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Abstract. Recent researches in natural language processing have leveraged attention-based
models to produce state-of-the-art results in a wide variety of tasks. Using transfer learning,
generic models like BERT [1] can be fine-tuned for domain-specific tasks using little annotated data.
In the field of digital humanities and classics, bibliographical reference extraction counts among
the domain-specific tasks where few annotated datasets have been made available. It therefore
remains a highly challenging Named Entity Recognition (NER) problem which has not been
addressed by the aforementioned approaches yet. In this study, we try to boost bibliographical
reference extraction with various transfer learning strategies. We compare three transformers
to a Conditional Random Fields (CRF) developed by Romanello |2], using both generic and
domain-specific pre-training. Experiments show that transformers consistently improve on CRF
baselines. However, domain-specific pre-training yields no significant benefits. We discuss and
compare these results in light of comparable researches in domain-specific NER.

1 Introduction

1.1 Background

Named entity recognition Named entity recognition (NER) is a sequence labelling task which
aims at detecting and at classifying entities in texts, according to a given typology. Typologies
generally include entity types such as persons, organizations and locations |3, 4], but the same
techniques can be applied to extract more specific entity types such as chemicals [5], diseases [6]
or, as in the present study, bibliographical entities. Serving as a groundwork to entity linking
and relation extraction, NER is deemed a major task in information extraction.

Transfer learning Like many other fields in natural language processing (NLP), NER has
greatly benefited from deep neural networks, and is further benefiting from recent advances in
transfer learning and attention-based models. Transfer learning consists in training a model M for
a source task Tg in a source domain Dg, before adapting it to a target task 7 and its corresponding
domain Dr. For the clarity of following sections, we introduce the notation proposed by Pan and
Yang |7]. We first define a domain D by a feature space X’ and a marginal probability distribution
P(X), where X = {x1,2;,...,z,} € X. Here, z; is the i*" feature in X and can itself be vector. For
example, if features represent words as m-dimensional vectors (or "embeddings"), X' corresponds
to the total vocabulary and X to a sample of embeddings {x1, x;, ..., z,} with z; € R™. We then
define a task 7 performed on D = {X, P(X)} by a label space ) and a predictive function or
model M. In the case of NER, a possible scenario is ) = {Person, Organization, Location, O}
and M(X) = Py(Y|X) where Y = {y1,¥i,....,yn} € Y. Any predictive function that maps a
conditional probability distribution P(Y|X) to a sample X is a statistical model. It is defined
as M = {C, 0}, where C denotes a configuration which determines the model’s architecture
and hyperparameters, and where © = {6, ...,6,} € R is a set of trainable parameters. Given
a configuration C, a task 7 and a sample of labelled training data {X7, Y7}, training M
corresponds to optimizing © so that the confusion between the predictions Y, = M(X;) and the
actual labels Y; is minimized. Given source and target domains and tasks Dg, Tg, Dr and Tr,
the goal of transfer learning is to facilitate the training of a target model My on Dr for T, by
transferring the knowledge acquired by a source model Mg trained on Dg for Tg.

Transferring knowledge from one model to the other implies that at least a subset of © 4 is
kept in M. This procedure generally requires three steps, which are usually referred to as
pre-training, model adaptation and fine-tuning. Pre-training consists in training Mg for Tg on
Dg. As transfer learning naturally supposes Dg # Dr or Tg # Tr, it is paramount to chose
Ds and Tg so that the Mg gains meaningful, generic and hence transferable representations



from pre-training. In NLP, language modelling appears to be the most appropriate task to learn
such representations. The goal of the task is to predict a token given its context. As tokens
can be automatically selected from their contexts to provide {X = context,Y = token} samples,
language modelling requires no manual labeling of the training data. Hence, vast amounts of
training data can easily be created from publicly available corpora. In order to produce generally
transferable representations, state-of-the-art models like BERT |[1] are pre-trained for language
modelling on vast corpora of generic texts, such as newspapers or Wikipedia articles.

Once Mg is trained, the second step of transfer learning is model adaptation. It consists in
adapting Mg — and more specifically Cs — to Tr. This step is crucial as Vg and Ypr may have
different dimensions. Indeed, in order to predict a token for language modelling, Mg is generally
expected to output a softmax vector of dimension |Vs| ~ |Xg|. For NER however, the model is
expected to output a softmax of dimension |Yr|, which equals the numbers of entity types. It is
therefore requisite to adapt Mg’s output layers to fit 77. In practice, a subset of the trainable
parameters O, is transferred and serves as a basis for building the adapted M. In the case
of encoder-decoder architectures, the encoder of the language model Mg is usually kept. The
decoder however, is replaced by a Tr-tailored decoder on top of it. Finally, the third and last
step of transfer learning is commonly known as fine-tuning. It consists in training M for 77 on
Dr. It is worth noticing that during fine-tuning, one can choose not to update the part of My
composed by Oy, a strategy called freezing.

Pre-training has shown a beneficial impact and can be performed with various language modelling
strategies, such as next token prediction [8|, previous token prediction (bi-directional approaches)
and masked token prediction [1], skipgrams [|9] and negative sampling [10]. As different as
they may appear, these language modelling strategies all rely on the distributional hypothesis,
which stipulates that similar words appear in similar contexts, and are hence to be given similar
representations by the model. This principle was first used to generate static word representations
such as Word2Vec |9] or GloVE [10]. Starting from a predefined vocabulary (corresponding to
Xs), Mikolov et al. |9] trained a log-linear model to predict a randomly selected token given
another randomly selected token appearing in the same text window. The trainable parameters
of this simple model can be construed as representations of tokens. They can serve as a basis for
building a target model M. These static embeddings have two main limitations though. First,
they rely on a predefined vocabulary which corresponds to the feature space Xg. This implies
that words present in Xp but absent from X¢ have no meaningful representations. Secondly,
when used for a target task Tr, static embeddings are not context-aware. In other words, the
embedding of the word "mouse" is processed in the same way in the context of "rodents" and of
"keyboard". This can create serious limitations when contexts and distributions significantly vary
between Dg and Dr.

Attention More recent approaches address these issues with the use of attention-based models.
Attention is a weighting mechanism introduced by Bahdanau et al. [11] which builds on the encoder-
decoder architecture [12|. The blueprint of this architecture is to have an encoder encode an
internal representation of a sequence which is then used at every time step as input by the decoder.
This is particularly appropriate in machine translation, as it allows the decoder to constantly
consider the original sequence when generating the translated sequence. Instead of focusing on
a single encoder representation (e.g. the first or last time step’s representation), Bahdanau et
al. [11] proposed to use all the internal representations of the encoder as input to the decoder and
to train a separate mechanism that dynamically weights the importance of each representation at

each time step. Given a sequence of internal states i = (55", -, S5t ~), the attention matrix
<i>
Sint

c is trained to optimize Zf * ¢; to predict Ys<i>. This way, the model learns to shift its



"attention" to relevant parts of the source sequence. As this approach showed encouraging results,
Vaswani et al. [13]| proposed a new encoder-decoder architecture, the transformer, which relies
only on attention. Representations from transformers are computationally effective, dynamic and
context aware, as each token in sequence is always represented as a weighted sum of its context.

