H diodes has proven difficult due to
their unsatisfactory S/N ratio arising from a combination of high leakage current, high capacitance,
and limited charge collection efficiency (50% at best for a 30 µm planar diode). To overcome these
limitations, the 3D-SiAm collaboration proposes employing a 3D detector geometry. The use of
vertical electrodes allows for a small collection distance to be maintained while preserving a large
detector thickness for charge generation. The depletion voltage in this configuration can be kept
below 400 V with a consequent reduction in the leakage current. In this paper, following a detailed
description of the fabrication process, the results of the tests performed on the planar p-i-n structures
made with ion implantation of the dopants and with carrier selective contacts are illustrated.
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1. Introduction

Hydrogenated amorphous silicon (a-Si:H) is a disordered semiconductor obtained
via plasma-enhanced chemical vapor deposition (PECVD) of a mixture of silane (SiH4)
and hydrogen at temperatures of 250–300 ◦C [1]. The resulting material has an irregular
arrangement of atoms resulting in not all Si–Si bonds being saturated, leading to the
presence of dangling bonds (DBs) that are related to the presence of intermediate states
between the valence and the conduction bands. The introduction of hydrogen into the
mixture has the purpose of passivating most of these dangling bonds. In amorphous
(non-hydrogenated) silicon (a-Si), the density of defects due to DBs is 1019 cm−3, whereas
for a-Si:H this density can be as low as 1015 cm−3. Although the amount of hydrogen
necessary to reach these levels of DB passivation is approximately 1% atomic, device-grade
a-Si:H usually exhibits hydrogen concentrations between 4% and 12%. The hydrogen
percentage in the material affects its bandgap (increasing the hydrogen percentage leads to
a larger bandgap) and depends on deposition conditions such as processing temperature.
However, temperatures above 350 ◦C lead to hydrogen desorption, transforming the
material into a-Si. This relatively low deposition temperature facilitates the adhesion of
a-Si:H on many different substrates, like glass (including Pyrex and fused silica), stainless
steel, crystalline silicon, silicon oxide, aluminum, coated ceramic, chromium-plated brass,
copper-coated printed circuit board (PCB), and organic materials like polyammide, PEN
(polyethylene naphthalate), PET (polyethylene terephthalate) and PI (polymide), heat-
resistant organics/inorganic polymers (like ormocer®), and even on top of electronic
devices in CMOS (complementary metal-oxide semiconductor) technology [2]. Usual
deposition techniques for detector-quality a-Si:H are PECVD with plasma excitation at
radio frequency (13.56 MHz) [3], very high frequencies (between 27 and 150 MHz) [4] or
even with microwave frequencies [5], and hot-wire deposition [6].

The relatively wide bandgap of a-Si:H and its disordered nature results in a low charge
carrier mobility (1–3 cm2 V−1 s−2 for electrons and 0.01 cm2 V−1 s−2 for holes) and a charge
collection time in a 30 µm-thick diode of below 15 ns [7]. A-Si:H is a semi-isolating material
with a resistivity of above 1010 Ω cm. This resistivity can be lowered by more than seven
orders of magnitude by doping [8]. However, doping of a-Si:H creates additional defects,
which consequently lowers the carrier lifetime of the material [9]. Therefore, doped layers
cannot be used as active layers in photodiodes or particle sensors. For this reason, p-i-n
diode structures, not direct p–n junctions, are preferred with relatively thin p- or n-doped
layers. Usually, this material is doped with the addition of PH3 (n-type doping) or B2H6
or trimethylboron (p-type doping) in the process gas mixture. It was also demonstrated
that similar doping levels and conductivity can be achieved by ion implantation at low
temperatures [10]. This doping technique was demonstrated by the fabrication of var-
ious devices [11,12]. The feature of a-Si:H that makes it attractive for particle detector
developments is its remarkable radiation hardness. This has led to significant research
activities aiming at single minimum ionizing particle (MIP) detection [13–15]. In Ref. [16]
the radiation tests of a 32.6 µm-thick p-i-n diode irradiated at CERN’s Proton-Synchrotron
with 24 GeV protons up to a maximum fluence of 7 × 1015 p/cm2 is reported; an increment
in leakage current of a factor of 2 at 9 × 104 V/cm electric field was observed, and this
increase disappeared after 24 h of annealing at 100 ◦C. Although this material has an
extremely high radiation hardness, the main limitation of a-Si:H planar detectors is their
poor signal-to-noise ratio for the detection of MIPs, which is yet to exceed a value of 5. The
reason for this low S/N ratio is the very high depletion voltage (with electric fields up to
105 V/cm) that generates a high leakage current (up to about 1 µA/cm2). Furthermore, the
low charge collection efficiency (below 50% for a 30 µm-thick diode) due to the disordered
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nature of the a-Si:H lattice structure contributes to the decrease in the overall value of
the signal-to-noise ratio even if some effort has been performed to increase the charge
collection efficiency in these devices [17]. The depletion voltage of an a-Si:H detector Vd is
related to the density of DBs (Ndb number of dangling bonds/volume in cm3) according to
the following formula:

