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A B S T R A C T   

As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their 
investigation requires the adoption of novel experimental approaches complemented with increasingly sophis-
ticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry 
of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and 
species whenever appropriate. We review the different levels of organization, including the cells, synapses, 
neuroanatomy, and network connectivity. We provide a complete overview of this system that should be 
accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for 
seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight 
key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps 
would provide invaluable information for systematically unveiling how this system supports behavioral and 
cognitive processes.   

1. Introduction 

The thalamocortical (TC) loop is known to play a central role in 
cerebral rhythmogenesis (Buzsaki, 2006; Fogerson and Huguenard, 
2016; Steriade, 2006, 2000). As such, it supports many functions, such 
as sleep and wakefulness (McCormick and Bal, 1997; Steriade et al., 
1993, 1991; Timofeev et al., 2012), and is involved in various diseases 
associated with dysfunction of rhythmic activity (Schulman et al., 
2011), such as epilepsy (Brodovskaya and Kapur, 2019; Halász, 2013; 
Nowack and Theodoridis, 1991; Timofeev et al., 2012), autism (Iidaka 
et al., 2019; Linke et al., 2018; Nair et al., 2013; Woodward et al., 2017), 
and schizophrenia and bipolar disorder (Anticevic et al., 2014b, 2014a; 
Baran et al., 2019; Ferri et al., 2018; Klingner et al., 2014; Murray and 
Anticevic, 2017; Skåtun et al., 2018; Woodward et al., 2012). 

Further, the thalamus plays an important role in an array of cognitive 
processes. Initially considered to be a simple relay station passing along 
information between the cortex and the peripheral nervous system, the 

thalamus is increasingly understood as an intricate looped system 
working in tight interaction with cortical networks. Such interactions 
were proposed early (Miller, 1996) based on spreading depression ex-
periments (Aquino-Cias et al., 1966; Bureš et al., 1965). Since then, 
optogenetic experiments demonstrated how continuous thalamic input 
is necessary for sustaining cortical activity (Reinhold et al., 2015) and 
how it supports behavioral tasks by enhancing functional cortical con-
nectivity (Schmitt et al., 2017). In turn, cortical inputs shape thalamic 
activity through an extensive network of corticothalamic (CT) pro-
jections, outnumbering their thalamocortical (TC) counterpart by 
approximately an order of magnitude (Deschênes et al., 1998; Sherman 
and Koch, 1986). Through these projections, the cortex can, for 
example, sharpen the thalamic receptive fields to selectively enhance TC 
transmission of sensory information (Briggs and Usrey, 2008). Further, 
by modulating the level of hyperpolarization in TC cells, CT afferents 
can switch the mode of operation of these neurons between event 
detection (burst firing) and perception (tonic firing) (Ahissar and Oram, 
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2015). They can similarly leverage thalamic reticular cells to control 
sensory selection (Ahrens et al., 2015; Wimmer et al., 2015). 

The thalamus has also been shown to preprocess raw peripheral in-
puts by encoding abstract functions. For example, this was demonstrated 
in the lateral geniculate nucleus (LGN) for center-surround inhibition, 
direction and orientation selectivity, and contrast evaluation in a visual 
scene (Piscopo et al., 2013). Similarly, cells from higher-order thalamic 
nuclei (HO) have been shown to encode stimulus-reward relationships 
by modulating their activity according to the detection of rewarded 
stimulus, the expected delay before reward, and the value of a reward 
(Komura et al., 2001). More generally, the thalamus has been proposed 
to play a central role in shaping mental representation (Wolff and Vann, 
2019). This dual role as encoding mental representation and filtering 
input stimuli is supported by the convergence of ascending and 
descending afferents on thalamic targets. This convergence uniquely 
positions the thalamus for integrating bottom-up and top-down infor-
mation streams and therefore for binding cognitive predictions with 
sensory input, as proposed by the predictive-coding theory (Groh et al., 
2014). All these properties of the thalamus makes it a key component in 
a large number of cognitive domains (Saalmann and Kastner, 2015) such 
as learning (Bradfield et al., 2013), memory (Funahashi, 2013; Jan-
kowski et al., 2013), language (Klostermann, 2013), attention (Kino-
mura et al., 1996), motor control (Prevosto and Sommer, 2013), and 
multisensory processing (Cappe et al., 2009). 