As mentioned above, transformers like BERT |1], RoBERTa [14] or DistilBERT [15] are pre-trained
for language modelling on vast generic corpora such as Wikipedia. The resulting source model
Mg can then be adapted to Tr by replacing language modelling decoder with a Tp-specific
decoder. Hence, the "pre-trained" part of transformer model designates the encoder of its source
language model Mg. In order for a pre-trained model to be used for NER, a softmax or a
conditional random fields (CRF) decoder is commonly added on top of the encoder. The obtained
target model My can then be fine-tuned for 7p with a relatively small labelled dataset. In NER,
this strategy allowed BERT to reach an F1 score of 92.08 on the ConLL-2003 benchmark [3], a
dataset commonly used to assess performances in NER. This result placed BERT largely above
traditional machine learning methods like CRH1]

1.2 Domain and task specificity

Domain specificity As mentioned above, transfer learning supposes that Dg # Dr or that
Ts # Tr. These conditions give rise to various scenarios. The first possible scenario is domain
specificity, i.e. Dg # Dp. Since D = {X, Pg(X)} domain specificity occurs if Xg # X or
Ps(X) # Pp(X). The first part of the disjunction accounts for a difference between source and
target feature spaces. This occurs when the source vocabulary Xg on which Mg is trained differs
from the target vocabulary X7 to which My is confronted to. This leads to out-of-vocabulary
issues, which are traditionally addressed by adding a placeholder feature for unknown words or by
mixing character, chunk and word embeddings. This way, words composed of similar sub-pieces
are be processed in a comparable way. The second part of the disjunction represents the case
where the probability distribution varies between Dg and Dp. This happens with changes in
content, genre, style and writing conventions, so in bio-medical articles, legal documents or
publications in classical studies. Technical jargon, if not completely absent from generic corpora,
can still appear much more frequently and be distributed in thoroughly different contexts. For
instance, terms like catharsis or hybris are frequent in classical studies but rather scarce in generic
corpora.

Task specificity The second possible scenario is task specificity i.e. Tg # Tpr. As a task is
defined by 7 = {Y, M}, task specificity implies either Vg # YV or Mg # M. Here, we focus on
the first part of the disjunction. Given two tasks 77 and 7 with similar label spaces but different
domains, one could consider doing transfer learning from 77 to 72. This procedure is sometimes
referred to as task-tuning [16]. Its goal is to train a model on 77’s data, before fine-tuning it 7s.
This approach was used e.g. by Han and Eisenstein |16], who yield better results by task-tuning
their model on CoNLL-2003 before fine-tuning it for historical NER. This approach, however, can
only be considered in cases where Vg = Yr, or at least s N Yy # (). This requirement acts as
a limit for tasks with very peculiar label spaces, as is the case in this study. Whereas generic
tasks are provided with numerous labelled dataset that can be used as a first task-tuning step,
specific tasks often lack human-annotated fine-tuning data. If generic entities such as persons or
locations are frequent in open-access datasets, more specific entities like canonical citations are
less furnished, constraining specific tasks to low-resource settings.

1See ConLL-2003 leaderboard for comparison : https://paperswithcode.com/sota/
named-entity-recognition-ner-on-conll-2003|
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To conclude this section is worth recalling a few takeaways. NER state-of-the-art models are
attention-based and allow for efficient transfer learning strategies. Generic pre-trained models
use language modelling as a source task and vast unlabelled corpora such as newspapers or
Wikipedia articles as source data. They bear meaningful representations which can be leveraged
to facilitate training on a target task. Transfer learning hence contributed to enhance state-of-
the-art performances in a wide variety of target tasks and showed to be particularly helpful in
domains where little annotated data is provided.

1.3 Goals

In the present study, we leverage transfer learning techniques to extract bibliographical entities
from publications in Classics. Our entities are further detailed in Section [3] and include ancient
authors and works, canonical references, reference scopes and references to fragments. Canonical
references reflect the practice of referring to primary sources, which is frequent in Classical Studies.
They can hint to an ancient author, to an ancient work or to a specific passage. For instance,
"[...] as mentioned by Thuc., III., especially 86-88..." refers to the text spanning from the 86th
to the 88th chapter of the third book of the History of the Peloponesian War by Thucydides.
The example shows that such citations can be fragmented, incomplete, abbreviated and partly
numeric. In that sense, canonical references certainly diverge from traditional entities. As such,
their extraction can be construed as a domain- and task-specific application of NER. In such
an environment, the extent to which transfer learning and attention-based models can enhance
performances remains unknown.

Three transfer learning strategies can be applied to our case. The first consists in fine-tuning a
model pre-trained on generic data, so that Dg = Dgeneric- This method is the fastest as these
models can be found off the shelf, but significant changes between Dg and Dy = D¢yassics Mmay
substantially curb the model’s performances. The second strategy consists in fine-tuning a model
entirely pre-trained on domain-specific data. This method may yield the best results as Dg ~ Dy,
but it is computationally expensive and requires massive amounts of unlabelled domain-specific
texts. To this day, no such model has been made publicly available for the domain of Classics.
For reasons of time, this strategy was excluded from the scope of this study. The third strategy
consists in fine-tuning a model pre-trained on both generic and domain-specific data, so that
Ds = {Xgeneric U Xciassicss Ps(X)}, where Pg(X) can be seen as a weighted average of Pgeneric
and Ppojgssics- This can be done by continuing generic pre-training on domain-specific data. This
method is less costly than the previous one. Furthermore, since Xp C Xg and since Pg(X) is
partially dependant on Pr(X), this method should smooth the difference between Dg and Dr.

In this study, we compare several models and investigate the benefits of continuing pre-training
on domain-specific data. We also test three fine-tuning strategies: baseline fine-tuning, frozen
fine-tuning and fine-tuning with additional data. Finally, we evaluate the impact of data cleaning
(see Section [5|for a detailed list of our research questions). In our case, continuing pre-training on
domain-specific data does not yield significant benefits. The best results are obtained with the
generic ROBERTa fine-tuned with additional data, which yields an F1 score of .82.

This report is organized as follows : Section [2| reviews related literature in domain-specific and
task-specific NER. Section [3] presents the datasets and the entity typology used in this study.
Section [5] presents the experimental design and the obtained results. Finally, Section [6] discusses
theses results.



2 Related work

Two strands of comparable researches are examined below. The first deals with the adaptation of
NER to domain-specific environments, the second with citation extraction. Both underpin the
superiority of domain-specific pre-training and attention-based models.