Vd =
e × Ndb × d2

2ε

where e is the electron charge and d is the thickness of the depleted layer. If we express d in
µm and Vd in volts this formula becomes Vd = k × d2, where k ranges from 0.3 to 1.2 when
Ndb ranges from 5 × 1014 to 2 × 1015 cm−3. Furthermore, a large thickness of the detector
reduces the charge collection efficiency due to charge trapping over a longer distance.

Increasing the depletion voltage increases the leakage current at full depletion, and
this increases the noise. To reduce noise and increase the signal we propose fabricating a
p-i-n-structured a-Si:H detector in 3D geometry that makes it possible to keep a relatively
small collection distance (namely, a 25–35 µm inter-electrode spacing) with a detector
thickness of up to 100 µm or more, increasing the total charge generated in the detector by
an MIP. Maintaining a small distance between the electrodes is important for keeping the
leakage current low, hence reducing the noise. In Figure 1 we show the baseline design for
our detector, where a-Si:H is deposited over a low-resistivity p-type silicon substrate that
distributes the bias to the p-type electrodes on the detector. The n-type electrode collects the
signal for the readout electronics connected on the top contacts. This configuration is the
basis of development for Si-3D for high-luminosity (HL) LHC applications. [18]. Figure 2a
depicts the electrode arrangement as seen from a top-down perspective, where one n-type
finger-type electrode is surrounded by four p-type finger-type electrodes. Additionally,
Figure 2 shows alternative electrode configurations: Figure 2a is the baseline configuration,
Figure 2b shows a configuration with eight p-type finger-type electrodes surrounding an
n-type electrode, Figure 2c shows a configuration with one finger-type n-type electrode
surrounded by four trench-type p-type electrodes, and Figure 2d shows all alternate
trench n-type and p-type electrodes. Trench electrode configurations have been studied
and used for the realization of excellent time-resolution silicon detectors, for example in
the TIMESPOT collaboration. [19]. Table 1 shows a comparison between a-Si:H and c-Si
physical parameters.
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Figure 2. 3D a-Si:H detector configurations: (a) finger-type n-doped electrode surrounded by 4 finger-
type p-doped electrodes, (b) finger-type n-doped electrode surrounded by 8 finger-type p-doped
electrodes, (c) finger-type n-doped electrode surrounded by 4 trench-type p-doped electrodes, (d) all
trench configurations.

Table 1. Summary of c-Si and a-Si:H characteristics.

Properties c-Si a-Si:H Remarks

Bandgap (eV) 1.14 1.65–1.8 (for device grade) For a-Si:H given by Tauc’s gap,
depends on H content

Density (g/cm3) 2.3290 2.20–2.31 (device grade)

Hydrogen content (at. %) 0 4–15% (device grade)—up
to 50% possible

e-h creation energy (eV) 3.6 4–6

e-h creation/µm for MIP ~80 (1) ~80 Stopping power similar (almost same
density, effect of H negligible)

e drift mobility (cm2s−1V−1) 1450 1–3

h drift mobility (cm2s−1V−1) 450 0.01

e mobility lifetime (cm2V−1) ~5 × 10−3 ≤5 × 10−5 For a-Si:H, depends on deposition
and treatments

h mobility lifetime (cm2V−1) ~3 × 10−3 ≤10−7 For a-Si:H, depends on deposition
and treatments

