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ABSTRACT

Learning-based image coding has shown promising results during recent years. Unlike the traditional approaches
to image compression, learning-based codecs exploit deep neural networks for reducing dimensionality of the input
at the stage where a linear transform would be typically applied previously. The signal representation after this
stage, called latent space, carries the information in such a way that it can be interpreted by other deep neural
networks without the need of decoding it. One of the tasks that can benefit from the above-mentioned possibility
is super resolution. In this paper, we explore the possibilities and propose an approach for super resolution that
is applied in the latent space. We focus on the fixed compression model, where the encoder part of the network is
frozen and an enhanced decoder is learned. Additionally, we assess the performance of the proposed approach.
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1. INTRODUCTION

Learning-based image coding has shown promising results during recent years. Unlike the traditional approaches
for image compression, learning-based codecs exploit deep neural networks for reducing dimensionality of the
input at the stage where a linear transform would be typically applied previously. The signal representation
after this stage, called latent space, carries the information in such a way that it can be interpreted by other
deep neural networks without the need of decoding. That is to say, various image processing tasks can be
performed in the compressed domain of leaning-based image codecs. One of the tasks that can benefit from the
above-mentioned approach is super resolution. It has been shown that super resolution techniques based on deep
learning significantly outperform the deterministic interpolation algorithms.

In this paper, we explore different scenarios and propose an approach for super resolution that is applied in
the latent space. There exist two types of architectures: fixed compression model and enhanced compression
model. In the former case, the encoder part of the network is frozen and an enhanced decoder is learned. This
makes it easier to train for many different tasks (one at a time) at the expense of a latent representation that is
optimized only for the fidelity of its visual reconstruction when compared to the input image. In the latter case,
all modules are trained together in an end-to-end fashion; this may result in a more flexible latent representation
that benefits the entire network. In this paper, we investigate the first approach.

Finally, we assess the performance of the proposed approach. Two anchors are used for benchmarking: 1)
original high-fidelity images are downscaled for the experiment and then used for evaluating the results of super
resolution; 2) super resolution is applied to reconstructed images and the result is used for evaluation of super
resolution applied in the compressed domain.

2. RELATED WORK

In this section, we provide information about the state of the art on related topics of single image super resolution
and end-to-end learning-based compression.
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2.1 Single image super resolution

Super resolution is a category of techniques and methods for up-scaling raster images by a factor of two or more.
Single image super resolution only takes into account one isolated image. Thus, as opposed to multi-view or
video super resolution, it cannot benefit from correlation between subsequent images in order to improve visual
quality of the result. Super resolution, in general, is the evolution of image re-sampling methods, such as bilinear,
bicubic, and Lanczos filtering, with the latter considered to be the best among the conventional methods.

In recent years, thanks to the advancements in the field of deep learning, super resolution methods have
achieved impressive performance in terms of visual quality for up-scaling by factors of four and higher. Further
in this subsection, we will review a number of learning-based super resolution methods that will be used in our
work.

• Photo-realistic single image super-resolution using a generative adversarial network (SR-
GAN)1 by Ledig et al. is a super resolution model that uses GAN2 with deep residual networks that
diverge from using Mean Square Error (MSE) as the main optimization target. It differs from previous
super resolution methods as it defines a new perceptual loss using high level feature maps of the VGG3

network. Traditional GANs, as first defined by Goodfellow in 2014,2 take random noise as an input to the
generator. In SRGAN the generator accepts a lower resolution image as an input to GAN. The discrimina-
tor, however, operates in a traditional way. The main difference is in the loss function, which, rather than
optimizing the MSE between the generated image and the original high resolution image, minimizes the
euclidean distance of the feature representations of the reconstructed image and original image obtained
from the pre-trained VGG19 network. This results in generated images that are more faithful to a natural
manifold rather than to a pixel wise comparison.

• Enhanced deep residual networks for single image super-resolution (EDSR)4 by Lim et al. is
a super resolution residual model, scoring first and second place at the NTIRE 2017 competition. It is
based on SRResNet1 with an improved architecture for faster computing and better performance results.
The main difference between this architecture and the previous SRResNet, is the increase in the number
of feature channels of the convolutional layers. The main idea behind this method is that in a general
convolutional neural network architecture the memory occupied is of complexity BF (B being the number of
layers, F being the feature channels) while parameters have a complexity of O(BF 2). Therefore, increasing
the features rather than the layers can increase the capacity with less computational resources. Another
change when compared to SRResNet is the deletion of ReLU activation layers outside the residual blocks.

• Wide activation for efficient and accurate image super-resolution (WDSR)5 by Yu et al. is
a super resolution residual model, scoring first place at the NTIRE 2018 competition, based on EDSR4

with an improved architecture for faster computing and better performance results. The main differences
are the following: the number of convolutional filters is reduced to 32 in the residual blocks, while the
first layer of this same block is wider by a factor of 2 or 4. We can also see that an additional branch is
added to the network, because the convolutional layers outside of the residual blocks are computationally
expensive. Thus, a single convolution layer is extracted from the low resolution image and passes through
an additional convolution with kernel of size 5, up-sampled and added at the end of the network.

• Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN)6 by Wang et al. ob-
serevd that in the SRGAN1 architecture unrealistic visual artifacts, sometimes referred as hallucinations,
may be very annoying. In order to enhance the visual quality, the authors improved the network architec-
ture, adversarial loss and perceptual loss. They introduced a Residual-in-Residual Dense Block without
batch normalization as the basic network building unit. The perceptual loss is alternated by using the
features before the activation, providing stronger brightness consistency and texture supervision.

2.2 Learning-based image compression

Learning-based image methods for end-to-end coding have emerged as powerful tools in the context of image
compression, and are able, in some cases, to outperform the conventional methods.7 Different approaches for
such problem have been explored in the state of the art:



• Among the first works, a compression framework based on Recurrent Neural Networks (RNN) was proposed
by Toderici et al.8,9 for thumbnails and image compression.

• A different approach, adopting autoencoder architectures employing convolutional neural networks (CNNs),
has been explored in many recent works.10–13

• More recently, methods that take advantage of GANs2 have been explored14,15 to generate images with a
higher level of details.

Among the cited methods, the architecture proposed by Ballè et al.12 lately became well-known in the
learning-based image compression research community, and is even considered a groundbreaking work for its
remarkable performance in terms of visual quality of the decompressed images. For this reason, this architecture
has been selected as a base end-to-end codec in this work.

3. SUPER RESOLUTION IN COMPRESSION SCENARIO

Nowadays, almost all the images that are captured by modern cameras, disseminated over communication net-
works, or stored, are compressed with lossy codecs, at the cost of reducing their visual quality. Moreover, an
additional step of decompression is typically required in order to perform image processing tasks, e.g. super
resolution, on such images. Thus, even though our goal is to investigate compressed domain super resolution, in
this section, we establish and prepare a benchmark for assessing the performance of super resolution in a scenario
where lossy compression is a part of the pipeline for pixel-domain image processing.

3.1 Compression scenario benchmark and anchors

For the purpose of benchmarking super resolution in a compression workflow scenario, we propose to establish
two anchors:

1. Original anchor: Super resolution is applied to the original high-resolution images, before any compres-
sion, and the performance is assessed by comparing the results of the super resolution with the correspond-
ing high-resolution originals using PSNR and MS-SSIM objective visual quality metrics.

2. Decoded anchor: Original high-resolution images are down-scaled by a factor of four using bicubic in-
terpolation. Then, the resulting low-resolution samples are compressed using the selected learning-based
codec (bmshj2018-hyperprior12). As a next step, the super resolution x4 is applied to fully decoded im-
ages in the pixel domain. Finally, the results of the super resolution are compared to the corresponding
high-resolution originals using PSNR and MS-SSIM objective visual quality metrics.

Figure 1. Workflow of the evaluation of super resolution methods in a compression scenario.

Figure 1 shows the workflow of the evaluation of super resolution methods in a compression scenario for the
Decoded Anchor described in this subsection. The Downscaled image first undergoes a step of lossy compression
performed by means of the variational image compression with a scale hyperprior12 optimized for both MSE



and MS-SSIM, followed by a step of decompression in order to reconstruct the image in the pixel domain.
Then four different super resolution methods, namely, SRGAN, EDSR, and WDSR, are applied to the resulting
decompressed images with an up-scaling factor of four. Finally, the results of super resolution are objectively
compared to the original high resolution image.

In our experiment, a subset of five images from the DIV2K dataset was used for benchmarking. One can find
the selected images in Figure 2.

3.2 Results of benchmarking

Image ID 0011 Image ID 0052 Image ID 0140 Image ID 0549 Image ID 0659

Figure 2. Five images from the DIV2K dataset used for evaluation of selected super resolution methods in a compression
scenario.
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Figure 3. Average rate-distortion plots of the anchors for the PSNR and MS-SSIM .

Figure 3 presents the results of the benchmarking of the state-of-the-art super resolution methods. The plots
on the left and on the right show, respectively, the average PSNR and MS-SSIM values for five images from the
DIV2K dataset (Figure 2) compressed at different bitrates. The vertical error bars on both plots indicate the
standard deviations of the quality metric values. The horizontal error bars represent a standard deviation from
the target bitrates among different images. The areas filled with transparent colors show the standard deviation
for the Original Anchor, i.e. when super resolution is applied to uncompressed images.

Additional plots for each image can be found in the Appendix A.

4. COMPRESSED-DOMAIN SUPER RESOLUTION

As it was already mentioned earlier in this paper, compressed domain image processing in general and super
resolution in particular may improve computational complexity and possible visual quality in many modern



imaging workflows. In this, section we propose an adaptation of a state-of-the-art super resolution method that
allows performing this image processing task in the compressed domain of a learning-based image codec by
applying the processing directly to the latent representation of an autoencoder.