2.1 Domain-specific NER

As shown by Augenstein et al. [17], NER systems based on static embeddings struggle to
generalize to domain-specific corpora. For instance, using static embeddings, Riedl and Pado |18|
compared CRF and bi-LSTM in generic and historical german data. A first notable finding is
that domain-specific embeddings (fastText, Europeana) did not significantly take over generic
embeddings (fastText, Wikipedia) when tested on historical data. Indeed, Europeana embeddings
are respectively .01 above and .03 below Wikipedia embeddings’ F'1 score on the two historical
datasets. This might be explained by the facts that their pre-training data is smaller and results of
partially noisy optical character recognition (OCR) outputs. Another finding is that in the absence
of a preliminary task-tuning phase, CRF performs better on the low-resource historical datasets.
Authors conclude that CRF might be more flexible in a sparse environment. The question as to
whether contextual embeddings and transformers can improve on these results is addressed by
both Schweter et al. [19] and Labusch et al. |20]. Using the same datasets as [18], Schweter et
al. show a general improvement using both static and contextual generic embeddings. Indeed,
using three stacked layers of generic fastText embeddings trained respectively on Wikipedia,
Common Crawl and Character-level, Schweter et al. obtain a new state of the art (+.03 in
F1 score) on historical data. Their second experiment compares language-model-based system
trained on different pre-training data. Results show that a meticulous choice of pre-training
data (especially with an important overlap in time) is crucial. With a target domain data
ranging from 1710 to 1873, pre-training data ranging from 1703 to 1875 yields the best language
model, considerably surpassing the multilingual BERT. Labusch [20] exploits the transformer
solution further, comparing the generic pre-trained multilingual BERT to a custom German BERT
pre-trained only on domain-specific data. The latter tends to yield better results on historical
datasets, though this improvement could also be attributed to it’s purely German pre-training.
Surprisingly, the model does not overcome Schweter’s LSTM+CRF with mixed embeddings.

Research conducted in other specific domains also conveys uncertain conclusions regarding the
efficiency of domain-specific pre-training. Using their domain-specific BioBERT for biomedical
NER, Lee et al. |21] report a slight improvement of 4+.062 in F1 score. Their model is initialized
with BERT and further pre-trained on PubMed abstracts and fulltexts (18B tokens). Another
model is SciBERT [22|, which is pre-trained on a broader scientific corpus containing 3.2B token
from biomedical and computer science related articles. This time, the model is trained from
randomly initialized weights and shows larger improvements on BERT, improving its results up
to 6% in NER. Closer to the domain of classics, ArcheoBERTje [23] yields +.035 in F1 score
when compared with the generic Dutch BERT. Like BioBERT, its pre-training continues the
generic pre-training of BERT with domain-specific data ( 700M tokens). As a possible conclusion
on domain-specific NER, in-domain pre-training seems generally to enhance performances, even
though its improvement margin is not always striking and may be domain- or language-related.
Besides, general conclusions remain hindered by the fact that authors seldom provide detailed
information regarding training configuration, hyper-parameters, sentence segmentation or text
pre-processing.



TABLE 1. Size and function of domain-specific datasets used in this study.

Dataset Usage Labelled Tokens
JSTOR - CS-raw  pre-training no 172M
JSTOR - CS-cl pre-training no 149M
JSTOR - CSExt-cl pre-training no 700M
EpiBau fine-tuning  yes 1.13M

2.2 Task-specific NER: citation extraction

Romanello [2] used various shallow machine learning algorithms to extract canonical references
from Classics publications. His investigations show that CRF perform significantly above Support
Vector Machines and Maximum Entropy models. His CRF model is therefore kept as a baseline
for this study and will be further detailed in Section .2 Working on comparable reference
extraction tasks, Rodrigues Alves et al. [24] investigate the benefits of deep neural networks over
shallow CRF. They show improvements ranging up to .06 in F1 score using LSTMs with both
word and character embeddings. Their results also show a consistent benefit of pre-training static
embeddings on domain-specific data.

3 Data

Terminology The data used in this study must be distinguished according to its usage and its
domain specificity. First, pre-training data denotes the unlabelled corpora used to train language
models. It can be generic (Ds = Dgeneric) or domain-specific (in which case Dg ~ D =~ Doyassics)-
As each of the generic models presented below uses its own pre-training corpora, generic pre-
training corpora are listed in Section [l Secondly, fine-tuning data denotes the labelled corpus
used to train the target NER model. Its domain is Dy = Dgygssics- A summary of domain-specific
data is shown in Table [1

Domain-specific pre-training data Domain-specific pre-training data is composed of public-
ations issued by JSTOR, a digital library of academic journals, books, and primary sources. The
data was obtained from JSTOR under the Data for Research (DfR) programﬂ using JSTOR’s
dedicated platform, constellatdﬂ Data has two classification systems: Source Category and Text
and data-mining (TDM) Category. The former results of human annotations made at journal
level. The latter results of an automatic classification performed at document level. To this date,
it is only possible to request data from selected TDM Categories. However, as none of these
categories expressly mentions classical studies, a broad query was passe

The resulting dump contains humanities-related publications of various kinds (academic articles,
news, chapters...) dating from the late 18th century to present. As many documents have been

Zhttps://about. jstor.org/whats-in- jstor/text-mining- support/

3https://constellate.org/builder/?start=1900&end=2021

4The exact query is the following: All documents from JSTOR about Linguistics - Applied linguistics, Linguistics
- Grammar, Linguistics - Language, Linguistics - Philosophy of language, Linguistics - Theoretical linguistics,
History - Historical methodology, History - Historical periods, History - Philosophy of history, Arts - Art history,
Philosophy - Applied philosophy, Philosophy - Axiology, Philosophy - Epistemology, Philosophy - Logic, Philosophy
- Metaphilosophy, Philosophy - Metaphysics, Political science - Civics, Political science - Government, Political
science - Military science, Political science - Political geography, Political science - Political sociology, Political
science - Politics, Religion - Religious studies, Religion - Spiritual belief systems, Religion - Theology limited to
document type(s) article, chapter, book from 1800 - 2021


https://about.jstor.org/whats-in-jstor/text-mining-support/
https://constellate.org/builder/?start=1900&end=2021

TABLE 2. Set of entities used for the extraction of classical references in EpiBau Corpus.

Code Description Example

AAUTHOR The name of an ancient author Sophocles’ Oedipus Rex was performed in...
AWORK The name of a ancient work The Ajax combines the epic legacy...
REFAUWORK A formatted reference to primary text The embassy mentioned in Pliny, Nat. Hist. ...
REFSCOPE The scope of the reference ...compared it with Vergil, Georg., IV, 149-218
FRAGREF A reference to a fragment ...was not as damaged as fr. 6 WEST

automatically recognized from scans, data is partially noisy. In order to create the training
corpora, two selection steps are performed. The first selection step consists in keeping only
documents written in English (~ 99%). The second selection step deals with a peculiar layout
recognition error observed in few documents where narrow columns have been merged in a single
paragraph. Resulting texts are considerably corrupted and excluded from all training corpora
(=~ 1%), as they would encourage the model to account spurious contextual relations.

For experimental purposes, JSTOR data is divided into two corpora: CS, which contains only
publications counting "Classical Studies" as one of their source categories and CSEzt, which
contains CS and a random sample of documents picked within the source categories that matched
most frequently with "Classical Studies". CS has a raw (raw) and a cleaned (cl) version. On
the contrary to the raw version, the cleaned version consists of pre-processed texts. As these
two conditions are used to measure the effect of noise on language modelling, pre-processing
aims at trimming identified sources of noise. The most frequent source of noise results from
the interposition of footnotes, captions or running headers within the main text of a document.
Pre-processing therefore includes a step to remove recurrent tokens at the beginning and at the
end of each page. Character misrecognitions constitute a second important source of noise. In
the field of classical studies, these errors happen mainly with Greek characters or, presumably
with poor quality scans. In order to avoid training on extremely noisy data, sentences with
more than 50% punctuation or less than 40% words present in 600k words lexicon are discarded.
The first criterion proves to be useful, as erroneously detected characters are often transcribed
to punctuation marks by the OCR engine. Other pre-processing steps include accent-striping,
web-links removal, numbers removal and de-hyphenation.