Full depletion field (V/µm) <1 ≥10 Depends on defect density

Charge collection efficiency 97–99% 40–50% (2) Depends on charge type, field, and
time window

Device leakage current not
irradiated (A/cm3) 10−3–10−5 ≤10−3 (3)

For a-Si:H, thickness and field
dependent (a-Si:H bulk, for
10 µm-thick diode at field of
105 V/cm, non-irradiated)

Device leakage current
irradiated 5 × 1015 p

(24 GeV)/cm2) (A/cm3)
10−1–10−3 <3 10−3 (4)

For a-Si:H, thickness and field
dependent (a-Si:H bulk, for
10 µm-thick diode at field of

105 V/cm,

(1) Experimentally observed value. Theoretical value is 108 for a stopping value of 1.66 MeV cm2 g−1 for an MIP in c-Si. (2) For transient
experiment. Due to deep trapping, holes are, in principle, not collected. Collection efficiency >80% in steady state. (3) Leakage value for
planar diode. Diode on non-planar substrates and unpassivated edges can lead to significantly higher leakage. (4) Experimental value not
available. Increase of leakage by 2–3 for 32 µm-thick diodes.
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2. The Fabrication of a 3D Detector

The fabrication of a 3D detector in a-Si:H is somewhat different than the construction
of a 3D detector in crystalline silicon due to the constraint of keeping the temperature of
processing below 250–300 ◦C in order to avoid hydrogen desorption.

The process starts with the deposition on support wafers (typically a Cz p-type silicon
wafer with a resistivity below 10 Ωcm) of the a-Si:H performed via PECVD with a VHF-
excited plasma at the frequency of 70 MHz. The plasma is composed of a mixture of silane
and hydrogen (ratio of 1 to 1) at temperatures around 200 ◦C and will produce a layer with
a thickness of around 100 µm.

After that, both the ohmic and junction columns are defined and etched using a deep
reactive ion etching (DRIE) apparatus based on the Bosh process. This technique allows for
the etching of a hole with a diameter of a few microns and with a high aspect ratio (more
than 50). The ohmic columns are etched deeper than the a-Si:H layer (partially etching the
c-Si substrate) and the junction columns are etched to approximately 20 µm shallower than
the a-Si:H thickness.

Afterwards, the etched holes in the a-Si:H layer must be doped in the internal surfaces.
In order to create the p-i-n structure in the detector, two independent masks are fabricated
to define an n-plus region and a p-plus region. Doping the detector inside the holes cannot
be performed using common techniques for planar structures (i.e., PECVD deposition of
doped a-Si:H) as these deposition techniques cannot achieve the required conformality in
deep trenches [20,21]. Therefore, two doping options are considered:

• Option 1: atomic layer deposition (ALD) of conductive metallic oxides for the creation
of selective contacts for each type of charge carriers: titanium oxide for electron-
selective contacts and tungsten or molybdenum oxide for hole-selective contacts. Since
the oxides for charge-selective contacts are quite resistive, depositing a conductive
metal inside the holes or trenches by PLD (pulsed laser deposition) is foreseen.

• Option 2: ion implantation of boron (p-type doping) and phosphorous (n-type doping)
followed by a temperature activation annealing process below 200 ◦C or an additional
metal deposition by PLD if needed.

In order to have a reasonable time constant (order of 10 ns) for charge collection, the
resistance of the electrodes should be in the order 1 MΩ.

After the doping, a contact hole is opened and the metal (typical Al 1% silicon) is
deposited and defined. The passivation, based on a multilayer of Si3N4 and SiO2, is
deposited by the low-temperature PECVD technique and subsequently opened to allow
the contact of the metal layer. The final step is the metal deposition of the backside that is
used as bulk bias contact.