In the last decade, large-scale in silico simulations have been devel-
oped with an ever-increasing level of biophysical details which allow us 
to better understand such complex systems. Simulation neuroscience has 
also proven to be invaluable for guiding or corroborating experimental 
investigations. Recent studies in this area have demonstrated how small 
volumes of brain tissue can be simulated using morphologically and 
biophysically detailed neuron models (Markram et al., 2015). Less 
detailed frameworks have also been used to perform large-scale simu-
lations at the microscopic scale (i.e., the scale of the neuron) (Anan-
thanarayanan et al., 2009; Hill and Tononi, 2005; Izhikevich and 
Edelman, 2008; Schumann et al., 2017). Alternatively, other approaches 
have focused on the mesoscopic scale (i.e., the scale of a cortical column) 
using, for example, the neural field approach (Sanz Leon et al., 2013). 
These simulation frameworks provide platforms to integrate available 
knowledge and push forward our understanding of cross-scale, cross--
species, and cross-modalities mechanisms underlying cognition and 
behavior. 

As opposed to the cortical microcircuitry which has been modeled in 
fine detail, the TC circuitry has received relatively little attention. As we 
better appreciate the interdependencies between thalamic and cortical 
networks, the details of these interactions increase in significance. The 
rising awareness of the crucial role played by the TC loop in cerebral 
rhythmogenesis, in diseases associated with TC dysrhythmia, and in 
various cognitive processes motivates the comprehensive synthesis of 
current knowledge on thalamic microcircuitry proposed herein. In the 
following sections, we describe the TC system related to somatosensa-
tion, review the biophysics of its neurons and their synapses, the 
neuroanatomy of the related nuclei, its afferent and efferents, as well as 
its internal connectivity. We conclude by highlighting knowledge gaps 
that need to be addressed to allow computational neuroscientists to 
build accurate predictive models. This review focuses on the rodent 
somatosensory system but we also mention data from other species or 
thalamic regions whenever available and relevant. 

2. Overview of the somatosensory TC loop 

The thalamus is divided into two structures, the dorsal thalamus 
(also referred to simply as the thalamus) and the ventral thalamus (also 
known as the subthalamus or prethalamus) (Puelles et al., 2012). In the 
somatosensory system, the ventrobasal complex of the dorsal thalamus 
(VB) is comprised of two first-order nuclei (FO) responsible for relaying 
somatosensory signals: the ventral posteromedial nucleus (VPM) for the 

face and neck area and the ventral posterolateral nucleus (VPL) for the 
rest of the body. These nuclei receive their peripheral inputs through 
various pathways (i.e., the lemniscal, extralemniscal, and paralemniscal 
pathways; see Section 6.1). Other thalamic nuclei such as the nucleus 
submedius and the ventromedial nucleus also receive somatic input, 
probably respectively for nociception and sensorimotor integration 
(Ebner and Kaas, 2015), but will not be discussed here because of their 
secondary role with respect to somatosensation. 

The rodent VB is mainly composed of excitatory TC cells that target 
the primary somatosensory cortex (S1). It primarily innervates the 
layers 4 (L4), but also to some extent, L2-3 and L5b-6 (Clasca et al., 
2012; Meyer et al., 2010; see also Fig. 1; cortical efferents and laminar 
specificity are further discussed in Section 3.1.2). Additionally, it sends 
collaterals to the inhibitory reticular nucleus of the ventral thalamus 
(Rt). Although TC signals are amplified and further processed within a 
rather complex cortical microcircuitry (Markram et al., 2015), they are 
also fed back directly to the thalamus through monosynaptic pathways 
(Briggs and Usrey, 2007). 

In general, cortical L5 and L6 pyramidal cells close the TC loop by 
projecting to their initial FO (i.e., VPM or VPL) as well as the associated 
HO, namely, for the somatosensory system, the medial sectors of the 
posterior nucleus (POm) (Ohno et al., 2012). These projections also send 
collaterals to Rt, which in turn generates inhibitory postsynaptic po-
tentials (IPSP) in the same nuclei (i.e., VPL, VPM, POm). We should not 
oversimplify the effect of this parallel inhibitory pathway since the 
interplay of monosynaptic CT excitation and disynaptic 
cortico-reticulo-thalamic inhibition results in complex time-frequency 
properties. For example, at low frequency, the net effect of CT pro-
jections is briefly excitatory before becoming dominated by inhibition. 
However, at high frequency, it remains excitatory because of short-term 
facilitation of the CT synapses and short-term depression of Rt synapses 

Fig. 1. Schema displaying the key features and primary pathways for the so-
matosensory TC loop in rodents. Bouton density profiles for VPM and POm 
projections are taken from (Meyer et al., 2010). 
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(Crandall et al., 2015; reviewed in Section 5.2). 
On top of the afferents already discussed, POm also receives inhibi-

tion from extrareticular sources including the zona incerta (ZI) and the 
anterior pretectal nucleus (APT) (Bartho et al., 2002; Groh et al., 2014; 
reviewed in Section 6.3) and excitation from the paralemniscal pathway 
(Pierret et al., 2000; reviewed in Section 6.1). 

