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Abstract

In recent decades, major efforts to digitize historical documents led
to the creation of large machine readable corpora, including news-
papers, which are waiting to be processed and analyzed. News-
papers are a valuable historical source, notably because of the
plurality of subjects and points of view they cover; however their
heterogeneity due to their diachronic properties and their visual
richness makes them difficult to deal with. Certain recurring ele-
ments, such as tables, which are powerful layout objects because
of their ability to easily convey a large amount of information
through their logical visual arrangement, play a role in the diffi-
culty of processing them.

This thesis focuses on automatic table processing in large-scale
newspaper archives. Starting from a large corpus of Luxembour-
gish newspapers annotated with tables, we propose a statistical
exploration of this dataset as well as strategies to address its an-
notation inconsistencies and to automatically bootstrap a training
dataset for table classification. We also explore the ability of deep
learning methods to detect and semantically classify tables. The
performance of image segmentation models are compared in a se-
ries of experiments around their ability to learn under challenging
conditions, while classifiers based on different combinations of data
modalities are evaluated on the task of table classification.
Results show that visual models are able to detect tables by learn-
ing on an inconsistent ground truth, and that adding further modal-
ities increases classification performance.
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Chapter 1

Introduction

1.1 Context and motivation

For more than four centuries — the first newspaper published in the form we know today dates back
to 1605 (Weber, 2006) — newspapers have accompanied modern societies. Periodically and locally
published, generally massively printed and easily accessible, newspapers represent extremely valuable
historical sources for this time period. The diversity of their content, mostly news of all kinds, from
international to local events but also articles on every conceivable subjects, has remained stable over
the years. The same can not be said about their format and layouts, which changed a lot over time,
some even going fully online now. Collected and stored by public libraries and archives over the years,
newspapers have recently been subject to massive digitization, with the objective to make them more
accessible but also, and perhaps more importantly, easily processable.

Thanks to advances in document and information processing, notably Computer Vision (CV) and
Natural Language Processing (NLP), this mass of information is becoming more and more searchable
and exploitable. CV algorithms are used to convert visual facsimiles into text — which refers to the
task of Optical Character Recognition (OCR) — as well as to detect regions of interest to identify
e.g. articles, mastheads or photographs — the task of Optical Layout Recognition (OLR) — Outputs
of such processes can in turn be processed by NLP algorithms to e.g. extract and link entities of
interest or identify thematics. Put together in a well-thought graphical user interface, these tools
constitute a formidable arsenal at the disposal of the historians, allowing them to easily query a quan-
tity of information so important that several lifetimes would have been necessary with the usual means.

This Master’s thesis, in line with that digitization effort, is part of a larger project called impresso
- Media Monitoring of the Past ', which aims to semantically enrich 200 years of newspapers archives
by applying a series of NLP techniques. To date, this project has collected the archives of 76 newspa-
pers from Switzerland and Luxembourg dating back to 1738 and representing over 5,400,000 scanned
pages. The source material comes from Swiss and Luxembourg national libraries and corresponds
to the facsimiles and OCR (and sometimes OLR) outputs these libraries produced. Unfortunately,
further automatic processing of these sources is severely hampered by the sometimes poor quality of
the legacy OCR processes, which were often produced long ago with now outdated algorithms. In
particular, it is known that specific parts of newspapers suffered greatly from bad OCR due to their
unconventional design, often consisting of tables.

Newspaper layouts are a case in point of the difficulty of the document layout analysis task —
the process of detecting and categorizing the regions of interest in a scanned document —, which
OLR algorithms attempt to address. Indeed, the variety of elements that can be found in terms of
contents and layouts within a newspaper page is greater than in other types of document types (e.g.
novels), and when considering historical newspapers, their diachronic properties in terms of layout and
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language makes the task even harder. OLR and OCR are the first steps of any digitized newspaper
text processing pipeline, as is the case with impresso: NLP processes are applied afterwards, i.e. on
transcribed text pieces identified as belonging to the same segment or item (e.g. paragraphs of an
article). Beyond transcription and item segmentation, it may be worthwhile to leverage document
layout analysis algorithms to classify these segments, for two reasons. First, in order to tune NLP
approaches according to item types, or to filter out unwanted or noisy items in terms of OCR. Second,
it would allow faceted search as well as quantitative studies on newspaper items. Indeed, historians
would greatly benefit from a tool capable of providing a more refined classification of newspaper items.
Querying historical databases could not only be done at the text level but also at the layout level by
taking into account the type of items. This would be great because newspaper items could be queried
for what they are, providing an alternative to information retrieval by keywords alone and thus the
reliance on OCR. Quantitative analyses around specific item types could be undertaken, which means
that their evolution could be observed e.g. over time, or per journal.

1.2 Objective and proposition

The objective of this Master’s project is to develop and evaluate a pipeline for the accurate detec-
tion and fine-grained semantic classification of tables in newspapers using a large, already annotated
dataset. A table is a recurring item in newspapers, that typically contains factual data in an arrange-
ment of cells, making it a valuable layout object for its conciseness. Examples include weather reports,
stock exchange tables, or movie schedules, which often consist of a few words or names associated with
a number or a time. Tables present several challenges as they can have a wide variety of semantic
class due to their ubiquitous use, but also because their appearance can be very confusing as it may
change considerably across time and sources. Nonetheless, previous work (Ares Oliveira et al. (2018),
Barman et al. (2021)) has shown that deep learning architectures should be well-suited to meet these
objectives in the context of historical documents and newspapers, provided there is sufficient training
data of quality.

Due to unforeseen issues in the dataset to be used, where the consistency of its ground truth differed
from the original expectations — which typically occurs only once that the data is actually manipulated
—, some additional lines of research had to be considered. Indeed, an investigation of the extent of
the inconsistency in the dataset and whether it can be addressed became necessary, as well as an
evaluation of the capacity for deep learning models to detect and classify tables in newspapers in a
context of imperfect data.

In this project, we conducted a statistical exploration of the dataset used as the basis for all
subsequently constructed datasets, namely the collection of newspapers of the National Library of
Luxembourg, with the objectives to discover its main characteristics as well as to understand its in-
consistencies and limitations. With regard to table detection, we experimented with and evaluated
two image segmentation models to compare their performances when trained on datasets of different
consistencies. These datasets were constructed through manual annotations, and the application of a
filtering strategy based on the identification of problematic data points. For the task of table classi-
fication, we experimented and evaluated three classifiers based on different data modalities including
text, layout and image information. Their performance is assessed on a manually annotated dataset
as well as on a dataset that has been augmented by automatic labelling based on visual similarity.

The remainder of this thesis is organized as follows. Chapter 2 introduces the various sources used
for this thesis and provides an overview of the current state of research regarding table detection and
classification in document images. It also introduces some of the key concepts needed for the rest of the
thesis. Chapter 3 covers the construction of the many datasets necessary to address the problems of
table detection and classification. Chapter 4 introduces the models used, and outlines the methodology
followed for their evaluation. Chapter 5 presents the experiments performed and analyses the results
obtained. Finally, Chapter 6 summarizes the findings of this project, and proposes directions for
further research.



Chapter 2

Literature Review

This section introduces some of the latest deep learning (DL) approaches to document layout analysis.
First, we cover some of the recent breakthroughs in computer vision (CV) and natural language
processing (NLP), and how image and text modalities started to be combined; we then relate these
to the tasks of table detection and table classification. Finally, we present some of the datasets that
have been built over the years to address and evaluate document-related problems.

Document Layout Analysis Recent DL models for CV based on convolutional neural networks
(CNN), such as YOLO (Redmon, Divvala, et al., 2016), Faster R-CNN (Ren et al., 2016), DeepLab
(L.-C. Chen et al., 2017), Mask R-CNN (Z. Huang et al., 2019) or Cascade R-CNN (Cai et al., 2021),
have found use for document-related tasks. Some image segmentation models, like dhSegment (Ares
Oliveira et al., 2018), were even specifically developed for document images. dhSegment is based on
the deep residual ResNet architecture (He, X. Zhang, et al., 2015) and has notably shown good results
for historical documents. Actually, most of the visual models aimed at document images use one of
the aforementioned models as part of their architecture.

All these models aim at solving the task of image segmentation which corresponds to the partitioning of
images into regions of interest. Image segmentation methods are usually classified in three categories:
i) semantic segmentation, which refers to the task of predicting the semantic class each pixel of an
image belongs to (DeepLab and dhSegment are semantic image segmentation algorithms); ii) object
instance segmentation, which aims at detecting clusters of pixels belonging to the same semantic class
and at identifying each instance of the class separately (Mask R-CNN and YOLO are examples of
object instance image segmentation algorithms); and iii) panoptic segmentation, which consists of a
mixture of the above tasks, where a class and an instance of that class must be assigned to each pixel.
In terms of NLP, DL has also allowed great advances. One can mention the transformer architecture
(Vaswani et al., 2017), extensively used for language models such as GPT (Brown et al., 2020) or
BERT (Devlin et al., 2019) which are the basis of many other language models. To name a few,
RoBERTa (Liu et al., 2019) revises the pre-training of BERT, whereas LAMBERT (Garncarek et al.,
2021) uses layout features in addition to textual features. The latter is part of a growing category of
models that has shown state-of-the-art results on document processing tasks. In addition to textual
features in the form of word embeddings, these models uses layout features, i.e. word bounding box
coordinates obtained by Optical Character Recognition (OCR), as well as visual features, i.e. image
region of words. As an example, we can cite the family of models consisting of LayoutLM (Yiheng Xu,
Li, et al., 2019), LayoutLMv2 (Yang Xu et al., 2021) and LayoutXLM (Yiheng Xu, Lv, et al., 2021),
which incorporate both modalities. LayoutLMv2 improves on its predecessor by integrating visual
embeddings during pre-training, while LayoutXLM brings some robustness by training on multilingual
documents. In terms of multi-modal models specifically designed for document layout analysis, we can
also cite VSR (Visual, Semantics and Relations) (P. Zhang et al., 2021), which combines two CNNs
for visual and textual feature extraction by adaptively aggregating them before feeding them to a
graph-based relationship module which outputs the predictions. Similarly, Barman et al. (2021) — on
which this Master’s thesis builds upon — adds textual features to dhSegment and shows a performance
increase for historical newspaper layout analysis tasks.



Finally, in the context of document layout analysis, one should also mention LayoutParser by Shen et
al. (2021), a library which aims at increasing the accessibility and usability of some of the architectures
and models previously mentioned. It offers a model zoo with models pre-trained on document image
datasets, which can either be used as is or fine-tuned, i.e. re-trained on a generally smaller but more
specific dataset with a possibly different set of labels.

Table detection The survey of Hashmi et al. (2021) describes the current state of the research for
the task of table recognition using DL methods and defines it as the “structural segmentation and
parsing information of table cells”. It comes after the tasks of table detection and table structural
recognition, which are defined to as “detecting the tabular boundaries in terms of bounding boxes in
document images” and “defining the structure of table by analyzing information of row and column
layouts”. This thesis adopts these definitions, with some leeway for table detection: boundaries can
be defined not only on the basis of bounding boxes but also by segmentation masks, as tables in news-
papers sometimes spread on non-contiguous regions or are simply not rectangular making bounding
boxes a poor choice to capture such case.