3. Results of the Phase I Prototype

The complexity of the proposed 3D detector geometries presents many technological
challenges regarding fabrication. The construction of prototype devices allows for the
challenges of 3D a-Si:H device fabrication to be addressed in a sequential manner. Phase 1
prototypes feature a planar p-i-n architecture and aim to assess the feasibility of the doping
options introduced in the previous chapter. Measurements investigate the performance
of the doped device layers to produce an efficient junction for biasing the intrinsic layer
and provide an effective charge collection and current rectification. A second generation
of prototypes (under design) aims to accurately measure the relation between the hole
diameter and the rate at which a-Si:H is etched via DRIE. The proposed 3D geometries
require the p-type electrodes to be embedded at a sufficient depth to erase a shallow layer
of the a-Si:H substrate, and the n-type electrodes are to be fully contained within the
a-Si:H device layer (Figure 3). Therefore, second-generation prototypes aim to assess the
feasibility of etching p-type and n-type electrodes in a single process, exploiting the feature
of the DRIE process in which larger-diameter holes turn out to have a faster etching rate.
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All measurements in this section were taken using a Keithley 237 Source-Measure
Unit (SMU).

3.1. Leakage Current Test on Option 1

Concerning option 1, related to the use of selective contacts, vertical structures were
fabricated on chromium-plated glass substrates. As electron-selective contacts, ZnO:Al
(aluminum-doped zinc oxide (AZO)) and TiO2 (respectively, 60 nm and 10 nm thick) layers
were implemented on the substrate side and compared. As a hole-selective contact, MoOx
(20 nm thick) protected by an indium thin oxide layer (60 nm) was deposited. All selective
contacts were deposited by sputtering. Note that for 3D architecture, ALD should be used
to enable conformal deposition in the holes or trenches.

Figure 4 depicts the initial I/V measurements performed on two vertical diodes with
a sensitive area of 0.25 cm2, providing comparisons between the two different materials
employed as electron-selective contacts. The results of both vertical diode structures
displayed exceptional rectifying behaviors. The generated leakage currents in TiO2 and
AZO electron-selective contact devices at −5 V applied bias were measured as two and
three orders of magnitude larger than the leakage currents under +5 V bias, respectively.
Furthermore, the obtained leakage current of approximately 4 nA/cm2 in both devices at
+40 V bias is comparable to that obtained in samples fabricated via ion-implantation doping.
Thus, this doping technique is identified as an acceptable alternative to implantation and
will be explored in detail in future studies.
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contact. MoOx/ITO are used in both devices as hole−selective contacts.

3.2. Leakage Current Tests on Doping Option 2

In order to verify the feasibility of performing a doping process inside the holes
fabricated via the DRIE process to form effective 3D p- and n-type electrodes, the two
doping options explained in the previous section were verified with the construction of two
types of prototypes: vertical diodes and lateral diodes in a planar configuration, obtained
from the deposition of a layer of 10 µm of a-Si:H on a heavily doped p-type c-Si substrate
(300 µm thickness).

Vertical diodes, shown in Figure 5, used the p-type c-Si silicon substrate as the p-type
biasing electrode and the n-type electrode was obtained via ion implantation of phosphor
ions. Diodes with several geometries were produced, namely, single diodes, 2 × 3 diode
arrays, 2 × 10 diode arrays, and strip detectors.
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Figure 5. Vertical diode configurations: (a) single diode of 1.25 × 1.25 mm2, (b) 2 × 3 diode array, (c) 2 × 10 diode array,
and (d) 8-strip device.

Figure 6 shows an I/V test on two samples of a 4 mm2 vertical diode. As shown in the
figure, the diode acted as a rectifying junction and the leakage current with 50V bias was
about 147 pA with a current density of 3.6 nA/cm2 on the best sample.
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Figure 6. (a) I/V plot on a vertical 4 mm2 diode where the rectifying behavior is apparent. (b) Reverse current versus bias
voltage on two detector samples at 50 V leakage currents are 147 and 496 pA for det 1 and det 2, respectively, corresponding
to current densities of 3.6 and 12.4 nA/cm2.

Figure 7 presents the various configurations and geometries of the lateral diode
structures. These lateral diodes were fabricated with the p-type and n-type electrodes
deposited on the surface of the a-Si:H layer and a thin (500 nm) layer of silicon oxide
separating this a-Si:H layer from the silicon substrate. The sensitive region of the lateral
diodes existed between the p- and n-type electrodes, which were doped with boron and
phosphorous, respectively.
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Figure 7. Lateral diode configurations: (a) strip detector, (b) comb and strip detectors (the comb is p-doped whereas the
strips are n-doped), (c) double comb detector, (d) circular device (the central electrode is n-type whereas the external
electrode is p-type, (e) 3 × 3 array of circular detectors.