In our schematic summary of the key features of the somatosensory 
TC system in rodents (Fig. 1), we separated the Rt into three tiers ac-
cording to their projection targets (Lee et al., 2014; Pinault et al., 
1995a). The specificity of tier targets by TC collaterals is yet unknown 
(Lee et al., 2014). About 90 % of TC-Rt connections are expected to form 
open-loop connections (reviewed in Section 5.4), probably to provide 
lateral inhibition. There is some disagreement on the presence of in-
terneurons in VB, with proportions reported being between 0% and 4% 
(reviewed in Section 4.3). Clusters of gap junctions in the Rt (reviewed 
in Section 5.3) are shown as per Lee et al. (2014). 

Projections from the anterior part of POm target preferentially L5, 
whereas those from the posterior part tend to further project to L1 with 
sparser and wider axonal arborization (Ohno et al., 2012). FO and HO 
TC projections tend to innervate complementary cortical lamina (Clasca 
et al., 2012; Meyer et al., 2010). Similar to TC cells in VB, projections 
from POm do not send intra-nucleus collaterals but send collaterals to Rt 
on their way to the cortex (Ohno et al., 2012). Most of them also send 
collaterals to the striatum – particularly for cells from the posterior part 
of POm – and also form arborization in other cortical regions, including 
secondary somatosensory (S2), primary and secondary motor, insular, 
auditory, and ectorhinal cortex (Ohno et al., 2012). Individual POm 
neurons send axons simultaneously to both S1 and S2 in a minority of 
cases (Ohno et al., 2012; Spreafico et al., 1987). 

3. Thalamic neurons: their types and properties 

A deep understanding of the inner workings of the TC loop is only 
possible with a thorough knowledge of the properties of its neurons, i.e., 
their morphologies, their electrophysiological behavior, their ion 
channels, and their synapses. Furthermore, establishing cell types across 
these different dimensions is fundamental for dissecting and reproduc-
ing this system in silico, an identification often facilitated by knowing the 
different protein markers expressed by these cells. These different as-
pects are reviewed in this section for the neurons of the VB (TC cells and 
interneurons) and the Rt (Rt cells). In rodents, FO contain relatively few 
interneurons, except for the LGN. Thus, most of the observations re-
ported here were made on LGN interneurons, the knowledge on VB in-
terneurons being much more scarce. 

3.1. Morphological properties 

3.1.1. Somata and dendrites 
Early Golgi impregnation studies show that TC cells in the VPL have 

two to seven primary dendrites and predominantly fusiform somata in 
the coronal or horizontal planes, depending on their location in the VPL 
(McAllister and Wells, 1981). The discoid appearance of these neurons 
(e.g., see Fig. 2) follows the laminar organization of the VPL consisting 
in concentric circles centered around the VPM and running parallel to 
the Rt (McAllister and Wells, 1981). 

An early study relying on visual inspection reported three variations 
of VB TC cells morphologies depending on whether their dendrites 
radiate in all directions (radiate) or along the rostrocaudal direction 
with (biconcave-radiate) or without (biconcave) a prominent group of 
dendrites radiating medially (McAllister and Wells, 1981). According to 
this study, the majority of VPL neurons would be biconcave, while VPM 
neurons would have more radiate dendritic fields, with larger and 
rounder somata (McAllister and Wells, 1981). However, subsequent 
studies reported no substantial evidence of subclasses of VB TC cells 
according to their somato-dendritic morphologies (Harris, 1986; Iavar-
one et al., 2019). 