Fine-tuning and evaluation data The EpiBau Corpus{ﬂ is composed of 4 annotated volumes
of Structures of Epic Poetry, a compendium on the narrative patterns and structural elements in
ancient epic. It is used both for fine-tuning and testing the models. The data contains 1.1 million
tokens and 37500 annotated entities. Initially, the corpus served was made as a by-product of the
semi-automatic creation of an index locorum for the publication [25]. The entity types labelled
in the EpiBau Corpus are listed in Table 2] EpiBau is divided in train-, dev- and test-sets to a
ratio of 70-15-15. Entity and token counts per split are displayed in Table [3] All the experiments
reported below are run on Epibau v0.3.

4 Models

4.1 Transformers

As exposed in Section transformers use an entirely attention-based encoder-decoder architec-
ture. The transformers tested here slightly modify the architecture proposed by Vaswani et al. |13]

https://github.com/mromanello/EpibauCorpus, private at the time of writing.
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TABLE 3. Set of entities used for the extraction of classical reference in EpiBau Corpus.

train-set dev-set test-set

Tokens 712462 125729 122324
AAUTHOR 4436 1368 1511
AWORK 3145 780 670
REFAUWORK 5102 988 1209
REFSCOPE 14768 3193 2847
FRAGREF 266 29 33
Total entities 13822 1415 2419

though, as they introduce bi-directional multi-head attention. Multi-head attention consists in
using several randomly initialised attention cells instead of a single one. Attention-heads outputs
are concatenated and normalized to form each block’s output representation. Bi-directional
attention implies that each attention head consists in two separate attention cells trained on
ordinary sequences and on inverted sequences respectively. The decoder to add on top of this
multi-head attention encoder depends on the target task 7p. For sequence labelling tasks like
NER, both CRF and softmax can be chosen as decoders. In this study, only softmax was
implemented. Fine-tuning the target model mainly optimizes the decoder layers, but gradient
descent also actualizes the encoder’s parameters. In the experiments described in Section [5]
three transformer-models (BERT, RoBERTa and DistilBERT) are pitted against each other and
compared to Romanello’s CRF [2].

BERT BERT (Bidirectional Encoder Representations from Transformers) was introduced by
[1]. The BASE model is a bi-directional multi-head attention transformer with 12x768 encoder
layers, which sum to 110 million parameters. It uses a 30,000 token vocabulary with WordPiece
embeddings [26], a mechanism that uses bite-pair encoding to separate tokens into frequent atomic
chunks. For example, the word "actualisation" gets tokenized to "actual" and "#+#isation",
where the two hashtags indicate that a chunk is directly attached to the previous one. BERT is
pre-trained using masked language modelling and next sentence prediction. The former consists in
training a model to guess masked words in an input sequence. The latter is self-explanatory and
mainly serves question answering purposes. Pre-training data is composed of English Wikipedia
and BooksCorpus [1]. At the time of publication, the two corpora reached 3,3 billion words for a
total of 16GB of uncompressed text. In this study, the cased English version of BERT pagE is
used.

RoBERTa RoBERTa was introduced by [14] as an improved version of BERT. It shares the
same architecture with BERT, uses the same embeddings and the same pre-training method.
It is, however, pre-trained on an even larger pre-training corpus, combining about 160GB of
uncompressed text from Wikipedia, BooksCorpus, CC-News, OpenWebText and Stories [14]. In
this study, RoBERTapggE is used.

DistilBERT DistilBERT was introduced by [15] as a distilled, smaller and faster version of
BERT gasg. It has the same architecture with only 6 encoder layers and 66 million parameters.
Like BERT, it is trained on English Wikipedia and BooksCorpus for masked language modelling.
In this study, the cased version of the English DistilBERT is used.

The common properties of these three transformers allow for a controlled experimental design



with only two parameters: the size of the pre-training data (BERT vs RoBERTa) and the size of
the encoder (BERT vs DistilBERT).

4.2 CRF Baseline

In order to evaluate the benefits of transfer learning, transformers are compared to a CRF baseline
developed by Romanello [2]. CRF are statistical models which can consider nearby elements
when classifying a given example. This specificity makes them particularly appropriate to process
textual data. The model used here leverages a rich set of features to extract bibliographical entities
from pre-processed text. Pre-processing steps include language detection, sentences segmentation
and part-of-speech (POS) Tagging. Features are hand-selected and comprise linguistic features
(e.g. POS tags), word-level features (e.g. punctuation or capitalization) and semantic features.
Among these is the presence of the token within two dictionaries covering multiple languages
and containing names and abbreviations of ancient authors and works respectively. Training and
testing is done using the corresponding splits from EpiBau Corpus.

5 Experiments, results and discussion

As mentioned in Section we test two transfer learning strategies (generic pre-training and
continued pre-training) which we cross with three fine-tuning strategies (basic fine-tuning, frozen
fine-tuning and fine-tuning with additional data). Experiments are listed in Table 4] Our research
questions are the following:

1. Cross-model comparing. Which model achieves the best performances (bsl experiments)?
(a) Do transformers improve on CRF baselines (CRF bsl versus transformers bsl)?
(b) Among transformers, which model works best?

2. Pre-training. How does further domain-specific pre-training affects the results 7

(a) What is the effect of the noise present domain-specific pre-training data (CS-cl bsl
versus CS-raw bsl)?

(b) What are the benefits of continuing pre-training on domain-specific data (Generic
pre-training bsl vs Continued pre-training bsl)?

(c) What is the effect of quantity and relevance of domain specific pre-training data (CS
bsl versus CSExt bsl)?

3. Fine-tuning. How does the fine-tuning strategy affect the results ?
(a) What is the effect of keeping the encoder frozen (frz versus bsl)?
(b) What is the effect of additional fine-tuning data (add versus bsl)?

For clarity of presentation, the experiments are grouped by fine-tuning strategy. The results
of pre-training strategies are presented bsl experiments. This section is organized as follows:
Sections [5.1] and first present implementation and pre-tests. Section [5.3| presents the baseline
fine-tuning experiments. Both models and pre-training strategies are compared, addressing
questions (1) and (2). Sections and respectively focus on the general effects of freezing
and adding supplementary fine-tuning data, respectively addressing questions (3.a) and (3.b).
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TABLE 4. Experimental Design, where bsl, add and frz respectively stand for Baseline, Additional data and
Freeze. BC stands for BooksCorpus while R refers to the specific pre-training corpora used for ROBERTa, as
listed in Section {4l Finally, CS stands classical studies, CSExt for classical studies extended and ¢/ for cleaned