4.1 Procedure used for compressed domain super resolution

A typical learning-based image codec consists of an autoencoder, possibly quantization step, and an entropy
codec. Autoencoder, here, plays the role of a non-linear transform as opposed to a linear transforms, such as
Discrete Cosine Transform or Wavelet Transform, used in hand-engineered compression algorithms e.g. JPEG
or JPEG 2000.

Entropy coderNon linear 
transform Entropy decoder Inverse 

transform

Bitstream

Latent space

Figure 4. Typical learning-based image compression codec. Note: for the sake of simplicity the quantization step is not
shown.

Figure 4 presents block diagram of a typical learning-based image compression codec. For the sake of simplicity
the quantization step is not shown in this figure. The data between the entropy encoder and decoder is called a
bitstream. The bitstream is the information that is actually transmitted or stored. The blue circles between the
transforms and the entropy coding steps indicate the points of the so called latent-space representation of the
image.
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Figure 5. Coupling of a learning-based image codec with a super-resolution DNN.

Figure 5 shows how the coupling of the leaning-based codec bmshj2018-hyperprior12 and the super resolution
network ESRGAN6 is performed. The input of the super resolution network is directly connected to the output
of the compression network before entropy coding.

The training of the coupled system is performed following the same procedure as in6 with the difference
that before feeding the training images to ESRGAN they undergo a forward propagation through a pre-trained



bmshj2018-hyperprior model for a corresponding quality without the entropy coding step. The implementation
details and the description of the training procedure is publicly available∗.

4.2 Results and discussion

Image ID 0002 Image ID 0007Image ID 0006 Image ID 0012

Figure 6. Four images from the JPEG AI dataset used for evaluation of compressed domain super resolution.

Figure 6 shows four images selected from the JPEG AI dataset for assessing the performance of the compressed
domain super resolution method proposed in this paper.

Figures 7a and 7b show the results of the evaluation of the proposed compressed domain super resolution
(CDSR) method benchmarked against the anchors described in the Section 3.1.
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(a) PSNR
Figure 7. Results of the evaluation of the proposed compressed domain super resolution (CDSR).

∗https://github.com/mmspg/cdsr
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Figure 7. Results of the evaluation of the proposed compressed domain super resolution (CDSR).

CDSR_4x @ Q6Lanczos_4x @ Q6Bicubic_4x @ Q6

Figure 8. Qualitative results of compressed-domain super resolution. From left to right: bicubic 4x-upscaling performed
on a fully decompressed low resolution image, Lanczos 4x-upscaling performed on a fully decompressed low resolution
image, compressed-domain super resolution (CDSR) applied to the latent space of a leaning-based codec. In all three
cases, the image was compressed with bmshj2018-hyperprior at a quality level 6 using pre-trained model provided by the
authors of the codec.



Figure 8 shows the qualitative results of compressed-domain super resolution (CDSR) applied to the latent
space of a leaning-based codec compared to bicubic 4x-upscaling and Lanczos 4x-upscaling both performed on a
fully decompressed low resolution image. In all three cases, the image was compressed with bmshj2018-hyperprior
at a quality level 6 using pre-trained model provided by the authors of the codec.

5. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the available state-of-the-art super resolution methods in compression workflow
scenario. We proposed an adapted version of a super resolution network retrained to work with images in
compressed domain and assessed its performance by benchmarking it to the anchors. The results show promising
performance in terms of visual quality.

The future work may include the investigation of different loss functions for the compress domain super
resolution in order to compensate inconsistencies in the results from different objective visual quality metrics.
One may also investigate other SR models for compressed domain and additional learning based compression
models.

APPENDIX A. ADDITIONAL RESULTS

This section presents additional results in the form of rate-distortion plots for each image from the selected
subset of the DIV2K dataset (Figure 2).
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Figure 9. Rate-distortion plots for Image 0011



0.5 1.0 1.5 2.0 2.5 3.0
Bitrate [bpp]

18

19

20

21

22

23

24

PS
NR

 [d
B]

Image 0052

bmshj-hp-mse -> EDSR
bmshj-hp-msssim -> EDSR
EDSR no compression
bmshj-hp-mse -> WDSR
bmshj-hp-msssim -> WDSR
WDSR no compression
bmshj-hp-mse -> SRGAN
bmshj-hp-msssim -> SRGAN
SRGAN no compression

0.5 1.0 1.5 2.0 2.5 3.0
Bitrate [bpp]

0.90

0.60

0.70

0.80

0.94
0.93
0.92
0.91

M
S-

SS
IM

Image 0052

bmshj-hp-mse -> EDSR
bmshj-hp-msssim -> EDSR
EDSR no compression
bmshj-hp-mse -> WDSR
bmshj-hp-msssim -> WDSR
WDSR no compression
bmshj-hp-mse -> SRGAN
bmshj-hp-msssim -> SRGAN
SRGAN no compression

Figure 10. Rate-distortion plots for Image 0052
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Figure 11. Rate-distortion plots for Image 0140
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Figure 12. Rate-distortion plots for Image 0549
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Figure 13. Rate-distortion plots for Image 0659
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