Many CNN-based models have been developed to tackle the task of table detection in document im-
ages. The first models, such as Gilani et al. (2017) and Schreiber et al. (2017), are almost all based on
Faster R-CNN. Sun et al. (2019) proposed a refined Faster R-CNN-based model which not only detects
tables but also table corners. At the cost of additional detections required and extra post-processing
steps, this method yielded better results than the two previous models. YOLO-based models exist too.
Y. Huang et al. (2019) proposed a modification of YOLOv3 (Redmon and Farhadi, 2018) including
anchor optimization for document tables. Anchor is a concept used in object detection algorithms,
where regions are not generated by the network directly but rather from predicted offsets from the
defined anchors. Casado-Garcia et al. (2020) made a comparison of a series of vanilla models including
YOLO and Mask R-CNN which showed good results when these models are pre-trained on TableBank
(Li, Cui, et al., 2020) (a dataset of document images designed for table recognition) before being
fine-tuned and evaluated on more specific datasets. Prasad et al. (2020) have proposed what appears
to be one of the best performing models overall, a model built from a modified version of Cascade R-
CNN that incorporates architectural logic from Mask R-CNN and a version of HRNet aimed at object
detection (Wang et al., 2020). HRNet, for High-Resolution Network, maintains a high-resolution rep-
resentation of images through the process of extracting their features, ensuring a “semantically richer
and spatially more precise” representation. Note that all these table detection models are based on
object instance segmentation algorithms, and most of them are also able to perform table recognition.
Besides Lee et al., 2020 who propose a Faster R-CNN model trained for extracting visual contents
(including headlines, photographs, illustrations, maps, comics, editorial cartoons, and advertisements)
in historical newspapers, all of the above models have been trained and evaluated on public datasets.
These consist of contemporary, sometimes digital-born documents, and are commonly used for the
task of table detection and sometimes that of table recognition. A great overview of these datasets is
proposed in the aforementioned survey by Hashmi et al. (2021).

To conclude, the research around semantic segmentation models for table detection is slightly less
prolific. TableNet by Paliwal et al. (2019) is an end-to-end model, based on the CNN model VGG-19
(Simonyan et al., 2015), for table detection and recognition that creates masks for tables and columns
to then apply a rule-based strategy to detect rows. Another example is Kavasidis et al. (2018), who
propose a model aimed at detecting tables and charts using DL to detect salient regions from document
images before they go through a conditional random field.

Table classification To the best of our knowledge, very little work has been done on table classifi-
cation. We can only cite Ghasemi-Gol et al. (2018) who create a vector space model to represent the
semantic and syntactic structures of web tables in order to classify them by types (relational tables,
matrix tables, entity tables, etc.) using their HTML code. Since we are trying to classify tables
according to their semantics (and not their structure) using OCRized document images, our problem
is actually closer to the more classical tasks of image classification and textual classification for which
a huge body of literature exists. In fact, the aforementioned CV and NLP models are perfectly fit to



tackle these tasks.

Datasets It is well known that the performance of DL models depends on both the quality and
quantity of available data. In recent years, massive open-source datasets have emerged to address this
need, such as ImageNet (Deng et al., 2009) and COCO (Lin, Maire, et al., 2014), both consisting of
millions of annotated natural images. Some massive domain-specific datasets have also been built; for
instance, PubLayNet (Zhong, Tang, et al., 2019) and DocBank (Li, Yiheng Xu, et al., 2020) gather
hundreds of thousands of recent document images annotated only by regions such as title, list or table.
Because of the variety of document types, even more specific datasets were created. To name a few
in line with the context of this work, the Newspaper Navigator Dataset (Lee et al., 2020) consists
of over 16 million automatically annotated historical newspaper pages, whereas PubTabNet (Zhong,
ShafieiBavani, et al., 2020), GLOSAT (Ziomek et al., 2021), ICDAR 2013 (Gobel et al., 2013), and
ICDAR 2019 (Gao et al., 2019) contain images of both recent and historical documents where only
tables are tagged. Unfortunately, there are not many historical documents in these datasets, and they
are not from newspapers but rather from, e.g., historical logbooks or record books, that are often
hand-drawn.



Chapter 3

Datasets Construction

One of the main challenges of this project is the construction of datasets capable of representing as
faithfully as possible the reality of tables in newspapers. This chapter first focuses on the definition
of tables in 3.1 to make the reader aware of the difficulty of defining this layout element. It then
explains where the data used in this project comes from in 3.2. Subsequently, in 3.3, it delves into the
data itself by commenting on its annotations, deriving meaningful statistics and visualizations, and
expanding on the creation of the datasets used in the experiments. Finally, a summary of the datasets
constructed for the experiments is given in 3.4.

3.1 On the definition of tables

This section is meant to serve as an entry point to the layout object that is a table, and in particular
through the prism of newspapers. Defining what are tables or tabular data is actually not a trivial
decision. Indeed, most of the popular definitions of table only describe them as a list or an arrange-
ment of data in a system of rows and columns. There is no obvious formal definition and therefore a
lot of room is left for interpretation. How many rows and how many columns does a table need to be
considered as such, does the title or header of a table is part of the said table, do rows and/or columns
delimiters need to be visually present, do they need to be aligned? Many questions arise when one is
asked to define a table and many more follow when asked to annotate tables in newspapers.

Figure 3.1 gathers examples of tables encountered during the realisation of this project and il-
lustrate their diversity, with complete, “classical” tables (e.g. (d) or (j)), some having complex ar-
rangements (h), and others resembling more to lists (b). In a document that provides guidelines for
annotating tables in newspapers — to which we will return later — the National Library of Luxembourg
defines tables as “data structures composed of a series of data of the same type and have a tabular
layout where the number of columns is fixed from the start. Tables can have a title and they are used
inside section or articles.”. In a survey on table recognition, Zanibbi et al., 2004 say tables serve to
“visualize indexing schemes for relations” where “the sets of a relation underlying a table are called
domains or dimensions. A relation may be presented in many different ways in a table. Dimensions
may be laid out in different row and column arrangements, repeated, or ordered in various ways. The
arrangement of dimensions in a table affects which data are most easily accessed and compared.”.

The presence of columns seem to be one of the most important characteristics a table must fulfill
to be considered as such. It also seems to be important to have data that makes sense together.
Examples like (f) may also raise questions too, even though most people would agree that it is not
a table, a row and column arrangement can be guessed at in some way, with the number of columns
changing between rows. (b) could be seen as a table with one row and several columns, which is
spread on multiple lines because of the layout constraint of the medium. It is easy to find ways to
fit the description of tables to any ambiguous cases. In fact, it seems that a formal definition is too
difficult to achieve, as any arrangement of data could be considered a table. As we will see later, it
is probably better to settle on a more restrictive definition, e.g., by setting a minimum number of



columns and rows or by requiring specific visual delimiters, which corresponds to the tasks at hand.
It seems complicated, for example, to expect a visual model to understand that say examples (f) and
(n) are both tables, since their visual features largely differ.

3.2 Data sources

Two different sources were explored to build datasets for table detection and table classification.

3.2.1 Newspaper dataset of the National Library of Luxembourg

The National Library of Luxembourg, a partner in the impresso project, has granted access to its
scanned collection of newspapers, which has the particularity of containing segmented portions of
the newspaper pages annotated as tables. The data consists of high-resolution scans of Luxembour-
gish newspapers pages accompanied by rectangular pixel coordinates delineating the locations of the
different layout elements on these scans. Segmentation was obtained by applying Optical Layout
Recognition (OLR) methods. In addition, an Optical Character Recognition (OCR) was performed
and the output is accessible as text tokens with their associated bounding box coordinates.
Originally, the dataset was constructed semi-automatically, i.e., tables were detected automatically
and then a sample was checked manually. If the number of errors in the sample was within estab-
lished limits, the overall segmentation was considered correct. Some details on this process are given
on a document setting the technical requirements available online.? In summary, five out of every
thousand issues were sampled and the maximum number of errors (categorized as blocking, minor or
major errors) allowed was set across all types of newspaper items combined. No blocking errors were
tolerated, and a maximum of one major and four minor errors were allowed per sixteen pages in a
single issue. An exhaustive list of what is considered an error is given in the technical requirements
of the library. Unfortunately, this means that it is not possible to draw any solid conclusions about
the quality of table annotations of tables in particular. Nevertheless, because of the high standards
set by the library, this data provided a seemingly perfect starting point for creating a representative
dataset of newspaper tables.

As mentioned, OLR was applied to all newspaper pages to identify their constituent elements. These
elements are often associated with an instance of a larger layout object. Figure 3.2a gives an idea of
the original segmentation provided by OLR where each color corresponds to one of these instances.
For simplicity, we will henceforth refer to these instances as articles or journal items. As can be seen,
several bounding boxes can be associated with a single article. Note also that some parts of the page
(e.g. the masthead) have not been segmented. Figure 3.2b shows only the segmentation of articles
labelled as table. Note how an instance of a table can also be split in multiple bounding boxes. This
is because the titles as well as the sources of the data used in the table (as in the Figure) are often
segmented separately from the table itself. The overall segmentation should therefore be taken with
a grain of salt, as it may not exactly represent the original segmentation made by the journal editors.

Statistical exploration

The dataset of the National Library of Luxembourg consists of 58,011 articles labelled as tables dis-
tributed across 28,497 pages, themselves spread over 22,735 different newspaper issues. Figure 3.3a
shows the distribution of these 22,375 issues with annotated tables over time, relative to the full
impresso Luxembourg newspaper corpus, which contains 65,515 different issues. This highlights the
skewed temporal distribution of the table dataset, where issues appearing before circa 1875 are over-
represented. This could generate some bias towards tables that appear only during this period. A
similar distribution is observed when comparing the distribution over time of the pages of the table
dataset vs. of the full Luxembourg impresso corpus (352,137 pages) (Figure 3.3b), and the distribution
of tables vs. of the 2,372,990 articles (Figure 3.3c). It is difficult to draw a conclusion as to whether
or not the use of tables in newspapers was more prominent towards the years 1855-1875. However,

2https://data.bnl.lu/data/historical-newspapers/
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Figure 3.1: A panel of tables encountered during the development of the project.
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(a) All types of articles (from Luxemburger Zeitung (b) Tables only (from d’Letzeburger Land
(10.03.1858), page 1) (15.05.1987), page 14)

Figure 3.2: Original segmentation of newspaper pages coming from the collection of the National
Library of Luxembourg.
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under the assumption that the number of newspaper issues containing at least one table is stable over
the years, Figure 3.3a might indicate that the automatic detection of tables by OLR did not perform
equivalently across issues and/or time.

In order to get additional insights on the legacy OLR from the National Library of Luxembourg for

the case of tables, Figure 3.3d shows the mean and standard deviation of the pixel area (normalized
by the page area) tables take in pages that contain at least one table. We see that the average area
occupied by tables in pages appears to increase slightly over time. Many interpretations are possible
at this point. It could be due to a change in the layout of newspapers, which evolved from very
condensed (possibly due to printing costs) to more spaced out through time. It could also point
towards inconsistent annotation: assuming that the number of tables is constant over time, it is
possible that tables in the later years actually contain multiple tables, thus increasing their average
area and diminishing their numbers (as seen in Figure 3.3c).
Finally, Figure 3.4a shows the number of pages per title that contain tables, while Figure 3.4b compares
these values to the total number of pages per journal. Some titles, such as the Luzemburger Wort
(luxwort), have a lot of pages with tables (24,159) but these pages amount only to a small percentage
(2.18%) of their total pages, while other titles, such as the Luzemburger Zeitung (luxzeit1858), are in
the opposite situation, i.e., they have a large percentage of their pages that contain tables (13.14%) but
these only amount to a low total number (1,623). This discrepancy in percentages could be explained
by the types of articles (perhaps more data-oriented) or the layout of the journal, which makes it
easier during OLR to detect the tables.

Dataset naming In order to facilitate writing and overall understanding, the dataset consisting of
all the pages that make up the National Library of Luxembourg collection will now be referred to as
NLL-full. The subset of NLL-full consisting solely of pages containing articles labelled as tables
will be referred to as NLL.