In comparison to the I/V characteristics of the vertical diodes (Figure 6), the I/V
curves of the lateral diodes in Figure 8 displayed an even more pronounced rectifying
behavior and exceptionally low leakage current values, ranging from 339 pA (best small
detector) to 1030 pA (worst large detector).
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Figure 8. Leakage current vs. bias voltage in lateral detectors: (a) direct and reverse biasing, (b) reverse bias only.

4. Testing with X-ray

Since these devices were too thin for MIP signal detection, the radiation detection
capabilities of these diodes using X-rays was investigated. Figure 9a,b show the dose
linearity of the response of devices with different thicknesses of the substrate and two
different areas of the junction. The sensors were irradiated by a 6 MV medical linear
accelerator in standard conditions (source-to-surface distance of 100 cm, field size of
10 × 10 cm2, and an equivalent water depth in a plastic phantom of 1.5 cm). Despite the
sensors being configured in photovoltaic mode and the high degree of disorder of the
substrate material, the adopted configuration of a doped area above an intrinsic amorphous
layer allowed for the collection of the charge in proportion to the substrate thickness and
the area of the sensor as expected.
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Figure 9. (a) Response of pad sensors with different thicknesses to 6 MV photon irradiation; (a) area of the sensor 2 × 2 mm2;
(b) area of the sensor 5 × 5 mm2; (c) timing response of a 5 × 5 mm2 10 µm-thick sensor.

In Addition, the timing response of the sample with 10 µm-thick substrate and an
area of 5 × 5 mm2 (Figure 9c) showed a stable response during the irradiation (beam-ON)
within 2.2%, well within the expected fluctuations of the machine output [22].

Additional measurements were taken in order to determine the stabilization time after
turn-on and the linearity of x-ray flux measurements. Figure 10 presents the measurements
of the dark current versus time in a vertical diode under 25 V bias possessing a 10 µm
active layer thickness and a 2 × 2 mm2 active area. Figure 10a shows the measurement
on a 2700 s time scale after turn-on and Figure 10b shows the same data on a 200 s time
scale. These results shows that the measurement of the dark current became stable after
about 200–250 s, with current fluctuations observed after this time remaining in the order
of 80 pA.
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Figure 10. (a) Leakage current versus time in a 2700 s time scale, (b) leakage current versus time in a 200 s time scale.

Using the same device, we measured the linearity of response to X-rays using an X-ray
tube with a tungsten cathode biased at 10 kV. Figure 11 shows the diode current response
(after dark current subtraction) to irradiation versus the tube current for diode bias at 25 V
(Figure 11a), 50 V (Figure 11b), and 100 V (Figure 11c). The resulting diode responses at all
three applied biases displayed a good linearity of induced diode currents for X-ray tube
currents in the range of 0 to 200 µA, with excellent linearities observed for tube currents
above 30 µA.
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Figure 11. (a) Diode current versus X-ray tube current with diode biased at 25 V, (b) diode current versus X-ray tube current
with diode biased at 50 V, (c) diode current versus X-ray tube current with diode biased at 100 V. The measurement were
taken using a Keithley 2410C.

5. TCAD Simulation of a Full 3D Detector

Different geometrical configurations are being studied by means of device-level sim-
ulator Synopsys Sentaurus TCAD [23]. A proper description of the a-Si:H material has
been included in the material library of Sentaurus TCAD [24]. In this study, full column
electrodes, hybrid trench/column electrodes (mini trenches) and full trench electrodes
were considered (Figure 12). For sake of computational effort, a 3D slice of the whole
device depth was considered, looking at the electric field map distributions (steady-state
simulations) and at the current vs. time response to a particle hit (transient simulation) of
the different configurations.
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Figure 12. Simulated cells for the different 3D electrode configurations, from left to right: (a) full columns, (b) hybrid
trenches/columns, (c) full trenches. The units for the electric field are V/cm.