A more convincing subclassification of TC neurons has been 
demonstrated for the dorsal LGN (dLGN) of the mouse where three 
classes have been reported using quantitative assessment of their den-
drites orientation: X-like (biconical, 22 %), Y-like (symmetrical, 49 %), 
or W-like (hemispheric, 29 %). All three types have large round somata 
and multipolar dendritic arbors, but the X-like type has significantly 
shorter dendrites and comparatively smaller somata (Krahe et al., 2011). 
They also have different spatial distribution within the dLGN: the ma-
jority of X-like cells are located near the borders with other nuclei 
(intergeniculate leaflet, ventral LGN), W-like cells are more often situ-
ated at the outer borders of the dLGN, while Y-like cells are more evenly 
distributed but with a larger prevalence within a central band running 
parallel to the optic tract. Similar classes have been described in the rat 
dLGN (Ling et al., 2012) with ~13 % of bipolar (biconical) cells aligned 
approximately parallel to the optic tract, ~55 % of radial (symmetrical) 
cells, and ~32 % of basket cells (similar to W-like type). Rats bipolar 
cells are located preferentially on the borders of the nucleus, similar to 
biconcave TC cells reported by (McAllister and Wells, 1981) in the VB. 

Based on morphological features, membrane properties, response to 
stimuli, and differential immunofluorescence, mouse interneurons can 
be separated into two classes referred to as small and large soma types 
(9.3 ± 1.3 μm vs 11.7 ± 6.5 μm [mean ± sd], measured along their 
longest axis) (Leist et al., 2016). Interneuron somata are either 
spindle-shaped with primary dendrites branching from opposite poles or 
tripolar with three primary dendrites (Leist et al., 2016). They are about 
five times smaller than their TC counterparts, with mouse dLGN TC cells 
having an area of 1530 ± 170μm2 (X-like; mean ± se), 2040 ± 460μm2 

(W-like), and 1710 ± 200μm2 (Y-like) (Krahe et al., 2011), which 
correspond to 45− 50 μm diameters for round somata. However, irre-
spective of their relatively small soma, mouse thalamic interneurons 
spread dendrites that arborize within broad areas of the dLGN (Morgan 
and Lichtman, 2020). 

Dendrites in thalamic interneurons of rats produce varicose branches 
that end in beaded formations (Williams et al., 1996). Electron micro-
scopy revealed synaptic vesicles in dendritic terminals which are thus 
said to be “axoniform” (Ralston, 1971). Inhibitory influences from both 
axonal and dendritic origins have also been shown pharmacologically 
(Cox and Sherman, 2000; Crandall and Cox, 2013). Dendritic terminals, 
also known as F2 terminals, contain more pleomorphic and sparsely 
distributed vesicles when compared with regular axonic (F1) terminals 
which have flattened and densely packed vesicles (Hamos et al., 1985). 

Fig. 2. Example of somato-dendritic morphologies of rat VB TC cells.  

C. O’Reilly et al.                                                                                                                                                                                                                                



Neuroscience and Biobehavioral Reviews 126 (2021) 213–235

216

In a nearly complete electron microscopy reconstruction, three thick 
dendrites were shown to emerge from the soma of a mouse thalamic 
interneuron. The dendrites progressed into thinner and circuitous neu-
rites that were interlinked with swellings as previously described. These 
smaller dendrites ranged from short spike-like projections to longer 
(>50 μm) branched trees (Morgan and Lichtman, 2020). 

Rt cells have oblong or discoid shapes and their dendrites are mostly 
parallel to the lateral border of the nucleus, i.e., along the plane formed 
by this sheet-shaped nucleus. Although the Rt can be divided along its 
thickness into functionally different tiers (e.g., see Rt projections in 
Fig. 1), most Rt dendrites cross these borders, allowing for information 
integration across different streams (Pinault, 2004). Existence of sub-
types of Rt cells based on their morphology is debated (Pinault, 2004). 
Three types of Rt morphologies have been proposed based on the shape 
of their soma and the orientation of their dendritic fields : small fusiform 
(f-type), large fusiform (F-type), and round (R-type) (Spreafico et al., 
1991, 1988). However, part of this variability may be due merely to 
constraints imposed on the dendritic field by the borders of the Rt 
(Pinault and Deschênes, 1998a). Further, some other authors report no 
subclass of Rt morphologies (Lubke, 1993; Ohara and Havton, 1996). 
Nevertheless, this classification seems to correlate with location along 
the anteroposterior axis (Vantomme et al., 2019) and with differences in 
electrical and chemical connectivity (Deleuze and Huguenard, 2006). 

3.1.2. Axons morphology and cortical efferents 
Depending on their cortical projections, TC cells can be separated 

into a core type, an intralaminar type, and a matrix type with either focal 
or multi-areal projections (Clasca et al., 2012). FO contain only core 
type cells (Clasca et al., 2012; Pape et al., 1994). These neurons tend to 
project most heavily to L4 (but see below for a more complete descrip-
tion of laminar projections) and to a limited region of primary sensory 
areas, sending coloraterals to Rt (Jones, 2007) but not within their own 
nucleus (Harris, 1987; Lee et al., 2010; Sawyer et al., 1994). 