3.2.2 Raphaél Barman’s Master project

Barman (2019) is a Master project previously conducted at the EPFL-DHLAB that explored the
ability of a visual model integrating textual clues to segment certain classes of articles in newspapers
archives. During this project, a dataset had to be built with manually annotated and tagged articles.
The tag set used included stock exchange tables that fit exactly what we were looking for. This dataset
seemed to be an excellent way to quickly increase the amount of relevant data, while also providing
some diversity. Indeed, the dataset was constructed by sampling only from Swiss-French newspapers,
which should differ in some way from Luxembourgish newspapers in terms of layout and language.
The sampling was done on three journals, the Journal de Genéve (JDG), L’Impartial (IMP) and
the Gazette de Lausanne (GDL), by randomly taking three issues every 3 or 5 years depending on
the journal. Figures 3.5a and 3.5b show some examples from this dataset. The tables have been
annotated at the pixel level, which means that an instance of a table can contain multiple tables.
Finally, it should be noted that due to the smallness of the dataset, it was quick to verify whether
every annotated stock exchange tables were indeed tables: surprisingly, 24 had to be removed. We
should point out that it is possible that some tables, which were not stock exchange tables, were not
annotated, making this dataset slightly inconsistent.

Statistical exploration

In total, the dataset contains 800 tables spread over 474 pages from 3 different titles, themselves
spread over 311 issues. Figure 3.6 shows the distribution of pages over time for each title. JDG is the
most prominent journal because it was sampled every 3 years while the other two were sampled every
5 years. We can notice that stock exchange tables seem to be more numerous between circa 1985 to
1995, with a drop between circa 1915 and 1975.
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Figure 3.6: Distribution over time of the number of pages containing stock exchange tables coming
from Barman (2019).

Dataset naming From now on, the dataset containing these 474 pages with stock tables will be
referred to as RB.

3.3 Annotation processes

The many annotation processes of NLL undertaken are detailed here in the order they were conducted.
Initially, a subset had to be classified in order to tackle the task of table classification. After this
initial annotation, a process to increase the size of the already labelled dataset by automatically
tagging tables based on the previous manual annotation was explored. After some initial experiments,
problems within NLL were revealed and needed to be investigated. The creation of a dataset that
attempts to attenuate them based on a statistical exploration is explained, as well as the motivations
behind the creation of a final dataset with properly annotated ground truth.

3.3.1 Manual classification of tables

Since one of the goal of the project was to classify tables under finer grained semantic classes, it was
decided to dig deeper into NLL through a manual pass in order to tag some tables and identify a
typology that could cover all types of tables found in newspapers across time.

Annotation tool

In order to alleviate the traditional pains that accompany any annotation process, a web application
was developed as a support tool to efficiently browse datasets consistent with this project’s case study,
i.e., images (tables in this case) cropped out from larger images (newspaper pages in this case). The
tool allows the user to increase their tagset as they go through the dataset and discovers new classes.
In Figure 3.7, the application interface can be seen. The left-hand side displays the complete list of
tables that can be browsed by category (tagged/untagged/tagged by class), while on the right-hand
side are displayed the images similar to the image on the left.

Sometimes the legacy segmentations of NLL poorly frame the tables to be tagged; the annotator
will then need additional contextual clues to correctly classify the table. In such cases, it becomes
necessary to zoom out and look at the entire newspaper page, which is easily achievable with this tool,
thus ensuring a qualitative annotation process. In addition, the tool also allows the user to quickly
query images that resemble the one they are looking at, provided the dataset meets the infrastructural
requirements. This aspect of the tool is discussed in more detail in 3.3.2.
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Figure 3.7: A view of the web application developed to support the annotation processes undertaken
during the project.

Annotation process

Using the annotation tool, we needed to create a typology robust enough that it could efficiently sum-
marize NLL. A total of 3,787 tables were manually classified, which amounts to 6.53% of the tables in
NLL. The annotation was done in three different phases. In the first phase, 525 tables were sampled
completely at random. We noticed a lack of visual dissimilarity between tables, likely due the skewed
temporal distribution (a characteristic problem of NLL raised before), which motivated a revision
of the annotation process. Indeed, since most of the sampled tables came from the over-represented
periods, many of them were extremely similar, if not identical, tables. Newspapers often use the same
tables across multiple issues for recurring topics, such as transport schedules or stock exchanges. An-
other reason for the decision to revise the process was the need for a robust typology over several years.
Indeed, one could hardly come up with a class for radio or television programs if only tables prior to
1900 are sampled. To overcome this problem, and thus better capture the diachronic properties of the
domain under study, both visually and semantically, 491 tables were sampled according to the year
they originate from, with a probability inversely proportional to the number of tables coming from
that year in the dataset. In short, each year had the same probability of being drawn.

Established typology Through this annotation process, 12 classes were identified. For each of
them an example from Figure 3.1 is given as well as the number of items classified:
e transport schedule: train and bus timetables (2,301 items, see example (0));
e sport results: tables that contain sport results, or sport rankings (403 items, see example (e));
e stock: tables that contain data related to the stock markets (379 items, see examples (g) and
(i));
e food prices: tables that contain the daily food prices, or food advertisements (177 items, see
examples (a), (b) and (d));

e currency rates: tables that contain data related to the current currency rates (65 items, see
example (1));

e clection: tables summarizing electoral results (49 items, see example (k));

e weather: tables that contain weather data (29 items, see example (c));
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e lotto: tables that contain the results of the lotto (8 items, see example (n));

e cinema: movie timetables (4 items, see example (m));

e radio: radio programs (3 items, see example (j));

e miscellaneous: any tables that do not fit one of the above classes (365 items, see example (h));

e not a table: tables that were wrongly labelled as such (4 items, see example (f)).
Each class needed to contain at least 2 tables to be kept. Note that some classes are semantically
very close, and thus were merged later when fed to models. However, at this point, they were not
and it is only after a statistical analysis that they were merged. During this annotation process, some
inconsistencies have started to be noticed. Indeed, some tables are much larger than others because

they are sometimes composed of several smaller tables (see example (0)), or they incorporate some of
their surrounding (see example (k)).

transport schedule
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23 food prices
2 weather
19 & = |otto
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Figure 3.8: Evolution of the number of pages per class for NLL-tag.

Statistical exploration

Figures 3.11a and 3.11b give an idea of the preponderance of each class of tables by looking at their
size and at the total pixel area they covered (normalized by the page areas) respectively. It is clear
that there is a strong class imbalance, with classes such as transport schedules or stock that are large
both in terms of size and surface.

Figure 3.9 shows the size of the pixel area covered by the tables of each class. Looking at stock
tables, they represent only 10% of the total number of tables but cover about 20% of the total pixel
area covered by tables. In Figure 3.8, for each class, the number of pages containing at least one
table of said class is plotted over time to get an idea of how these labels has evolved. Note how the
presence of transport schedule and food price tables disappears over time. Finally, Figure 3.10 shows
the percentage of pages where tables of different classes can be found. For example, currency rates
tables are found 80% of the time on the same page as a stock table, proving their close semantics.

Dataset naming From now on, this dataset composed of 3,787 classified tables will be referred to
as NLL-tag.

3.3.2 Automatic classification of tables

In order to increase the size of NLL-tag with little human effort, an automatic annotation process
based on visual similarity was developed. The core idea was to classify all unlabelled tables that
are visually similar enough to tables already labelled with the same label. In doing so, the number
of tagged tables increased from 3,787 to 8,535. An important point to note when applying this
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Figure 3.11: Proportions of table counts and total pixel areas in NLL-tag and NLL-auto by class.
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automation is that, even though the number of tagged tables increases dramatically, the number of
pages that have all of their tables classified hardly moves at all. Therefore, one should not use this
increased dataset by feeding visual models with full pages and expect them to perform efficiently, as
the ground truth will be missing a lot of annotations. However, models that only look at tables that
have already been segmented can use it. Note that the idea of increasing the size of the dataset using
visual similarity may seem a bit odd since it should not bring much diversity to the dataset, but this
problem is mitigated if the data is then used for its textual properties for example. Since OCR has
been performed on NLL-full, this automatic augmentation makes a lot of sense if this data modality
is used for training classifiers.

Similarity measurement

The visual similarity comparison was performed using a SOLR? — an open-source enterprise-search
platform used in impresso — plugin, developed by B. Seguin following his work on visual similarity
(Seguin, 2018), that allows the quick comparison of images whose features vectors have been computed
by one of these three visual models: VGG16 (Simonyan et al., 2015), Inception-ResNet-v2 (Szegedy
et al., 2016) and ResNet-50 (He, X. Zhang, et al., 2015). The plugin produces a similarity score
between 0 and 1 for two images. Two tables were labelled similarly if the following conditions were
met: the similarity scores given by the three models were equal to or greater than 0.99, they came from
the same titles, there were less than 5 years between their publication. This extremely conservative
strategy nevertheless allowed us to increase the dataset size by more than twofold, while generating
no errors on a subset of 500 manually checked tables.

Statistical exploration

Figures 3.11c and 3.11d show the distribution of the number of tables per class and the total pixel
areas covered per class. When put to comparison with NLL-auto (Figures 3.11a and 3.11b), it can
be observed that the class imbalance has increased. This may mean that the classes whose size has
increased the most are the most visually stable in NLL. As one might expect, the transport schedules
and the stock tables increased the most, as they are often reused as is in sequential newspaper issues.

Dataset naming From now on, the dataset composed of 8,535 manually and automatically classified
tables will be referred to as NLL-auto.

Final typology

Since the under-represented classes did not sufficiently increase in size using automatic tagging, it was
decided to keep as part of the final typology the six following classes: transport schedule, sport results,
food prices, exchange, weather, and miscellaneous. The stock and currency rate tables were merged
into the exchange class partly as a result of the observation made in Figure 3.10, where they tend
to always be located close to one another but also because they are semantically close. Every other
classes, except weather, were added to the miscellaneous class. weather is a very small class whose
tables represent only 0.7% of the size of NLL-tag, however, since its semantics is quite unique, it has
not been merged as it would be interesting to see if the models can learn from so few examples.

3.3.3 Investigation of the legacy annotations

After running a first series of experiments on the datasets described before, some issues problems
residing in the legacy annotations became apparent. When examining the worst predictions made by
the visual models, some tables were detected correctly but were not found in the ground truth. NLL,
which was initially considered a gold standard began to reveal some of its weaknesses. In order to
address these, an investigation was conducted to assess the recurrence of these problems and potential
ways to mitigate them. Two annotators were asked to examine 333 newspapers pages each, and to

Shttps:/ /solr.apache.org/
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annotate and classify potentially missing tables. In addition to be classified according to the reduced
tag set described earlier, missing tables were to be classified into two additional classes:

e (A) a table is not annotated and is in the vicinity of other tables with which it shares the same
semantic class;

e (B) a table is not annotated and is alone, i.e., there are no annotated tables next to it that share
its semantic class.

The annotations were made using VGG annotator Dutta et al., 2019, an open-source web application
that allows to easily draw geometrical shapes delimiting annotations on images.

Discrepancies in the original annotations

The main problem that the first experiments revealed was that a large number of tables were missing in
the original annotations. Even worse, very similar tables that appear regularly, such as transportation
schedules, were sometimes annotated and sometimes not. As can be seen in Figures 3.12a and 3.12b
which show two issues of the same title separated by only a few days, the same tables coming from the
top row are inconsistently annotated. In this context, it becomes difficult to expect a model to learn
what is a table when it is sometimes annotated as such and sometimes as background. Figures 3.12c
and 3.12d show some of the other issues that arose during the annotation process. The tables are
inconsistently annotated with respect to their titles, which are not always included. The same is true
for the sources of the table, sometimes listed at its bottom. Another important point to note is that
sometimes an instance of an annotated table may actually contain several tables, while sometimes for
a similar case, each table is annotated as its own instance. Depending on the algorithms used, this
inconsistency in the annotations, sometimes made at the pixel level and sometimes at the instance
level, can become a problem. To conclude, this annotation process generated some discord later on
between the annotators, as their definition of what a table is did not always align. As explained in
3.1, the definition of tables is not obvious and although no tables were deleted in this process, it did
generate discussions that led to more precise guidelines for the next annotation process.