(cf. Section

Pre-training strategy Pre-training Data Model Exp.
1 - - CRF bsl
2 - - CRF add
3 Generic pre-training Wiki, BC BERT bsl
4 Generic pre-training Wiki, BC BERT frz
5  Generic pre-training Wiki, BC BERT add
6  Generic pre-training Wiki, BC DistilBERT bsl
7  Generic pre-training Wiki, BC DistilBERT frz
8  Generic pre-training Wiki, BC DistilBERT add
9  Generic pre-training Wiki, BC, R RoBERTa bsl
10 Generic pre-training Wiki, BC, R RoBERTa frz
11  Generic pre-training Wiki, BC, R RoBERTa add
12 Continued pre-training Wiki, BC, CS-cl DistilBERT bsl
13  Continued pre-training Wiki, BC, CS-cl DistilBERT frz
14  Continued pre-training Wiki, BC, CS-cl DistilBERT add
15  Continued pre-training Wiki, BC, CS-cl BERT bsl
16 Continued pre-training Wiki, BC, CS-cl BERT frz
17  Continued pre-training Wiki, BC, CS-cl BERT add
18 Continued pre-training Wiki, BC, CS-raw DistilBERT bsl
19 Continued pre-training Wiki, BC, CS-raw DistilBERT frz
20 Continued pre-training Wiki, BC, CS-raw DistilBERT add
21 Continued pre-training Wiki, BC, CSExt-cl DistilBERT bsl
22 Continued pre-training Wiki, BC, CSExt-cl DistilBERT frz
23 Continued pre-training Wiki, BC, CSExt-cl DistilBERT add

5.1 Implementation and evaluation settings

Experiments are implemented using HuggingFaceﬂ a framework which provides a wide panel
of pre-trained models and language processing tools. The detailed scripts used to perform
experiments can be found in the dedicated Github repositoryﬂ In the series of experiments
reported below, the performances of the models presented in Section [4] are evaluated on EpiBau
test-set. Two frameworks are used for NER evaluation: Seqeval |27] and CLEF—HIPE—QOQO—scoreIﬂ
Seqeval can be used directly within HuggingFace. It computes entity-based precision, recall
and F1 score for each entity class in a strict way: entities are marked as true positives only
if all the tokens constituting the entity are correctly predicted. Overall metrics are computed
using micro-averages. This method averages at the level of entities and not of classes, which is

Shttps://github.com/huggingface/
"https://github.com/AjaxMultiCommentary/ner_for_classics
Shttps://github.com/impresso/CLEF-HIPE-2020-scorer
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recommended when classes are imbalanced, as is the case in this study (see Table . Seqeval is
only used for evaluation during training.

The CLEF-HIPE-2020-scorer is an entity-based evaluation module for named entity recognition
and linking. It is used to compute micro-averages both in a strict and fuzzy way, the latter
marking entities as true positives if at least one of its constituting tokens is correctly predicted.

Each scorer has specific settings and may compute the results differently. Unless specified
otherwise, all results are presented in the CLEF-HIPE strict evaluation method. The choice of
the evaluation method is further discussed in Section [6

5.2 Pre-testing

A first series of tests was performed to estimate the minimal number of training epochs requested
to reach optimal results. Figure [I] shows the evolution of F1 score, precision and recall during a 15
epochs. As expected by [1], no metric significantly improves after around epoch four. Following
experiments were run with seven epochs.
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FIGURE 1. Evolution of metrics during fine-tuning. Evaluation is performed at the end of each epoch using
seqeval.

5.3 Baseline fine-tuning
5.3.1 Comparing models

CRF vs Transformers We first address research question (1.a): Do attention-based models
improve on CRF baselines? Our goal hereby is also to assess how the three generic transformers
perform in the domain of Classics. BERT, DistilBERT and RoBERTa are therefore directly
fine-tuned on EpiBau-train. In order to minimize the number of experiments, hyper-parameters
are left to their default Valudﬂ. According to general benchmarks, contextual representations
and deeper neural architecture should allow transformers to take this round over. However, the
domain-specificity of the task at hand reasonably influences these predictions.

HIPE-strict results of bsl experiments are shown in Table [5| and confirm these expectations,
even though the gap between CRF and transformers is not as substantial as in comparable
studies conducted on a more generic domain. Indeed, the generic versions of BERT, DistilBERT
and RoBERTa improve the general F1 score "only" of 1.2%, 0.5% and 2.5% points respectively.
In return, the CRF baseline remains higher in general precision, a superiority which can be
explained by the use of gazetteers. These gazetteers however, cannot help capturing unregistered

9As set by HuggingFace’s TrainingArguments ().
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or altered entities, a limitation which can account for the lower recall of the CRF baseline. This
superiority in precision holds true across all entity types and is particularly striking for ancient
works (AWORK), where CRF’s precision is about 7% higher than BERT’s. However, with a
recall score below 50%, the former can’t match the latter’s F1 score. Despite showing the best
performances for REFAUWORK and REFSCOPE, the CRF baseline is held back by the poor
recall scores in AAUTHOR and AWORK. It is also interesting to observe that CRF’s results are
less impacted by the evaluation method. As shown in Table 6], CRF gains 10% in general F1
score when evaluated in a fuzzy way, whereas transformers gain 12% on average. This indicates
that more entities are incompletely captured by transformers (see Section @

The relatively small improvements yielded by transformers models must be discussed in the light
of other areas of research. As mentioned in Section transformers have been able to show
notable improvements in generic tasks. In this domain-specific and data sparse environment,
their true potential may still restrained.

BERT vs DistilBERT vs RoBERTa We now address research question (1.b) and pit the
three transformers models against each other. As mentioned in Section[4.I] the chosen transformers
allow for a controlled experimental design in which on only two parameters change: the size of
the pre-training data (BERT vs RoBERTa) and the size of the encoder (BERT vs DistilBERT).
Hypotheses are the following :

1. As a distilled, lighter version of BERT, DistilBERT should be faster to train but yield
results inferior to BERTs.

2. As RoBERTa uses the same architecture than BERT with a larger pre-training data, it
should be able to transfer more generic representation and therefore yield better results
than BERT.

These hypotheses have been verified by several benchmarks and are confirmed once more in
Table |5, With a general F1 score of .785%, BERT is approximately .07% above DistilBERT
and 1.3% below RoBERTa. Though DistilBERT achieves a slightly better general precision than
BERT, it is inferior in recall. Besides, if all three models are close competitors for REFAUWORK
and REFSCOPE, the categories AAUTHOR and AWORK show greater differences in favor
of RoBERTa. Besides, it may be noted that BERT’s improvement over DistilBERT remains
consistent in continued pre-training. With a heavier architecture, BERT is able to ingest more
precise representations and yields slightly higher precision, recall and F1 score than DistilBERT.
This being said, differences are extremely tiny. Regarding the difference in pre-training time, it
may be more reasonable to use DistilBERT for quick experiments. For now, these experiments
show that more robust representations obtained from larger pre-training corpora achieve slightly
better results in a domain-specific area.

5.3.2 Comparing pre-training strategies

We now address research question (2): What are the benefits of continuing pre-training on domain-
specific data? As it can be trained much faster than the two other transformers, DistilBERT is
chosen as a baseline for pre-training experimentﬂ and is further pre-trained on CS-cl, CS-raw
and CSFEuxt-cl. Continued pre-training is performed for 3 epochs with default parameters, on
masked language modelling. It can be observed that each model’s generic pre-training phase also

0Pre-training all the models would have been computationally costly and would have gone beyond the scope
and time allocated to this research. Besides, in a first round of evaluation (performed before revision of the data),
RoBERTa was not improving on BERT and DistilBERT. The model was therefore excluded from subsequent
experiments.
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TABLE 5. Strict CLEF-HIPE results for pre-training and fine-tuning experiments. For pre-training on Generic
+ CSExt-cl, (1) and (3) indicate the results of the model after 1 and 3 epochs of pre-training respectively.