In VB, TC axons emerge from a prominent hillock and traverse the 
nucleus in a highly topographical manner, following an anterior-lateral 
direction, although neurons located more laterally in the nucleus 
sometimes follow a more unpredictable trajectory (Harris, 1987). Some 
arbors innervating the Rt have extensive branches contacting multiple 
Rt neurons, while others have a more limited extent (Harris, 1987). 

With respect to the laminar specificity of TC projections, the classical 
understanding of the feedforward flow of information within the cortex 
considers that FO TC cells stimulate cortical neurons of the granular 
layer (L4). This activation is in turn relayed to the supragranular layer 
(L2/3) and then to the infragranular layer (L5/6) by local cortical pro-
jections (Gilbert and Wiesel, 1979). However, the actual pattern of 
innervation suggests many alternative routes within the cortical column 
(Feldmeyer, 2012). Aside from the many alternative pathways offered 
by the intricate intra-cortical connectivity (Feldmeyer, 2012), various 
pathways are already present at the level of the FO TC projections. 
Although these projections are most dense and potent in L4, they are by 
no means limited to this layer (Ji et al., 2016; Meyer et al., 2010). L1 
inhibitory neurons and L2 to L6 excitatory cells and parvalbumin (PV) 
expressing inhibitory neurons have been shown to be innervated by 
these TC axons (Ji et al., 2016). Vasoactive intestinal polypeptide (VIP) 
and somatostatin (Sst) inhibitory neurons are for their part only targeted 
in L4 (Ji et al., 2016). 

As opposed to FO, the POm, as a HO nucleus, contains matrix type 
cells, with more focal projections for TC cells in its lateral part and more 
multriareal projections for TC cells in its medial side (Clasca et al., 
2012). These matrix projections tend to target lamina complementary to 
their FO core-type counterparts (Clasca et al., 2012; Meyer et al., 2010). 
Further, differences in laminar projections have also been reported 
along the antero-posterior axis of this nucleus, with its anterior part 
targeting more L5 and its posterior part targeting more L1 (Ohno et al., 
2012). Such projections to L1 have been reported to be common for 
matrix axons and may allow substantial feedback interaction between 

cortical areas through these wide inter-areal thalamic projections 
(Rubio-Garrido et al., 2009). Further, this diversity of types of TC axons 
in HO nuclei may reflect the presence of parallel pathways, as suggested 
by differences in laminar and synaptic properties (i.e., ionotropic vs 
metabotropic) depending on their cortical targets. For example, pro-
jections from POm to cortical primary sensory regions are dominated by 
modulator characteristics whereas its projections to primary motor 
areas are more typical of drivers (Casas-Torremocha et al., 2019). 

Reconstructed interneuron axons were shown to ramify locally 
within the LGN, with a small caliber, frequent en passant varicosities 
(Zhu and Lo, 1999a), and F1 terminals (Hamos et al., 1985). They 
resembled the thinner and circuitous dendrites that were located distally 
from the interneuron soma and possessed a relatively small arbor with 
only 5 terminal neurites in the single cell reconstruction of Morgan and 
Lichtman (2020). The small size of the interneuron axon is in agreement 
with previous light microscopy reconstructions (Zhu and Lo, 1999a) and 
indicates a limited functionality for these axons, as compared to these 
interneuron dendrites. The relative contributions of interneuron axons 
and dendrites is further explained in Sections 5.2.4 and 5.2.5. 

In a series of experiments using juxtacellular recordings in rats 
(Pinault, 2004; Pinault et al., 1995b, 1995a; Pinault and Deschênes, 
1998a), Rt axons were reported to project in a topographically precise 
manner (i.e., somatotopic for cells projecting to POm and VB), generally 
to single nuclei — with a few exceptions of cells projecting to corre-
sponding FO and HO — and without making local collaterals within Rt. 
Most Rt axons branch locally in the thalamus and contact mainly distal 
dendrites of TC cells (Guillery and Harting, 2003; Pinault and 
Deschênes, 1998a). 