Depending on the electric field distribution at the particle hit position, different ampli-
tude and timing characteristics of the current response of the device can be appreciated.
A faster and higher-current response can be seen with trench configurations (full lines in
Figure 13) with respect to full column configurations (small dashed lines in Figure 13),
in particular for particle hits close to the read-out electrode (blue and green curves in
Figure 13). All currents in the graph were calculated for a 300 V bias.
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Figure 13. TCAD simulation results of the current pulse generated by an incident MIP. Current pulses
are shown for MIPs incident on 3D architectures possessing full-trench (solid lines), mini-trench
(large dashes), and full-column (small dashes) electrode configurations. Results are presented for
MIPs incident in three various positions: MIP1 (red), MIP2 (green), and MIP3 (blue).
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By integrating the time responses at the read-out electrode, the charge collection
properties of the different configurations at different biasing conditions can be evaluated.
This study enabled the choice of the optimal detector configuration.

6. Conclusions and Outlook

The fabrication of a 3D a-Si:H particle detector as described in this paper presents a
new detector technology based on the peculiar properties of this material. A preliminary
description of this fabrication process has already been given in another paper [25]. The
fabrication process has been described here in detail and the R&D process towards the
clarification of the feasibility of the detectors has been explained. The early results of
the first generation of prototypes have been presented, demonstrating the capability of
producing a working planar p-i-n diode with a quite low leakage current. We consider the
first phase of prototype development to be satisfactory and have begun the second phase.

Detectors will be also tested after fabrication with radioactive sources like 90Sr, elec-
tron accelerators, and collimated X-ray sources. After this, preliminary test detectors will
be irradiated with protons, neutrons, and gamma rays from a cobalt-60 source for the eval-
uation of displacement and ionization damage. A new test run with the above-mentioned
sources is foreseen.

In order to obtain charge collection efficiency maps of charge particles interacting
with the detector, a test at the Australian Nuclear and Science Technology Organization
(ANSTO—Lucas Heights—NSW, Australia) Ion Beam Induced Charge facility (IBIC) is also
foreseen. The IBIC technique will be used to measure the charge-collection efficiency of the
3D device under test (DUT) using a ~1 µm spot size-focused ion beam scanning the DUT
surface. The response of the DUT stimulated by the particle is correlated with the position
of the beam, allowing a map of the efficiency of the device to be created [26,27]. The IBIC
measurements will be performed using the heavy ion microprobe upon the ANTARES
10 MeV Tandem Accelerator. Various sources are available, including the 5.5 MeV helium
ion beam with a range of 28 µm in silicon, which has already been used successfully in
previous works [28].

The device will be also evaluated as a dosimeter using X-ray beams for imaging (keV
energy range) and therapeutic applications (MeV energy range). The presence of two
doping species allows for the use of these devices in photovoltaic mode (with no bias
applied across the contacts). This property is particularly important for dosimetry, where
a continuous current is read out from the device and dark currents limit the minimum
threshold of the detectable dose delivered. The prototype test structures fabricated within
the 3D-SiAm collaboration have demonstrated exceptionally low leakage currents and
stable, linear responses to delivered doses via X-ray irradiations. These promising results
verify the quality of the substrate, and the employed implantation methods are sufficient
to guarantee the required MV X-ray response sensitivity and reproducibility outlined in
the Code of Practice for dosimetric measurements [29].

The wide range of materials onto which a-Si:H can be deposited on opens up the
possibility of the direct deposition of the detector material onto the readout chip. This
feature has already been exploited in the past [2]. This detector technology, called TFA
(thin film on ASIC), gave the best results in terms of signal-to-noise ratio in a planar a-
Si:H detector for MIP detection (S/N ratio of 5 for an MIP). The deposition of a planar
detector on the present technology front-end chip may increase this signal-to-noise ratio to
higher values. Furthermore, a new technological frontier for the future may be the direct
deposition of a 3D a-Si:H detector on the readout chip. The usage of DRIE technology
for the fabrication of electrodes with two different lengths and selective implantation on
different finger-type electrodes will allow for the fabrication of a detector like the one
shown in Figure 14, where the n-type electrode reaches the readout pad of the readout
chip and the p-type electrode does not reach the readout chip. After ion implantation,
a passivation and a metallization layer to distribute the biasing contacts to the p-type
electrodes will be added.
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7. Patents 
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