ALL AAUTHOR AWORK FRAGREF REFAUWORK REFSCOPE
6274 1511 670 33 1213 2847
Pre-training data  Model Exp. F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R
B CRF bsl 173 844 T13 .63 829 508 .62 856 487 .471 .667 .364 .77 782 758 868 .876 .86
add .8 .858 .749 706 .856 .601 .659 .866 .531 429 522 .364 .784 .796 .772 .879 .886 .873
bsl 785 799 772 722 T8 672 718 771 672 167 .154 182 731 .72 742 862 .856  .868
BERT frz T3 Tt3 T4 743 T8 711 722 T2 724094 077 121 704 685 725 .841 834 .847

add .804 811 .797 775 805 .747 746 .799 .7 135 122 152 743 728 759 867 .863 .87

bsl 778 802 756 719 808 648 .678 773 .604 145 139 152 725 707 744 858 .855 .862

Gen DistilBERT  frz 753768 738 .693 775 626 .609 .668 .56 137 125 152 698 .673 724 844 .835 .853
add 798 .807 .789 .768 .81 731724 786 .67 158 .14 182 717 698 737 872 868 877

bsl 798 806 .79 758  .801 .72 7T 799 755 143 135 152 742 734 751 854 .85 .858

RoBERTa  frz 779 785 773 7360 78T 692 751 752 751 103 .089 121 726 714 .739 839 835 .844

add .821 .827 .815 .819 .842 .797 .796 818 .776 .149 147 152 756 .755 .756 .863 .86 .866

bsl 786 801 .771 747 806 .696 .73 812663 132 116 152 .71 697 723 858 .852 .865

BERT frz 772 783 761 .73 793 676 711 762 .666 .162 .146 .182 .697 .675 .721 .846 .84 .851

add 808 .811 .805 .791 818 766 .768 797 .74 162 146 182 735 717 753 866 .861 .871

bsl 783 799 768 714 .78 653 .7T19 775 .67 15 128 0 182 728 708 749 864 .86 .867

DistilBERT  frz 761 765 758 724 779 677 .688 702 675 .052 .045 .061 .701 .68 722 832 821 844

add 803 .813 .794 771 818 729 725 772 .684 133 119 152 742 722 762 873 .869 .876

bsl 786 796 776 729 .78 .685 .715 748 .685 .189 171 212 723 708 .739 .864 .861 .867

Gen, CS-raw DistilBERT  frz 773 77T 768 734 793 684 669 .689 651 .077 .067 .091 722 .699 .747 846 835 .857
add .8 808 792 766 .807 729 .73 7 694 135 122 152 728 713 743 873 .869 .877

bsl 7790799 759 71 794 641 703 776 .642 139 128 152 716 .701 .731 .863 .859  .867

Gen, CSExt-cl (1) DistilBERT frz 767 .TT1 763 736 798 683 .662 .674 .651 .088 .086 .091 .701 .672 .732 .842 .833 .852
add 798 807 789 763 808 722 716 .766 .673 .154 156 .152 721 701 742 874 .868 .879

bsl .78 796 764 727 793 .67 673 753 .609 119 118 121 .723 706 .741 .86 .853  .867

Gen, CSExt-cl (3) DistilBERT  frz .76 768 752 742 .81 .685 .634 .666 .606 .087 .083 .091 .68 656 705 .839 .829 .849
add 805 .808 .802 .801 .831 773 752 .784 .722 .08 .079 .091 .709 .689 .73 87 .865  .875

Gen, CS-cl

TABLE 6. Fuzzy CLEF-HIPE results for pre-training and fine-tuning experiments. For pre-training on
Generic and CSExt-cl, (1) and (3) indicate the results of the model after 1 and 3 epochs of pre-training
respectively.

ALL AAUTHOR AWORK FRAGREF REFAUWORK REFSCOPE
6274 1511 670 33 1213 2847
Pre-training data  Model Exp. F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R

bsl 879 .960 .81 696 917 561 .632 .871 496 .549 778 424 942 957 928 979 .988 .97
add 895 .960 .838 .76 .921 647 .67 .881 .54 464 565 394 .949 .963 935 .98 .988 973
bsl 906 922 891 .814 879 758 .767 .824 718 .25 231273 927 913 941 982 975 .989
BERT frz 911 911 912 .84 879 804 796 794 799 212 173 273 .92 895 947 981 973 988

add 919 927 911 .856 .889 .825 .783 .838 .734 324 293 364 .93 911 .95 .984 .98 988

bsl 901 928 875 .8 899 721 739 842 .68 377 .361 .89 937 984 98 988
Gen DistilBERT  frz .888 .906 871 .783 876 .707 713 .783 .655 .301 .275 872 937 976 .966 987
add .91 921 .9 843 889 802 .767 .834 .71 342302 885 935 983 978 987

bsl 917 926 907 .849 897 .806 .815 .839 .793 .314 .297 905 926 982  .977 986

RoBERTa  frz 911 918 904 834 891 783 .799 8 799 256 222 903 936 981 975 986
add .928 .935 .921 .889 913 .865 .822 .844 .801 .269 .265 921 922 983 .98 987
bsl 91 928 893  .828 .893 772 763 .848 .693 289  .256 91 944 983 975 .990
BERT frz 906 919 893 817 .888 757 .759 814 .71 297 268 891 .951 983 976  .989
add 924 927 .921 874 903 846 .808 .839 779 432 .39 485 925 903 948 983 977 988
bsl 901 919 883 791 874 723 769 .829 716 .3 255 364 917 .892 943 .984 .98 987
DistilBERT  frz 903 907 899 816 877 763 .779 795 764 312 273 364 .92 894 949 974 .96 987
add 912 922 901 .838 .889 .792 776 826 .731 .32 286 364 918 .894 943 983 979 .988

bsl 907 919 896 .813 .87 764 773 808 .74 405 366 455 923 903 943 .984 .98 .988
Gen, CS-raw DistilBERT  frz 904 909 898 .82 886 764 77T 799 755 231 2 273 917 887 948 977 964 989
add 913 922 904 836 .881 .796 .78 823 742 405 366 455 924 906 .943 982 978 987

bsl 9 924 877 789 884 713 747 825 .682 278 256 .303 923 904 943 .984 979 989
Gen, CSExt-cl (1) DistilBERT frz 899 904 895 .821 .89 162 747 .76 734235 229 242 91 873 .951 976  .965 987
add 911 .921 901 .84 .89 795 763 815 716 338 344 333 916 .891 942 983 977 .989
bsl 903 922 885 .809 .883 747 .731 817 .661 418 412 424 924 903 947 982 974 .990

Gen, CSExt-cl (3) DistilBERT frz 898 907 888 .825 .901 761 .739 775 706 .29 278 303 908  .876 941 971 959 .983
add .92 924 917 872 905 .841 .799 833 .767 .31 289 333 916 .89 943 982 977 .988

- CRF

Gen, CS-cl
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includes the task next sentence prediction. However, since this task mainly serves the benefits
of question answering [1], it is not performed here. Besides, Han et al. [16] achieved promising
results by further pre-training BERT for masked language modelling only. In order to have an
element of cross-model comparison, we also trained BERT on CS-cl.