Survey statistics

At this point, the guidelines for annotating were not properly set and although both annotators
seemed to prefer to annotate all the tables they encountered as different instances, they did not do so
consistently. Therefore, the following statistics should be taken with a grain of salt, although they are
sufficient to give an idea of the recurrence of the problems. Figure 3.13a shows the number of missing
tables found, belonging to class A or B. On average, there are 1.02 missing tables per page, which
seems like a large number, but looking at Figure 3.13c, it appears that the problem is mainly due to
missing transport schedule tables. Now, if we look at Figures 3.16a and 3.16¢ which respectively show
the average pixel area in percentage tables take in pages that contain at least one table per title, and
the same statistics but only for the missing tables, it is clear that some titles are much more affected
than others. Figure 3.13e, which shows the average number of missing tables per title, confirms that
there is no strong correlation between the average pixel area of missing tables and the number of
missing tables. Finally, we investigated whether or not these missing tables are related to certain time
periods or page numbers; Figures 3.14a and 3.14b explore the former while Figures 3.15a and 3.15b
explore the latter. Each point on these scatter plots represents a page of a journal. The latter two
plots illustrate the case of a single title (L’Union), but similar tables were generated for each title to
identify and target the most problematic pages. Notice how page 1 of L’Union appears to be missing
tables a hundred percent of the time.

Assessment of the estimated quality of the newly created dataset

Using the above statistics, problematic clusters were identified and filtered out. As noted, some
recurring page numbers from specific journals and time periods had large amounts of missing tables or
large pixel areas of missing tables, and thus were filtered out from the manually re-annotated sample
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(a) L’Union (13.06.1862), page 1 (b) L’Union (23.07.1862), page 1

(¢) Luzemburger Wort (29.09.1865), page 4 (d) Luzemburger Wort (10.12.1865), page 4

Figure 3.12: Some inconsistencies in the ground truths of NLL. What is considered as background is
greyed-out, to better see what is considered as table.
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Problematic clusters of pages are circled in red. On both Figures, we identified similar clusters in L’Union:

the page 1 for the years 1862-1868 and the page 4 for the years 1869-1871 seems to always be missing tables

on the basis of our investigation. Therefore, we removed every first and fourth pages of L’Union, during the
mentioned time periods, in NLL-filtered.
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of NLL. Figures 3.16b and 3.16d show how the average total table pixel area remained relatively
stable while the average total pixel area of the missing tables decreased after filtering. Indeed, the
total average area occupied by the tables only decreased from 9.21% to 6.86%, a reduction of 25.5%,
while the average area of the missing tables dropped from 2.42% to 0.81%, a reduction of 66.5%. In
a way, this means that about 2.35% of the training examples were lost, but in return 1.61% of the
mislabelled (as background) training examples were removed. Since the amount of training data is
still very large overall, this decrease is not problematic. However, it is a good idea to remove any
training data that might corrupt the learning of the models. Figure 3.13b shows how the average
number of missing tables decreased, with an average of about 0.32 missing table per page compared
to 1.02 originally. Figures 3.13d and 3.13f show the same statistic but by classes of tables, and by
journals.

Creation of a filtered-out dataset

Since the filtering strategy used on the manually annotated subset seemed to bear its fruits, it was
applied on NLL in order to re-do already carried out experiments and see if better results were
obtained.

Dataset naming This new dataset, now containing 28,098 tables and 16,988 pages, will be referred
to as NLL-filtered.

3.3.4 Creation of an error-free ground truth

After discovering the inherent flaws in the main data source, it was decided to create a small dataset
with a manually revised ground truth in order to properly assess the performance of the different
models. This supposedly error-free ground truth was performed by three annotators, each annotating
500 different pages. The annotation guidelines, clearer this time, were the followings:

e Separate large tables that contain smaller tables (usually only pertain to transport schedules).

e Do not embed the titles of the table but do embed the headers for all tables. The only exception
is if there is a pattern in a journal where the titles are always included, try to conform to it.

e Do not annotate tables that look too much like lists. Indeed, it is common to find tables in the
form of lists of items, where each line is a sentence that follows the same logic but with quotation
marks on the lines below to repeat the sentences.

e Remove table annotations that are not on table items.

Even with clearer guidelines, many ambiguous cases were encountered and discussion had to take
place to decide how to deal with them. Some examples of these special cases are shown in Figure 3.17.
In Figure 3.18, the extent to which some of the legacy annotations were problematic is shown.

Dataset naming This dataset comprised of 1,500 pages will, from now on, be referred to as NLL-
revised.

3.4 Summary

We provide a summary of all the datasets created throughout this project in Table 3.1. Each dataset
is summarized by their number of table annotations (by class), the number of pages they contain and
the number of issues they cover. In Figure 3.19, we recapitulate how each of these datasets (but RB)
were constructed. Note that the size of the datasets may differ slightly from what was reported in
the previous sections, because during their creation and subsequent investigations, some mislabelled
tables were removed.
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Figure 3.17: Examples of edge cases encountered during manual annotation of tables.

The item at the top as well as the one at the bottom were considered tables, while the three items in the
middle were not.

(a) Legacy ground truth (b) Revised ground truth

Figure 3.18: Comparison between the original annotations provided by the National Library of Lux-
embourg, and the revised annotations.

These two ground truths show the difference between what is annotated as background and as table.
Nevertheless, the segmentation of tables was done at the instance level (each table was annotated separately).
These instances can be easily guessed in these two examples.
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Figure 3.19: Recap of the creation of NLL-tag, NLL-auto, NLL-filtered and NLL-revised.

NLL-full corresponds to the impresso Luxembourg corpus, from which NLL was created by taking all pages
containing a table. From NLL was created NLL-filtered by applying a filtering strategy to discard pages
with an estimated high number of missing tables, NLL-tag by manually tagging some tables, and
NLL-revised by revising a subset of it by fixing its annotations. NLL-auto was created by querying NLL
to automatically find tables visually similar to those in NLL-tag.

Dataset name Articles Pages | Issues
NLL tables 58,007 | 28,496 | 22,734
exchange 444 312 312
food prices 177 143 143
miscellaneous 429 237 228
NLL-tag sport results 403 41 41
transport schedules 2,301 408 407
weather 29 28 28
tables 3,783 984 972
exchange 1,123 874 875
food prices 616 569 569
miscellaneous 461 267 258
NLL-auto sport results 428 58 58
transport schedules 5,868 | 3062 3,060
weather 35 34 34
tables 8,531 | 4616 | 4,565
NLL-filtered || tables 28,094 | 16,987 | 15,968
NLL-revised || tables 5,445 | 1,500 1,479
RB | tables 800 | 474 | 311

Table 3.1: Number of tables, pages and issues per datasets.

29



Chapter 4

Models and Evaluation

This chapter expands on two of the main goals of the project: table detection in 4.1 and table
classification in 4.2. Each section reviews the models explored to meet these intents and the evaluation
of the proposed solutions.

4.1 Table detection

The task of table detection as addressed in this project is to detect and segment tables in newspapers
pages. More formally, given an image of a scan of a newspaper page, the goal is to produce one
or many segmentation masks that contain tables. Two image segmentation methods were used and
compared to get a better idea of how best tackle the table detection problem. Even though these
methods follow different image segmentation paradigms, they are both able to provide satisfactory
solutions.

4.1.1 dhSegment

dhSegment (Ares Oliveira et al., 2018) is a semantic image segmentation algorithm developed at the
EPFL-DHLAB, which aims at providing a generic tool for historical document processing. Based
on a U-Net architecture (Ronneberger et al., 2015), but incorporating a residual network as the
encoder, it provides pixel-wise probability maps for each class to be detected. This model has already
proven its effectiveness, especially in Barman et al. (2021), where it has shown encouraging results
on newspaper pages. Note that all experiments were actually performed using dhSegment-torch?, a
PyTorch reimplementation of the original model.

Semantic image segmentation We recall the definition of semantic image segmentation in the
context of table detection. Semantic segmentation refers to the task of predicting the semantic class
to which each pixel in an image belongs. In the table recognition use case, each pixel of the image
must be defined as belonging either to the background or to a table. A segmentation mask for tables
can then be produced.

One of the advantages of semantic segmentation is that the training material can be annotated at
a coarse granularity: tables do not need to be individually annotated since they do not need to be
individually detected. However, this makes the task of table classification very difficult, because it
has to deal with a segmentation mask that may cover several tables from different classes, even when
considering the different connected components (separate clusters of pixels) of the mask separately.

Model In this project, the architecture of dhSegment uses a ResNet-50 (He, X. Zhang, et al.,
2015) pre-trained on the ImageNet dataset (Deng et al., 2009) as its encoder. It uses the default
implementation of dhSegment as described in the original paper, which limits the number of features
channels in the expanding path to 512 for memory reasons.

“https://github.com/dhlab-epfl/dhSegment-torch
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(a) Ground truth (b) Probability map for tables (c) Prediction map

Figure 4.1: Inference process of dhSegment.

Training The training hyper-parameters are detailed later for each experiment, as they vary slightly.
However, what remains constant is the use of the mean intersection over union (mloU) metric (see
Section 4.1.3) to guide the training of the network.

Inference For the task of table detection, the network is asked to output two probability maps
that indicate the likeliness each pixel is part of the background or part of a table. A prediction map
is then created from these two probability maps, where each pixel is assigned to the most probable
class. Finally, the connected components that represent less than 0.5% of the page are removed, in
agreement with the methodology proposed in Barman, 2019. In Figure 4.1, a complete example is
shown where the leftmost image corresponds to a ground truth, with tables annotated in a lighter
colour; the middle image shows the probability map for the table class; and the rightmost image shows
the final prediction. The spot on the left of the probability map is not part of the final prediction
because the network has determined it as more likely to be part of the background.

4.1.2 Mask R-CNN

Mask R-CNN (He, Gkioxari, et al., 2018) is an object instance image segmentation algorithm, originally
developed at Facebook AI Research and commonly used for its versatility, which has shown good results
for document image analysis. Built after the Faster R-CNN architecture (Ren et al., 2016), it follows
the same two-stage procedure with slight improvements. First, feature maps are generated for the
image using a feature extractor network, that is referred as the backbone. These are passed through
a region proposal network (RPN) that detects regions of interest (Rol). Second, visual features are
extracted and pooled from the image feature maps for each Rol using an operation called RolAlign.
RolAlign ensures that the extracted sub-maps for each Rol have the same dimensions and are not
affected by quantization problems induced by dimension changes. The feature sub-maps of each Rol
finally pass through the head of the backbone and an added branch for mask segmentation. A label,
bounding box coordinates and a segmentation mask (at the pixel level) within the bounding box are
finally output for each Rol. Note that ResNet models (He, X. Zhang, et al., 2015) are generally the
preferred choice for the backbone, and that its head refers to the final layers used for prediction, which
will differ for each model.

The implementation of Mask R-CNN used in this project comes from the MMDetection library (K.
Chen et al., 2019), an open-source toolbox for image detection tasks.
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Object instance image segmentation We recall the definition of object instance image segmenta-
tion and complete it according to our specific case. Object instance segmentation consists in detecting
clusters of pixels belonging to the same semantic class while identifying each instance of that class
separately. It therefore requires fine-grained ground truth annotations, as each table must be distinctly
annotated for models to understand they are different instances of the same semantic class. It differs
from semantic image segmentation in that regard.

When talking about object instance image detection, as opposed to object instance image segmen-
tation, the goal is only to detect objects (with a bounding box) and not to actually segment them.
Because these tasks are so popular, they have their share of conventional formats associated with them
for annotations. COCO (Lin, Maire, et al., 2014) being one of them, it was used in this project and
is briefly described below.

COCO Common Objects in Context (COCO) is originally a dataset compiled by Microsoft that
contains a large amount of images representing complex scenes of everyday life annotated according
to an annotation format they proposed. This format is now widely used for object instance detection
tasks and had to be used here in order to feed the data to the MMDetection library.

COCO also refers to a series of competitions around image detection tasks® in which many metrics
have been chosen to compare the performance of models and have become standards in the field.
These metrics are explained later in 4.1.3.

Model The architecture of the Mask R-CNN model used in this project is somewhat similar to that
of dhSegment, as the backbone of its convolutional architecture is also a ResNet-50. However, it is
also coupled with a Feature Pyramid Network (FPN) (Lin, Dolldr, et al., 2017) that helps extract
better features from the Rol by compiling in a top-down manner the feature maps generated by the
backbone. The model was pretrained on the ImageNet dataset for 36 epochs.

Training The training hyper-parameters are detailed later, as they vary from experiment to exper-
iment. However, what remains constant is the use of the mean average precision (mAP) metric (see
Section 4.1.3), on the segmentation masks, to guide the training of the network. Indeed, the mAP can
be computed either based on the segmentation masks of each proposed instance by the model or on
their bounding boxes. Since tables are not always rectangular, we force the network to learn on the
segmentation masks. Therefore, each evaluation metric reported in this thesis for Mask R-CNN are
computed using these.

Inference The model outputs the bounding box coordinates of each of the detected instances, as
well as a segmentation mask within these bounding boxes along with a confidence score ranging from
0.05 to 1 for each instance. An example is shown in Figure 4.2a, where the ground truth of each table
instance is shown in blue, and each prediction is shown as a red bounding box and a segmentation
mask inside. The confidence score and class of each prediction is marked at its top.

4.1.3 Evaluation

Semantic image segmentation and object instance image segmentation are two tasks that each have
well-established sets of metrics used to evaluate models. Some of these metrics are presented here,
starting with the Intersection over Union (IoU) used for semantic segmentation. Next, the Average
Precision (AP), a widely used metric for object instance image segmentation tasks and the primary
metric for COCO challenges, is explained. Finally, the relationship between these metrics is explained,
as well as a strategy for effectively comparing semantic and object instance segmentation models.

IoU (Intersection over Union)

The IoU measures the quality of a predicted segmentation mask by computing its intersection with the
corresponding ground truth segmentation mask over their union. Formally, if P is the set of predicted

Shttps://cocodataset.org/#detection-eval
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Figure 4.2: Comparison between Mask R-CNN object instance and semantic predictions.
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pixels and G the set of pixels belonging to the ground truth, IoU is defined as follows:

|P NG|

IoU(P,G) = ———;
Often, this metric is computed for every images and every classes to be detected and then averaged.
It is referred to as the mean Intersection over Union (mloU). If P is the set of all predictions, G is the
set of all ground truths, P; . is the set of pixels predicted for image 7 and class ¢, G; . the set of pixels
that belongs to the ground truth for image ¢ and class ¢, I is the set of images, C is the set of classes,
and I, ={i €1:|P;.UG;.| >0}, then the mIoU is computed as follows:

11

mlIoU(P,G) = = n > IoU(Pic,Gi)
G Tete

Note that the mloU can also be computed on a per-class basis in order to assess the quality of a model
on each class individually, by having only one class in C.

AP (Average Precision)

AP corresponds to the area under the Precision-Recall curve.

Precision-Recall curve The Precision-Recall curve is a function that maps recall to precision for
a given model on a specific class. As a reminder, precision is an empirical evaluation measure of a
model’s ability to make predictions that match ground truths, while recall is an empirical evaluation
measure of a model’s ability to predict all ground truths. Formally, if TP stands for the number of
true positives, TN for true negatives, FP for false positives and FN for false negatives, they are defined
as follows:

Precision — TP
recision = TP+ FP
TP
l=——
Reca TP+ FN

When computing the precision for a certain recall, predictions are sorted by their confidence level
and only the first predictions necessary for the model to reach the given recall are considered in the
computation of the precision. Since the range of values the recall can take is finite, values between
two consecutive points are interpolated by linking these two points.

Different strategies are then taken to compute the area under the curve. Generally, a set of evenly
spaced recall levels is determined and precision is computed for these recalls. Since a specific recall
may not exist for a given solution, the precision for this specific recall value becomes the maximum
precision for every recall values larger than the one considered. When computing the AP for the
COCO challenge, the set of considered recalls corresponds to {0.01 % x : & € Zjg 10q) }, i-€. a set of 101
evenly spaced recall values. In this project this definition is used when computing the AP.

Often, this metric is computed for every classes to be detected and then averaged. It is then referred
to as mean Average Precision (mAP), even though sometimes also loosely referred to directly as AP.

IoU as a threshold

The IoU is often used to determine whether a prediction should be considered correct or not. It
can then be used in conjunction with more traditional metrics such as precision and recall in image
segmentation algorithms. The methods for computing precision and recall for semantic image seg-
mentation algorithms and object instance image segmentation algorithms are similar in their use of
the IoU to determine the correctness of a prediction, but differ in the amount of predictions made per
image.

Semantic image segmentation algorithms produces a single mask per image and per class. To assess
the correctness of a solution, the following methodology is used. When the IoU between a prediction

34



and a ground truth is above a threshold 7, the prediction is considered a true positive (TP). When
0 < IoU < 7, the prediction is considered as a false positive (FP). When no prediction is made and
the union is equal to 0, the prediction is considered a true negative (TN). Finally, when IoU = 0
and the size of the ground truth is larger than 0, the prediction is considered a false negative (FN).
Therefore, the precision and the recall of a semantic segmentation model can be computed, but works
on a page level and therefore it is not possible to know exactly how many tables were detected.
Object instance image segmentation algorithms make many predictions per image and per class. In
this paradigm, to assess the quality of a solution, a similar methodology is followed. The same logic
is followed for TP, FP and FN. However, TNs are not considered as there could be infinitely many
instances of bounding boxes that should not be detected on a page. Since TNs are not considered in
the computation of precision and recall, it is not an issue. Another important aspect to point out is
that when multiple predictions are made for a same ground truth object, only the one with the largest
IoU is counted as a TP while the others are counted as FP.

With this in mind, it becomes clear that precision and recall must be computed by setting a threshold
on the IoU beforehand. Precision is then referred to as Precision at 7 or PQ7, and recall follows the
same logic. Note that it is also possible to average a metric over multiple IoU thresholds as well.
One may want to average precision over IoU values ranging from 7gqrt to Tepg with a step of Tgpep,
this would be written as PQ7y4rt:Tstep:Tena- The same logic follows for recall. Finally, note that since
(m)AP relies on precision, recall and thus on the IoU, it also follows the same notation logic.

Comparing semantic and object instance image segmentation algorithms

As explained, semantic image segmentation algorithms and object instance image segmentation algo-
rithms are difficult to compare because the numbers of TPs, FPs, TNs and FNs may largely differ. A
simple solution is proposed in this project by interpreting the solution produced by the latter class of
algorithms as if it had been output by a semantic image segmentation algorithm. To do so, the seg-
mentation masks of each object instance proposed by the algorithm are considered as if they were the
result of a single prediction and are thus merged into a single segmentation mask per image. Thus, it is
now possible to compute the mloU at the page-level as it is the case for semantic image segmentation
algorithms. An example can be seen in Figure 4.2b, where the original output of Mask R-CNN seen
on the left figure is modified as explained. Note that, as explained earlier, the predictions of Mask
R-CNN all have a confidence score, starting from 0.05, associated with them. In the methodology we
propose here all predictions with a score greater or equal to 0.05 are considered and turned into a
semantic mask.

4.2 Table classification

Table classification, in the context of this thesis, refers to the task of classifying tables found in
newspaper pages. More formally, given an image that corresponds to a table segment from a scan
of a newspaper page, as well as its OCR (text tokens and their bounding box coordinates), the goal
is to classify said table using a given label set. Three models using different combinations of data
modalities, including text, layout information and images, were used and compared on this task.

4.2.1 RoBERTa

RoBERTa (Liu et al., 2019) is a language representation model based on BERT (Devlin et al., 2019),
which stands for Bidirectional Encoder Representations from Transformers. BERT is based on the
encoder part of the Transformer architecture (Vaswani et al., 2017), which used two novel strategies for
its pre-training. First, the use of masked language modelling, where words in sentences are randomly
masked and the network is asked to guess them. Second, the task of next sentence prediction, where
the network must guess whether two given sentences have been written next to each other, was
created. In order for the model to be able to handle this latter task, BERT also improves on the input
representation by allowing for an arbitrary span of contiguous text. Input sentences, in the context of
BERT, can therefore be arbitrarily long and contain multiple sentences or a complete document. These
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strategies contributed in making BERT a state-of-the-art model for many language understanding
tasks. Note there exist two versions of BERT consisting of differently sized Transformers architecture:
the BASE model contains 110M parameters, while the LARGE model contains 340M parameters.
Still, RoBERTa is able to improve on BERT by revising its pre-training, essentially increasing the
amount of data used for training, changing some key hyper-parameters used in the training setup,
and by removing the next sentence prediction task. RoBERTa stands for Robustly optimized BERT
approach. RoBERTa is thus a standard language representation model that takes only text as input
and can classify it when a sentence (in the BERT sense) classification head, i.e. a linear layer, is
connected to the end of the network.

Model The model used in this project is actually a multilingual version of RoOBERTa dubbed XLM-
RoBERTa (Conneau et al., 2020), that was trained on one hundred different languages. It is motivated
by the fact that the newspapers used in this project are written in different languages: French, German
and Luxembourgish. The BASE version is used for memory reasons, with a maximum sequence length
of 512 tokens.

The implementation of the model comes from the transformers library (Wolf et al., 2020), a large
online library of pre-trained machine-learning models.

Training The training is done following the default hyper-parameters proposed by the library in
its version 4.14.1 The accuracy of the model on its validation set is the metric chosen to guide its
training.

Inference The network outputs logits for each class and the class with the largest one is chosen as
the prediction.

4.2.2 LayoutLM

LayoutLM (Yiheng Xu, Li, et al., 2019) is a model for document image understanding and information
extraction tasks that modifies the original BERT architecture by incorporating additional layout
and image information. Each word token is concatenated with an embedding of its bounding box
coordinates and a visual embedding of the image region given by its coordinates. In addition to this,
a visual embedding of the entire document image is also concatenated. These visual embeddings are
produced by Faster R-CNN (Ren et al., 2016).

Although this model can use the visual modality, it was not used in this project. In the original
paper, this modality was not used during pre-training and was to be used only for fine-tuning. But a
second version of the model called LayoutLMv2 (Yang Xu et al., 2021) was introduced later and used
it during pre-training. This new model is therefore better adapted to evaluate the added value of this
modality: this model is introduced afterwards in 4.2.3.

Model LayoutLM BASE model was used, which is built over BERT BASE model, and is therefore
of similar size. Input sequences must be of length 512. The implementation of LayoutLM also comes
from the transformers library; note that it lacks a straight-forward way to make use of the visual data.

Training The training is done following the default hyper-parameters proposed by the library in
its version 4.14.1 The accuracy of the model on its validation set is the metric chosen to guide its
training.

Inference Trivially, the class with the largest logit is chosen as the prediction.

4.2.3 LayoutXLM

LayoutXLM (Yiheng Xu, Lv, et al., 2021) is a multilingual extension of LayoutLMv2 (Yang Xu et al.,
2021) trained on 53 languages; the latter is an improved version of the aforementioned LayoutLM
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where the only difference is the use of the visual modality during its pre-training making it more
efficient.