Cleaned versus raw data In order to conduct the following pre-training experiments with
optimal data, we first address research question (2.a): What is the effect of the noise present in
domain-specific pre-training data? To answer this question, we compare the results obtained
by further pre-training DistilBERT on CS-cl and CS-raw. CS-raw is a 172M tokens corpus.
When cleaned in the way described in Section [3] its size shrinks to 149M tokens. Pre-training is
continued for 3 epochs, so that the language models sees a total of ~400M tokens. As mentioned
above, it should be noticed that the size of this additional pre-training is largely inferior to the size
of the generic pre-training data DistilBERT has already seen (3.3B tokens). For this experiment,
expectations are uncertain. Cleaning the data may feed the model with enhanced data, but raw
data may as well improve the model’s robustness.

Results are almost identical, with a feeble advantage for the raw model (+0.3% F1 score), a trend
also observed in the freezing experiments. This result is difficult to interpret. Indeed, the bonus of
pre-training on noisy data is eventually to increase the model’s robustness to OCR imperfections.
However, fine-tuning data is born digital and therefore not subject to this kind of noise.

Generic pre-training versus continued pre-training We are now addressing both research
questions (2.b) and (2.c): What are the benefits of continuing pre-training on domain-specific
data? What is the effect of quantity and relevance of domain specific pre-training data 7 It is
difficult to formulate clear-cut hypotheses for these experiments. Globally, further pre-training is
expected to help the language model fitting the target domain better. However, related works
show (see Section [2) its benefits to be irregular. Hypotheses pertaining the quantity of additional
pre-training data also remain dubious. One can argue with Schweter et al. [19] that the selection
of the pre-training data is crucial and that training only on classical studies related data would
allow the language model to gain representations that are closest to the target domain. However,
pre-training on a larger humanities-related dataset may also yield better results as the size of the
pre-training data increases.

In the experiments reported here, continuing pre-training on domain-specific data yields no
significantly superior results. When further pre-trained on CS-cl, DistilBERT only gains 0.5% F1
score. The improvement margin is even tighter for BERT. However, it is interesting to see that
AAUTHOR and AWORK gain from pre-training on classical studies with BERT. However, this
improvement is not really followed by DistilBERT, which hampers general conclusions.

With such a little improvement, one can be tempted to conclude that that additional pre-training
data is not sufficient to produce significant improvement. Indeed, CS-cl contains only 149M
tokens, which is maybe too small to produce significant improvements. Results, however, are
not better with the larger CSEzt-Cl (=700M tokens) though. Table 5| shows no significant
improvement in fine-tuning, neither after 1, nor after 3 epochs, even though language model’s
perplexity@ drops from 7.62 to 6.83.

Hperplexity is an intrinsic metric commonly used to assess the performance of a language model. It is inversely
proportional to the probability given by the model to the test-set of the pre-training corpus, which should be high
if the model predicts the test data well. A drop in perplexity therefore means a better language model.
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5.4 Fine-tuning frozen models

In order to measure its true contribution in fine-tuning, the encoder is partially frozen in this
experiment. Freezing a layer prevents its parameters to be actualised by gradient descent, hitherto
keeping the representations of the pre-trained model unchanged. Pre-testing runs showed that
freezing the entire encoder yields catastrophically poor results. It was therefor chosen to freeze
half of the encoder blocks: 6 layers for BERT and RoBERTa, 3 for DistilBERT.

Hypotheses for this experiment are based on the following lines of thought: if pre-trained
representations fit the target domain well, freezing the model should produce results that are close
to bsl experiments. On the contrary, if these representations need to be considerably updated
during fine-tuning, freezing should yield inferior results. The following hypotheses can hence be
formulated :

1. As freezing partially impedes the capacity of the model to adapt to the target domain,
freezing experiments should yield results slightly inferior to baseline experiments.

2. As continuously pre-trained models should fit the target domain better, freezing should
have less impact on continuously pre-trained models than on generic models.

Results are shown in Table [5| and allow to confirm the first hypothesis. In average, freezing the
models yields an F1 score 1.7% inferior to baseline fine-tuning results. The second hypotheses is
more delicate to confirm. For the generic DistilBERT, the difference in general F1 score between
bsl and frz is of 2.6%. For the continuously pre-trained model, this difference is of 1.7% in average,
which goes is the direction expected by the second hypothesis. For BERT however, the differences
were of 1.4% and 1.2% respectively, which disproves the hypothesis. These tiny difference between
differences is difficult to interpret, especially without cross-validation.

5.5 Fine-tuning on additional data

To measure the benefits of additional fine-tuning data, models are fine-tuned on both train- and
dev-set in this experiment. The dev-set adds ca. 149k tokens and 5526 entities, augmenting the
bsl training data by +20%. This experiment is expected to yield results systematically superior to
baseline fine-tuning. Results confirm this hypothesis and show consistent improvement between
+1.9% and +2.5% in F1 score. This allows RoBERTa to reach the highest F1 score recorded in
all experiments: 82.8%. It is interesting to see that this improvement is not distributed equally
across classes. Indeed REFAUWORK and REFSCOPE seem to be captured quite rapidly by
the models, which, regarding their structured morphology and the preponderance of numbers, is
expected. Adding supplementary fine-tuning material only increases the results slightly in both
these categories. However, AWORK and AAUTHOR gain significantly in F1 score, precision
and recall, with an average of +3.5% and +5.5% in F1 score respectively. This improved also
opens wider perspectives on task-tuning. Indeed, a profitable strategy for future works could
be to augment fine-tuning with samples containing authors already annotated as "PERS" in
generic data. Finally, one could have expected continuously pre-trained model to be less impacted
by additional fine-tuning material, as they are supposed to need less adaptation to the target
domain. This was not confirmed, as the average F1 score improvement is of 2% for both generic
and continuously pre-trained models, with very little variance (+0.003).

6 General discussion

The experiments reported above call for a first series of observations pertaining the feeble impact
of domain-specific pre-training and the evaluation method. They also convey a more detailed
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error analysis, which is provided before general conclusive remarks.

Pre-training strategies With no significant improvement over the generic model, we cannot
conclude that further pre-training the model helps in our case. This result is difficult to interpret.
Even if domain-specific pre-training is supposed to enhance the source model’s capacity to create
representations that fit the target domain better, it is worth recalling that this technique does
not always yield superior results. As mentioned in Section [2] other analogous publications
show little or no improvement. BioBERT [21] for instance, yields an improvement +0.62% F1
score on biomedical NER despite being further pre-trained on 18B tokens of in domain-specific
texts. Working with static embeddings, Riedl and Pado [18]) also enhance their results by a tiny
margin with domain-specific pre-training. However, other models such as ArcheoBERTje [23|
and Rodrigues Alves et al. [24] show significant improvements. In the experiments presented
above, further pre-trained models were expected to yield superior results and potentially to be
less impacted by freezing and by the addition of training material. None of these hypotheses
proved to be true. Besides, no particular improvement was consistently observed in any entity

type.