Model LayoutXLM BASE model was used, which is built over BERT BASE model, and is therefore
of similar size. It expects input sequences of length 512. The implementation of LayoutXLM also
comes from the transformers library.

Training Unlike the training of LayoutLM, the visual modality was used when fine-tuning this
model. The training is performed following the default hyper-parameters proposed by the library in
its version 4.14.1. The accuracy of the model on its validation set is the metric chosen to guide its
learning.

Inference The class with the largest logit is chosen as the prediction.

4.2.4 Evaluation

When it comes to evaluating the quality of a classifier, precision and recall are commonly used and
have already been defined in 4.1.3. Accuracy is also often used, it measures the proportion of correct
predictions made by a model and can be defined as follows:

TP+ TN
TP+TN+ FP+FN

Accuracy =

Finally, another important metric is the Fl-score, which can be defined as the harmonic mean of the
precision and recall. More formally,

Floscore — 2 Precision * Recall

Precision + Recall

Since the problem at hands requires classifying objects into several classes, which may be largely
unbalanced and thus strongly bias the above mentioned metrics, it is interesting to run these metrics
separately on each class. Another tool to better visualize the results obtained is the confusion matrix
which integrates the number of good and bad predictions for each class and allows to easily see which
classes are confused by the classifier.
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Chapter 5

Experiments

This chapter covers the different experiments conducted in the context of this project. In Section 5.1,
we present two experiments on table detection, which investigate the ability of image segmentation
models to learn under challenging data condition. Two experiments on table classification are also
presented in Section 5.2, where we examine the predictive power of state-of-the-art classifiers using
different data modalities on manually and automatically constructed datasets. Finally, in Section
5.3, we present an inconclusive experiment conducted at the beginning of this project that shows the
difficulty for image segmentation models to simultaneously solve the tasks of table detection and table
classification.

5.1 Table detection

In Section 5.1.1, the performances of dhSegment and Mask R-CNN are compared on datasets with
different levels of inconsistencies. In Section 5.1.2, these models are compared on a reduced but
supposedly perfect dataset.

5.1.1 Assessment of a data filtering strategy

Having high quality data is essential to the optimal learning of any machine learning models, but
what if the only data available is not? In this experiment, we assess the usefulness of the filtering
strategy described in 3.3.3 — where problematic clusters are manually identified and removed — from
which NLL-filtered was created out of NLL. Since both datasets are known for being inconsistent,
a question that is naturally brought up is whether or not the chosen models are able to learn despite
this. To answer it, dhSegment and Mask R-CNN are trained on the two aforementioned datasets and
their performances compared on manually constructed datasets.

This experiment also serves the purpose of establishing whether object instance image segmentation
algorithms are capable of performing semantic image segmentation efficiently, as touched in 4.1.3.

Training

Models are trained using two different setups summarized in Tables 5.1 and 5.2. In the first setup,
models are trained on NLL using 70% of the pages for training and 20% for validation. They are
then tested on the remaining 10%, on RB and on NLL-revised. The second setup is very similar,
but models are instead trained (and tested) on NLL-filtered following the same splits.

Note that for both setups, NLL-revised only contains pages that are part of the testing splits of
NLL and NLL-filtered which ensures that models have not seen these test examples during their
training. Finally, we recall that RB has not been annotated at the instance-level, so its evaluation by
object instance segmentation metrics should be poor.

The different hyper-parameters used for training each model are introduced below. Their search was
done by trial and error; they may not lead to the lowest training times but should ensure convergence.
This is also the case for the next experiment.
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dhSegment and Mask R-CNN were both trained similarly. Their training was done with a batch
size of 2 for 25 epochs using batch normalization on a NVIDIA GeForce GTX TITAN X 12GB. An
Adam optimizer with an initial learning rate of 10~* coupled with a per-epoch exponentially decaying
learning rate v = 0.85 and a L2-regularizer of 10~% were used. Both models were pre-trained on
the ImageNet dataset. The only difference between both models is their metric to optimize on the
validation set, which is the mIoU or dhSegment and the mask segmentation mAP for Mask R-CNN.
During training, images are resized to reach an height of 1333 pixels and a width of 800 pixels. After
that they are uniformly scaled by a factor randomly sampled from [0.9, 1.1]; the images are cropped
to maintain their size. Then, they are slightly rotated 50% of the time by a degree sampled uniformly
from [-1, 1].

For both models, only one run was performed as the training time is very long: about three days
for dhSegment, and about two days for Mask R-CNN.

Training Validation Testing
NLL 40,435 tables 11,706 tables 5,866 tables
19,947 pages (70%) | 5,700 pages (20%) || 2,849 pages (10%)
RB 800 tables

474 pages (100%)

NLL-revised

5,445 tables
1,500 pages (100%)

Table 5.1: Table detection, setup 1: datasets splits.

Training

Validation

Testing

NLL-filtered

19,641 tables
11,890 pages (70%)

5,640 tables
3,399 pages (20%)

2,813 tables
1,698 pages (10%)

RB

800 tables
474 pages (100%)

NLL-revised

5,445 tables

1,500 pages (100%)

Table 5.2: Table detection, setup 2: datasets splits.

Results

Results for the first setup, where models are trained on the large but highly inconsistent NLL, are
shown in Table 5.3, while results for the second setup, where models are trained on the medium-sized
but mildly inconsistent NLL-filtered, are shown in Table 5.4.

In both setups, when evaluated on NLL-revised, Mask R-CNN outperforms dhSegment on all metrics.
This means that Mask R-CNN is better than dhSegment at semantically detecting tables on newspaper
pages when trained with inconsistent data. We believe that this may be due in part to the fact that
Mask R-CNN considers every predictions with a confidence score greater than 0.05 it makes. This
means that even if Mask R-CNN thinks a Region of Interest has only 5% chance of being a table, it
will be part of its prediction. As in most object instance image segmentation algorithms, low-certainty
predictions are not discarded assuming that they can be filtered later based on the overall Precision-
Recall ratio one is interested in. This explanation seems to be corroborated by Wenkel et al. (2021)
who state that, in the context of object detection algorithms, “most neural networks use a rather
low threshold as a high number of false positives is not penalized by standard evaluation metrics”.
Indeed, this strategy would therefore not be penalized on NLL-revised since it contains many more
tables than NLL. False positives in the latter dataset appear to result in true positives in the former.
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The large APs of Mask R-CNN on both NLL and NLL-filtered also point in that direction, as the
model is perfectly capable of performing well on a testing dataset representative of its training: a large
number of false positives is indeed not penalized by standard evaluation metrics for object detection.
Looking at the results of both models for both setups on the test sets of the data they were trained with,
we find that dhSegment generally outperforms Mask R-CNN on all metrics except mloU and R@50:5:95
for NLL. We should also point out the notable increase in mloU for dhSegment between both datasets
when trained with the more consistent dataset NLL-filtered compared to NLL. Overall, this suggests
that dhSegment is better than Mask R-CNN when tested on data representative of that on which it
was trained on, and that when the data is more consistent, it is able to achieve better performance
on semantic segmentation metrics. It is true that Mask R-CNN also sees a performance increase on
the mIoU, but it is smaller than that of dhSegment (4+0.48 vs 4+1.65 on the mIoU). We can therefore
conclude that the filtering strategy is favorable to dhSegment. Indeed, its performance in terms of
mloU on NLL-revised increases by 5.82 between the two setups, while those of Mask R-CNN decrease
by 1.05. Mask R-CNN suffered from the filtering strategy; because of it, it was subjected to less tables,
and even if these are known to be inconsistently labelled, Mask R-CNN is able to learn from them.
This is also confirmed by its APs which decrease by 0.35 between both setups.

In both setups, for dhSegment, we notice a large drop in Precision between the NLL and NLL-
filtered test sets and NLL-revised, but a small drop in Recall. Since both NLL and NLL-filtered
test sets lack some tables in their ground truth compared to NLL-revised, it is more difficult for the
models to reach the IoU threshold that will turn a prediction into a true positive instead of a false
positive. As a result, the number of false positives increases and the number of true positives decreases,
greatly reducing the Precision. Concerning the Recall, both test sets contain tables that incorrectly
labelled as such, which is not the case in NLL-revised. It is likely that dhSegment correctly guessed
that certain tables were actually not tables, which was initially penalized due to erroneous ground
truth in the test sets but encouraged in NLL-revised. As a result, the number of false negatives
decreased, which had less of an impact on the overall decrease in Recall.

For RB, we again see a clear advantage on non-representative datasets for Mask R-CNN on all metrics.
Also noteworthy are the extremely low AP scores for Mask R-CNN, showing the price to be paid when
using consistently annotated ground truths at too coarse a granularity. Mask R-CNN is unable to
understand what an instance of a table is and scores terribly. Finally, the same point can be made
about the APs on NLL-revised which shows that the inconsistent granularity of the annotations of
NLL severely hinders the performance of this object instance detection model on a dataset it should
excel.

In summary, both models are capable of learning with inconsistent data, as their results on correctly
labelled data are encouraging, especially for Mask R-CNN, showing that object instance segmentation
algorithms are very well suited for semantic segmentation. So much so that they can even outperform
models that were designed specifically for this task in a context of inconsistent training data. Finally,
concerning the filtering strategy, we saw that it mainly favors dhSegment as Mask R-CNN sees a
generalized decrease in its performance.

5.1.2 Reducing the amount of training data

In this experiment, the following question is addressed: are visual models capable of detecting tables in
newspaper with very few training material? It also aims to provide some answers to another question:
should efforts be aimed at manually annotating a small but perfect dataset, at (semi-)automatically
correcting an inconsistent but large dataset or simply at gathering more training material?
dhSegment and Mask R-CNN are here trained on NLL-revised, a small and manually annotated
at the instance-level. The latter property allows a proper comparison between both models as the
training material is (contrary to the previous experiment) perfectly adapted for both segmentation
paradigms.
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Metric Models NLL RB | NLL-revised
mloU dhSegment 80.02 | 62.03 70.75
Mask R-CNN | 80.23 | 67.94 83.19
P@60 dhSegment | 86.75 | 66.67 75.26
Mask R-CNN | 84.55 | 73.85 90.13
R@60 dhSegment | 96.82 | 91.69 94.38
Mask R-CNN | 96.78 | 94.65 98.11
P@sgo dhSegment | 74.66 | 36.47 53.26
Mask R-CNN | 70.08 | 43.08 71.02
R@80 dhSegment | 96.32 | 85.79 92.23
Mask R-CNN | 96.14 | 91.16 97.61
P@50:5:95 dhSegment | 74.06 | 45.19 59.01
Mask R-CNN | 73.25 | 50.15 75.24
R@50:5:95 dhSegment 95.89 | 78.99 91.98
Mask R-CNN | 96.16 | 84.45 97.60
AP@50:5:95 Mask R-CNN | 0.815 | 0.128 |  0.593

Table 5.3: Table detection, setup 1: results.

dhSegment and Mask R-CNN have been trained on NLL, the results presented here correspond to their evalu-
ation on an unseen testing split of NLL, RB and NLL-revised.

Metric Models NLL-filtered | RB | NLL-revised
mloU dhSegment 81.67 59.01 76.57
Mask R-CNN 80.71 71.09 82.14
P@60 dhSegment 89.04 61.23 86.83
Mask R-CNN 87.17 74.36 91.81
R@60 dhSegment 96.97 93.29 94.87
Mask R-CNN 95.36 98.31 97.86
P@80 dhSegment 78.51 27.09 61.81
Mask R-CNN 76.37 48.93 68.42
R@80 dhSegment 96.57 86.01 92.94
Mask R-CNN 94.74 97.45 97.14
P@50:5:95 dhSegment 76.91 38.63 67.81
Mask R-CNN 76.46 53.08 73.64
R@50:5:95 dhSegment 96.14 76.81 92.29
Mask R-CNN 94.50 95.06 97.09
AP@50:5:95 Mask R-CNN | 0.806 | 0.131 [  0.558

Table 5.4: Table detection, setup 2: results.

dhSegment and Mask R-CNN have been trained on NLL-filtered, the results presented here correspond to
their evaluation on an unseen testing split of NLL-filtered, RB and NLL-revised.
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Training

Both models are trained following the setup described in Table 5.5. 80% of NLL-revised is used to
train and validate the models, and 20% is used to test them. Because of the small size of the dataset,
it is necessary to reserve a larger split for testing than in the previous experiment in order to cover
sufficiently many different cases.

dhSegment and Mask R-CNN were trained similarly to the previous experiment, the only differences
being the number of epochs of 100, and v = 0.95.

Again, a single run was performed for both models, with dhSegment taking nearly two days to
train, while Mask R-CNN took about a day and a half.

Training Validation Testing
3412 tables 985 tables 1048 tables
900 pages (60%) | 300 pages (20%) || 300 pages (20%)

NLL-revised

Table 5.5: Table detection, setup 3: dataset splits.

Results

The results of this experiment are presented in Table 5.6. It can be seen that consistent manual
annotation efforts pay off, as both models perform very well for all metrics. dhSegment clearly
outperforms Mask R-CNN in terms of mloU and Precision, but performs slightly worse in terms of
Recall. Mask R-CNN is better in the latter metric for the reason mentioned in the previous experiment,
where it produces a lot of predictions, thus increasing Recall. In fact, both models perform very well on
metrics directly associated with their segmentation strategies, which means that dhSegment performs
very well in terms of mloU and Mask R-CNN in terms of AP. This indicates that having very little
but qualitative data may be enough for these models to accurately learn what a table is. However,
they would need to be tested on a different, non-representative dataset for this to be affirmed.

Metric Models NLL-revised
mloU dhSegment 84.10
Mask R-CNN 81.00
P@60 dhSegment 93.15
Mask R-CNN 87.71
R@60 dhSegment 98.91
Mask R-CNN 99.23
P@g&0 dhSegment 81.51
Mask R-CNN 67.58
R@80 dhSegment 98.76
Mask R-CNN 99.00
P@50:5:95 dhSegment 76.47
Mask R-CNN 70.17
R@50:5:95 dhSegment 98.09
Mask R-CNN 98.82

AP@50:5:95 Mask R-CNN [ 0.763

Table 5.6: Table detection, setup 3: results.

dhSegment and Mask R-CNN have been trained on NLL-revised, the results presented here correspond to
their evaluation on an unseen testing split of NLL-revised.
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5.1.3 Summary and discussion

These two experiments show that the task of table detection can be successfully addressed by both
dhSegment and Mask R-CNN. In terms of semantic segmentation in a context of inconsistent data,
Mask R-CNN has the upper hand due to its non-conservative prediction strategy. However, when
the data is correctly labelled dhSegment shows better results. This means that dhSegment shines on
test data representative of the data it was trained on, while Mask R-CNN is able to provide better
transferability.

In terms of object instance segmentation, dhSegment is inherently unable to provide a solution, while
Mask R-CNN can only provide good results if the training data is of good quality. If tables need to be
classified later, then it seems that the most viable strategy is to use Mask R-CNN and quality data
to perform accurate object instance detection. Indeed, table classification makes no sense if classifiers
are given segmentation masks containing multiple tables, so semantic segmentation should be avoided
in that regard. Now, if we only wish to know the regions of the newspaper pages where tables lie
in order to, for example, remove these regions from the OCR processing, the decision as to which
model is best is not as clear-cut. It all comes down to whether or not the effort of collecting quality
data is worth the additional performance that dhSegment can provide over Mask R-CNN with poorly
annotated data.

5.2 Table classification

In Section 5.2.1, the performances of RoBERTa, LayoutLM (without making use of the visual modal-
ity) and LayoutXLM are compared on a classification task. In Section 5.2.2, the benefits of using an
automatically augmented dataset are assessed based on the results of these three models.

5.2.1 Data modality comparison

Using different data modalities in a model is costly in terms of acquisition, retrieval and computation.
1mpresso’s pipeline provides easy access to the image files and OCR output from its entire newspaper
collection; however, its OCR text output is known to be messy in regions where tables are located,
and images are heavy objects to process. In this context, a question arises: is the text provided by
the OCR sufficient to effectively classify the tables, and if not, is the addition of other data modalities
useful enough to justify the use of heavier models and higher data throughputs?

In this experiment, three data modalities are used and compared: i) the OCR text output; ii) the
bounding box coordinates of each word detected by OCR; iii) the image regions of these words.
RoBERTa (text), LayoutLM (text + layout) and LayoutXLM (text + layout + image) are compared
on a manually labelled dataset to evaluate the contribution of each modality.

Training

The three models are trained and tested according to the setup shown in Table 5.7. NLL-tag is di-
vided into training, validation and testing sets following a 60%/20%/20% distribution in terms of page
count. The split was done by stratified sampling on the table labels to get similar class distributions
on the sets to ensure good training and fair testing.

The three models were trained for 10 epochs with a batch size of 4, following the default hyper-
parameters of the implementation used, as explained in 4.2.

RoBERTa and LayoutLLM took around an hour to train, while LayoutXLM took around 3 hours.
Only one run is reported for all models.
Results

The results of this experiment are shown in Table 5.8. The picture is quite clear here, with both
LayoutLM and LayoutXLM significantly outperforming RoBERTa on all averaged metrics. This shows
the contribution of both layout and image modalities. Only adding the layout modality already shows
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Training Validation Testing
Class || Tables Pages | Tables Pages | Tables Pages
exchange (E) || 265 (11.3%) 188 | 79 (14.4%) 55 | 100 (11.4%) 69
food prices (F) || 108 (4.6%) 86 | 30 (5.5%) 28 | 39 (4.4%) 29
miscellaneous (M) || 276 (11.7%) 145 | 82 (14.9%) 48 | 71 (8.1%) 44
sport results (S) || 238 (10.1%) 25 | 37 (6.7%) 7| 128 (14.5%) 9
transport schedules (T) || 1,452 (61.7%) 245 | 318 (57.9%) 68 | 531 (60.3%) 95
weather (W) || 15 (0.6%) 14 | 3 (0.5%) 3111 (1.3%) 11
Total || 2,354 605 | 549 173 | 880 206
Percentage || 62.2% 61.5% | 14.5% 17.6% | 23.3% 20.9%

Table 5.7: Table classification, setup 1: NLL-tag splits.

a strong increase in performance, proving that the table structures convey significant signal and is
able to strongly compensate for a noisy OCR text output. The addition of a third modality allows
LayoutXLM to extract extra signal from these tables, becoming the best of these three classifiers on
the averaged metrics. This shows that tables also carry important visual features that are useful in
ambiguous cases.

Interestingly, RoOBERTa outperforms the other two models in terms of Precision on three classes: food
prices, miscellaneous and sport results. This shows that these classes have unique semantics. For
example, sport results usually contain team or athlete names that will never be found in other classes.
In such cases, RoBERTa is able to be extremely precise; however, the associated low recall leads
us to believe that this only occurs when the quality of the OCR is good enough to recognize these
words. Indeed, looking at Figure 5.1a, we see that RoOBERTa almost always confuses sport results with
transport schedule. This is most likely due to the fact that sport results often contain some numbers
like game scores that could be confused with times in transport schedules. The large imbalance in
classes doesn’t help either.

Overall, the addition of modalities proves to be very useful. However, this comes at the cost of heavier
computational loads, especially for the image modality where the gains from its use can be considered
as marginal.

Metric Models E F M S T w M. avg. W. avg.
Precision RoBERTa | 86.41 94.87 94.73 100.00 79.01 0.00 75.84 83.89
LayoutLM | 94.12 83.33 88.71 9840 98.33  90.91 92.30 96.33
LayoutXLM | 98.91 90.00 86.30 98.41 98.51 100.00 | 95.36 97.20
Recall RoBERTa | 89.00 94.87 76.06 10.94  99.25 0.00 61.69 81.93
LayoutLM | 96.00 89.74 77.46  96.09 99.62  90.91 91.64 96.36
LayoutXLM | 91.00 92.31 88.73 96.88 99.81 100.00 | 94.79 97.16
Fl-score  RoBERTa | 87.68 94.87 84.37 19.72  87.98 0.00 62.44 76.93
LayoutLM | 95.05 86.42 82.71  97.23 98.97  90.91 91.88 96.30
LayoutXLM | 94.79 91.14 87.50 97.64 99.16 100.00 | 95.04 97.16

Table 5.8: Table classification, setup 1: results.

RoBERTa, LayoutLM and LayoutXLM were trained on NLL-tag and are here evaluated on an unseen testing
split of this dataset. Results for each class are reported: E) exchange; F) food prices; M) miscellaneous; S)
sport results; T) transport schedule; W) weather.

M. avg. stands for macro average and corresponds to the average of the results of the 6 classes; while W. avg.
stands for weighted average and corresponds to the average of the results of the 6 classes weighted by their
respective population size.
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Figure 5.1: Confusion matrices for both experiments on table classification.

The first row shows the results of the three classifiers trained on NLL-tag, while the second row shows the
results of the three classifiers trained on NLL-auto. Abbrevations are as follows: E) exchange; F') food prices;
M) miscellaneous; S) sport results; T) transport schedule; W) weather.

5.2.2 The benefits of auto-tagging

Labelling data is a time-consuming and tedious process necessary for models to learn efficiently. What
if this process could be alleviated through automation? This experiment evaluates the suitability of the
automatic data augmentation strategy described in 3.3.2, which automatically labels visually similar
tables. Indeed, as explained before, since the OCR output around the tables is noisy, we hope to bring
some robustness to classifiers through the textual features of the tables by relying on their more stable
visual features.

Training

The same three models as in the previous experiment are trained and tested on NLL-auto following
the setup defined in Table 5.9. Unlike the previous experiment, the splits are performed here on the
table classes, which is motivated by two reasons. First, because the manually labelled tables — which
should make up the entire test set — originate from a small number of pages due to the way the annota-
tion process was executed, the splits could not be performed properly on the pages as before. Second,
this allows for optimal stratified sampling across table classes. Nevertheless, the large difference in
pages between the validation and the test splits should be noted as it certainly indicates a lack of
variety in terms of newspaper issues in the test set.

The models were trained similarly to the previous experiment, i.e. for 10 epochs with a batch size of
4, following the default hyper-parameters of the used implementation.

RoBERTa and LayoutLM took around two hours and a half to train, while LayoutXLM took
around eight hours. Only one run is reported for all models.
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Training Validation Testing
Class || Tables Pages | Tables Pages | Tables Pages
exchange (E) || 674 (13.2%) 569 | 224 (13.2%) 214 | 225 (13.2%) 173
food prices (F) || 370 (7.2%) 360 | 122 (7.2%) 120 | 124 (7.3%) 104
miscellaneous (M) || 277 (5.4%) 186 | 91 (5.3%) 75 | 93 (5.4%) 81
sport results (S) || 257 (5.0%) 48 | 85 (5.0%) 34 | 86 (5.0%) 30
transport schedules (T) || 3,521 (68.8%) 2,459 | 1,173 (68.9%) 1,002 | 1,174 (68.7%) 356
weather (W) || 21 (0.4%) 21 | 7 (0.4%) 71 7(04%) 7
Total || 5,120 3,526 | 1,702 1,451 | 1,709 684
Percentage || 60.0% 76.4% | 20.0% 31.4% | 20.0% 14.8%

Table 5.9: Table classification, setup 2: NLL-auto splits.