In such an uncertain context, it is not clear whether in-domain pre-training should be a priority for
future works. It can be argued that in this study, continued pre-training has not been performed
on sufficient data to create a real difference with generic pre-training, but that future researches
could try to leverage more domain-specific pre-training data or to increase the number of epochs.
One could also consider increasing the learning rate during language modelling. This would
update generic representations more aggressively. However, the mixed results presented above
tend to nuance this account.

Another possible explanation for the lack of improvement is that the domain-specific pre-training
data used in this study does not exactly match with the target domain. CS-raw is a corpus of
articles and chapters extracted from publications (mainly journals) manually classified as classical
studies. As such, it should be closer to EpiBau in terms of features and distribution, but its
quality is altered by recurrent OCR noise which is not present in the fine-tuning data. However,
as an extensive cleaning of the data did not improve the results either, this explanation should be
dismissed. This being said, further experiments should be conducted on noisy fine-tuning data in
order to draw more stable conclusions.

Choosing the right evaluation method A critical point of this study lies in the choice
of evaluation method. As mentioned in Section [5.1] three evaluation methods have been used

Seqgeval, CLEF-HIPE-strict and CLEF-HIPE-fuzzy. In a first round of evaluation which
determined the experimental design, models were evaluated using seqeval, which yielded results
far above CLEF-HIPE-strict. This difference was difficult to explain as both tools are supposed
to be entity-based and CoNLL complian@ After several experiments, the error showed to be
due to an implementation error in HuggingFace which this research led to ﬁx[l—_g]. On the other
side, the use of the CLEF-HIPE-scorer also conveys several remarks. First, as CLEF-HIPE only
receives IOB inputs, transformers’ tokenized predictions must be reconstructed. As detailed in
Section 4] BERT, DistilBERT and RoBERTa use their own WordPiece tokenizers, which separate
tokens into smaller chunks. Reconstructing predictions implies to mark each token with the
dominant label among the chunks composing it. This method however, can lead to conflicts when
two chunks belonging to a same token are marked with different labels. With an average of 80
conflicts per model, reconstruction also accounts for the difference between CLEF-HIPE and

12See https://www.clips.uantwerpen.be/conl112000/chunking/conlleval.txt for the original perl-script.
13See issue https://github.com/huggingface/transformers/issues/14043
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Seqeval. A second series of remarks must address the differences between the strict and fuzzy
evaluation methods. It is first worth mentioning that these differences are extremely important.
In average, fuzzy scores are 11% above strict scores in average. Besides, the differences observed
between evaluation methods are not homogeneous between categories. The results presented in
this study should therefore be handled with caution, which is furthermore confirmed by error
analysis.

Error analysis We now take the results of the best model and proceed to an in-depth analysis
of its confusion matrix. As shown in Table [ the generic RoOBERTa with additional data has the
highest general F1 score. It is therefor chosen as a basis for error analysis. Within RoBERTa’s
confusion matrix, we first focus on ancient authors (AAUTHOR). In total, the model misses 239
occurrences of AAUTHOR. Counts show that christian poet Arator is most often missed with
21 false negatives for a total of 69 occurrences in the test seﬁ. Even though no direct pattern
could be identified, two remarks can be made. First, Arator is one of the "partial entities", which
happen when a word is not tokenized properly in the original IOB document. Secondly, Arator
only appears in one of the documents constituting EpiBau, in which the token is sometimes
annotated as an AUTHOR, sometimes as a REFAUWORK. This mitigated result encourages
a two-level annotation system in which an author ought to be nested in a formatted reference,
instead of being annotated as REFSCOPE. This method will be preferred for future annotation
guidelines and campaigns. After Arator, Ovid and Appolonius are most frequently missed, with
19 and 15 misses respectively. Despite careful analysis, no particular pattern cound be found to
explain the case where the model failed. Analysing false positives also yields interesting results
which can hint to forgotten annotations in the test-set. Unsurprisingly, the most common mistake
lies in the inclusion of the possessive mark (e.g. "Aristotle’s") in an AAUTHOR entity. Even
though annotation guideline specify that possessive should not be included, some erroneous 288
cases remain in the training data and lead the model to errors. The same holds true for commas
directly following an AAUTHOR entity. In total, commas and possessives account for 40% of
RoBERTa’s false positives (82 of 201). It is striking to see that the remaining false positives are
almost exclusively entities which have been forgotten in the ground-truth (Lucretius, Homer,
Ovid...). Apart from two mythological characters annotated as AAUTHORS (Anna Perenna
and Byblis), it seems that RoOBERTa would have reached a precision score close to perfection
on flawlessly annotated data. Without going in depth in all categories, it should be pointed
that AWORK false positives also hint to missed annotations, as ancient works like the Gospels,
De rerum Natura or the Aeneid are the most frequent sources of false positives. Finally, we
analyse the most numerous categories: formatted references (REFAUWORK) and of reference
scope (REFSCOPE). Here, the model seems to be mainly confused by punctuation marks such
as opening and closing parentheses or brackets, commas and period. In average, these account
for more than 60% of false negatives and about 93% of the false positives in these two categories.
This result hints to potential inconsistencies in the annotation.

Error analysis is encouraging, as it shows that many errors are not due to the model, but to the
data itself. Despite cautious annotation work and double checking, perfect data remains out of
reach and cannot be a reasonable goal. However, it is important to know that the predictions
of the best model are actually better than reported above and probably lend to more stable
downstream NLP pipelines.

Miscellaneous remarks. Finally, several experimental choices can be criticized. First, con-
tinuous pre-training experiments are almost only performed with DistilBERT despite the fact

MNotice that these counts are token-based.
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that BERT and RoBERTa yield superior results. As a matter of fact, experimental design was
devised after a first round of experiments performed on EpiBau v0.1, where RoBERTa’s results
were not as high as BERT’s and only slightly superior to DistilBERT’s. The two former models
being both longer to fine-tune and to pre-train, they were excluded from pre-training experiments.
As error analysis later showed important misses in the annotations of EpiBau v0.1, a revision
campaign was conducted and models were retrained for fine-tuning, but not for pre-training. As
the second round of experiments on EpiBau v0.3 proved it to be better, RoBERTa should be
further pre-trained in future experiments. Secondly, all transformers have been tested with a
softmax output layer only. In order to be coherent with the CRF baseline and be able to judge the
sheer impact of transformer based representation, a CRF should have been used as output layer
in transformers. Apart from these points, the main challenge for future work will be to explain
the feeble results of continuous pre-training. The option of gathering more domain-specific data
can be considered, so as the elaboration of specialised languages models trained exclusively on
classics.

General conclusion The main motivation for this research is to improve NER in a domain-
and task-specific environment. It addresses three main questions : Which model achieves the
best performances 7 How does further domain-specific pre-training affects the results 7 How does
the fine-tuning strategy affect the results 7 We first show that transformer-based models yield
better results than CRF. Among transformer-based models, we show that the largest model with
the largest pre-training data tends to perform best. In the present study, continuing pre-training
on domain-specific data spikes no significant improvement over generic pre-training. Among the
three tested fine-tuning strategies, fine-tuning with additional training data yields the best results,
with a strict F1 score up to .82% for RoBERTa.
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