Results

In Table 5.10, the results of this experiment are presented. They are in line with the previous exper-
iment, as the addition of data modalities proves beneficial, with LayoutXLM performing better than
the other two models on weighted averaged metrics. We also notice an overall increase in these metrics
for all models compared to the previous experiment. This shows that automatically augmenting the
dataset is a good strategy. The models are indeed able to achieve better performance by examining
more examples. In particular, RoOBERTa saw its performance greatly improved compared to the pre-
vious experiment.

An important point to note is that Precision and Recall across classes are consistent for all models
which means that they have built a better intuition for each class with the added examples, besides
for the miscellaneous class which proves to be challenging for all three models. This is confirmed by
comparing the confusion matrices, in Figure 5.1, between the classifiers in the previous experiment
and those in this experiment.

In short, the automatic labelling strategy paid off as all classifiers saw an increase in performance.
Relying on visual similarity to build a stronger sense for each class in terms of the other modalities
was the way forward. If we consider the case of LayoutLM which does not have access to visual
features (unlike LayoutXLM), we find that its performance is extremely close to LayoutXLM even
though it cannot know that the dataset contains clusters of visually similar tables due to the way it
was constructed.

Metric Models E F M S T W M. avg. W. avg.
Precision RoBERTa | 96.83 98.25 84.04 9247 9890  87.50 93.00 97.40
LayoutLM | 97.26 9746 88.30 99.67 98.82 100.00 | 96.58 97.89
LayoutXLM | 97.35 98.20 82.69 97.70 99.57 87.50 93.84 98.12
Recall RoBERTa | 95.11 90.32 84.95 100.00 99.32 100.00 | 94.95 97.37
LayoutLM | 94.67 92.74 89.25  97.67 99.74 100.00 | 95.68 97.89
LayoutXLM | 97.78 87.90 92.47 98.84 99.49 100.00 | 96.08 98.01
Fl-score RoBERTa | 95.96 94.12 8450 96.09 99.11  93.33 93.85 97.36
LayoutLM | 95.95 95.04 88.77 97.67 99.28 100.00 | 96.12 97.88
LayoutXLM | 97.56 92.28 87.31 98.27 99.53 93.33 94.79 98.03

Table 5.10: Table classification, setup 2: results.

RoBERTa, LayoutLM and LayoutXLM were trained on NLL-auto and are here evaluated on an unseen testing
split of manually labelled tables from this dataset. Results for each class are reported: E) exchange; F') food
prices; M) miscellaneous; S) sport results; T) transport schedule; W) weather.

M. avg. stands for macro average and corresponds to the average of the results of the 6 classes; while W. avg.
stands for weighted average and corresponds to the average of the results of the 6 classes weighted by their
respective population size.
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5.2.3 Summary and discussion

These two experiments prove that table classification can be handled very well by state-of-the-art
classifiers such as LayoutLM and LayoutXLM. The use of the layout modality proves to be extremely
relevant, as it allows LayoutLM to understand that it is dealing with a table without the need for
visual features. On a small dataset, the use of the visual modality is well rewarded as LayoutXLM
can outperform LayoutLM by a reasonable margin. However, as the size of the dataset increases,
this margin decreases significantly. Since the training time of LayoutXLM is about three times that
of LayoutLM (without image modality) one may question the need to add this visual modality in
production.

Finally, we would like to point out that the datasets used for these experiments could be slightly
reworked to obtain a more affirmative evaluation. Indeed, the tables to be classified here come from
the original segmentation provided by the National Library of Luxembourg, which sometimes includes
multiple tables in the same instance. However, we are sure that these tables do not cover different
classes. The guidelines followed for the manual annotation were not perfectly established, and we
know that some of the items in the dataset are likely not tables. Finally, we believe the models should
be tested on a less representative dataset to assess the transferability of these models before putting
them into production.

5.3 End-to-end: table detection and classification

dhSegment and Mask R-CNN are capable of making predictions for multiple classes at once, allowing
them to be used to solve the tasks of table detection and table classification in an end-to-end manner.
This was tested very early in the course of the project, but because the results were underwhelming,
other solutions had to be investigated. We still believe it is important we share the results of this
experiment, and share some insights as to why they did not prove to be satisfactory.

Training

Both models were trained on NLL-tag with the same splits described earlier, in Table 5.7. The
training was done exactly as for the experiments on table detections, besides the number of epochs
which was set to 100 and ~v = 0.95.

Results

The results of this experiment can be seen in Table 5.11. Mask R-CNN outperforms dhSegment on
all metrics for all classes, but its performance is still poor. Nevertheless, this shows again that Mask
R-CNN can learn faster than dhSegment with few and inconsistent data. Note that some very under-
represented classes like weather are not detected at all by dhSegment. We believe that due to the
strong visual similarities between all these classes, which are tables in the first place, the models are
not able to distinguish between them, hence the need to explore other classifiers based on other data
modalities.
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Metric Models E F M S T W Avg.

mloU dhSegment 60.18 13.70 13.26  3.32 44.26  0.00 | 34.36
Mask R-CNN | 68.93 33.89 31.64 34.30 50.20 10.41 | 56.68
P@60 dhSegment 91.04 44.45 46.67 28.57 4731  0.00 18.95
Mask R-CNN | 94.12 88.00 75.68 62.50 58.24 20.00 | 56.41
R@60 dhSegment 69.32 12.63 13.46 260 63.77  0.00 | 69.23
Mask R-CNN | 74.42 36.07 39.44 45.45 70.67 20.00 | 90.91
P@g0 dhSegment 74.63 37.04 20.00 0.00 19.35 0.00 11.05
Mask R-CNN | 89.71 88.00 54.05 50.00 30.77 20.00 | 38.46
R@80 dhSegment 64.94 10.75  6.25 0.00 41.86 0.00 | 56.76

Mask R-CNN | 73.49 36.07 31.75 40.00 56.00 20.00 | 87.21
P@50:5:95 dhSegment 76.57 34.81 29.67 14.29 29.Y8  0.00 13.58
Mask R-CNN | 88.09 84.00 55.95 43.75 39.45 14.00 | 42.46
R@50:5:95 dhSegment 63.69  9.95 8.69 1.30  45.19  0.00 | 57.33
Mask R-CNN | 72.89 34.85 31.19 31.73 56.56 14.00 | 86.59

AP@50:5:95 MaskR—CNN\ 0.857 0.781 0.526 0.671 0.569 0.648 | 0.676

Table 5.11: Table detection and classification: results.

dhSegment and Mask R-CNN have been trained on NLL-tag, the results presented here correspond to their
evaluation on an unseen testing split of NLL-tag. The results for each class are given. The abbrevations are
as follows: E) exchange; F') food prices; M) miscellaneous; S) sport results; T) transport schedule; W) weather.
The average for semantic segmentation metrics is weighted by the population size of each class, while the average
for mAP is the average of all classes.
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Chapter 6

Discussion and Future Work

In this work, we explored the feasibility of the tasks of table detection and table classification for
historical newspapers. Both tasks have been approached from several angles, which we summarize in
this section. For each of them, we discuss the possible shortcomings of our approach and give some
hints for solving them. We also expand on the discoveries made during the development of this thesis
and give some directions for future work to build on them.

The first part of this project focused on the experimentation and comparison of two image seg-
mentation methods for table detection in historical newspaper pages. During the development of this
comparison, it became apparent that the dataset on which it was to be performed was inconsistently
labelled and needed to be addressed. This first comparison therefore paved the way in understanding
to what extent these two models can perform well with noisy data. In this regard, evaluating an
object instance segmentation algorithm as if it were a semantic image segmentation algorithm proved
to be a sound choice as the performance of Mask R-CNN trained on inconsistent data exceeded our
expectations. Nevertheless, we believe that its performance could be further investigated, as some
of its worst predictions could be filtered by setting a threshold to their confidence scores. Possible
additional performance could result from this. We are concerned, however, that Mask R-CNN may
not reiterate its performance on a slightly more out-of-domain dataset. Indeed, the output of Mask
R-CNN could be investigated to see if it correctly detected all the tables that were ever annotated in
the original dataset, and if it was unable to detect those that were not, or if it really understood what
a table is.

With this in mind, as suggested by Casado-Garcia et al. (2020), it would be interesting to see if the
performance of the models can be increased by pre-training on a more closely related domain. This
aspect was lightly explored in this thesis, as a dataset consisting of tables from ICDAR 2019 (Gao
et al., 2019) was used to pre-train dhSegment; however, the first results when looking at the validation
loss during training seemed to be going at a slower pace than when it was not pre-trained. This
was deemed unsatisfactory and the experiment was aborted, but also due to lack of time we knew
this strategy could not be thoroughly tested. Retrospectively, we believe the dataset may have been
slightly off-domain as its tables tend to cover large part of the image which is unlike newspapers, and
there also seems to be a lack of diversity. We believe that a dataset like TableBank (Li, Cui, et al.,
2020) would be more suitable due to its large size and the diversity of table sizes. However, training
models on this dataset would be very time-consuming due to its size.

Although the results were satisfactory, we investigated whether it was possible to mitigate the noise
in the dataset by developing a filtering strategy based on manually identifying problematic clusters
of mislabelled pages. These pages were noticed after conducting a manual survey by re-annotating
some pages and establishing statistics on them. This strategy turned out to be relevant for dhSeg-
ment, indicating that it could be studied further. However, in the later stages of this thesis, we came
across a noteworthy paper by Petit et al. (2018) who propose a way to handle missing annotations for
semantic segmentation, thus dealing with inconsistent ground truth, by incremental self-supervision
and relabelling. We think this could be an interesting direction to investigate.
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The second part of the work explored the classification of tables. We first compared the ability of

three different models that use different data modalities and established the importance of the layout
modality for our task. The differences in performance with a text only based model were quite large,
leading us to believe that this model may have been under-trained. Nevertheless, the comparison was
done fairly because all models saw the same amount of tables. To properly evaluate the difference
between the modalities, it certainly would have been better to run optical character recognition on the
tables again, to ensure that the text modality is used to its full potential. Despite this, we have found
that using text, layout and image information generates excellent predictions, so much so that we
believe these models could be directly applied to the existing segmentation of impresso. By manually
labelling a diverse dataset that might even include items that are not tables, and re-training these
models on that basis, we believe they could generate excellent classification results.
In a final step, we also explored a strategy to automatically augment a manually labelled dataset
and assessed its quality and relevance. This further improved the performance of all classifiers, on a
representative test set. Here, we think it would be important to create a rather different test set, e.g.
based on other newspapers, to confirm that this strategy is successful. If this is the case, one could
reuse this augmentation strategy on the predictions of the classifiers to iteratively increase the amount
of labelled data. Another aspect that could be studied is to see if there is an interest in lowering the
visual similarity threshold and test if performance of the classifiers can be further improved.

Finally, now that we know that tables can be effectively segmented at the object instance level if

the dataset is correctly labelled, we could stack the models trained here, i.e. Mask R-CNN and one
of the classifiers, and evaluate the complete pipeline for table detection and classification. Another
option to be explored would be to build on the work of Barman et al. (2021) and incorporate the
layout modality, which has been shown to be relevant for classification, into dhSegment-text and solve
the tasks of table detection and classification in an end-to-end manner.
Overall, we believe that this project has successfully addressed the two tasks of table detection and
classification, showing that these tasks are well within reach in the context of historical newspapers.
The quality of the data at disposal turned out to be somewhat underwhelming and brought its share
of questions and challenges throughout the project. These have been addressed too, but more work
could be done around these issues in order to construct more coherent datasets. Nevertheless, we
believe that further tasks around tables, such as table recognition, can now be explored.

All the code developed as well as the models trained during this project can be found online in

the code repository of impresso©.

Shttps://github.com/impresso/impresso-table-processing
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