3.2. Electrophysiological properties 

3.2.1. Burst and tonic firing in TC and Rt cells 
Rt and TC cells from different thalamic nuclei and species can fire 

bursts and tonic trains of action potentials (Jahnsen and Llinas, 1984). 
The former is a calcium-mediated low-threshold spike superimposed 
with high-frequency discharges of sodium spikes. Bursting in TC and Rt 
cells is elicited from hyperpolarized membrane potentials and contrib-
utes to the oscillations recorded in EEG during slow-wave sleep, like 
slow waves (< 1 Hz) (Steriade et al., 1993) and sleep spindles (7− 14 Hz) 
(Steriade et al., 1987). The tonic spike trains consist of a low-frequency 
sequence of sodium spikes and is most common at depolarized mem-
brane potential during alert states in vivo (Jones, 2002). These two 
firing modes are associated with different states of neuronal respon-
siveness, e.g., TC neurons respond only to low-frequency stimuli (<15 
Hz) when bursting, but can relay inputs at frequencies as high as 100 Hz 
in tonic mode (McCormick and Feeser, 1990). Further, the tonic mode 
integrates linearly the inputs from TC afferents and therefore can reli-
ably process sensory information, whereas burst firing acts in a 
nonlinear way and rather encodes an all-or-none relationship which can 
efficiently support event detection (Sherman, 2001; Ahissar and Oram, 
2015). The possibility for external inputs to switch TC and Rt cells be-
tween these two states is a fundamental characteristic of the thalamus 
(Sherman, 2001). It can be leveraged to control functional properties 
across the whole TC loop, as shown for example by the suppression of 
cortical paired-pulse facilitation after switching TC cells from bursting 
to tonic mode using an optogenetic depolarization (Whitmire et al., 
2017). 

The switching between firing modes can be triggered by modulating 
the level of hyperpolarization of the TC cell, with sustained (~100 ms) 
depolarization inactivating the low-threshold (T-type) calcium current 
(IT) necessary for bursting and consequently setting the cell in a tonic 
firing mode. Conversely, similarly sustained hyperpolarization de- 
inactivates these IT-related ion channels and moves back the cell in 
bursting mode (Sherman, 2001). Processes associated with circadian 
rhythms are likely to contribute to the activation of this switching 
mechanism, as suggested by the association of bursting with 
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sleep-related rhythms such as spindles (Steriade et al., 1987; Lüthi, 
2014) and slow waves (Steriade et al., 1993; Hughes et al., 2002). It is 
also further supported by the higher prevalence of bursting in sleep; 
burst-related action potentials during wakefulness has been reported to 
account for less than 1% of all action potentials, a proportion that goes 
up to 18 % during sleep (Weyand et al., 2001). 

Even though TC and Rt cells share a similar bursting capability, the 
presence of small-conductance Ca2+-activated SK-type K+ currents en-
dows Rt cells with a natural tendency to generate repetitive bursts 
following a single stimulation (Cueni et al., 2008). Further, this property 
of Rt cells makes them more prone to generate oscillations like sleep 
spindles (Wimmer et al., 2012), as initially demonstrated in cats by 
spontaneous spindle generation in deafferented Rt (Steriade et al., 1987) 
but not in TC cells deafferented from the Rt nucleus (Steriade et al., 
1985). Also, compared to TC cells, Rt cells have a more heterogeneous 
bursting behavior and can be subdivided into different firing types ac-
cording to their bursting propensity, such as non-bursting, bursting, or 
atypically bursting (Clemente-Perez et al., 2017; Lee et al., 2007; see 
Fig. 3). The bursting characteristics can also be separated in terms of PV 
and Sst cell markers in the Rt: PV+ neurons have more sodium spikes 
within their calcium burst and an increased tendency to rebound, 
whereas Sst+ neurons have weak bursts and sometimes do not burst at 
all (Clemente-Perez et al., 2017). Protein markers are further discussed 
in Section 3.3.2. 

Although characterized by an homogeneous bursting behavior across 
cells and nuclei (Bartlett and Smith, 1999), TC neurons display a more 
diverse repertoire of tonic firing responses. For example, VB TC cells of 
cats exhibit accelerating, accommodating, intermittent and accommo-
dating, and burst-suppressed firing (Iavarone et al., 2019; Turner et al., 
1997) as well as delayed firing (Huguenard and Prince, 1991). 
Spike-frequency adaptation during tonic firing was also shown in the 
visual thalamus for cats (Smith et al., 2001) and, to a lesser degree, for 
rats (Iavarone et al., 2019; Williams et al., 1996). Similarly, about 50 % 
of the neurons in the medial geniculate body (MGB) display noticeable 
adaptation (Bartlett and Smith, 1999). Such paired-pulse adaptation is 
responsible for the reported phase advance in the response of TC cell to 
slow sinusoidal current injections (Smith et al., 2001) and was associ-
ated with improved encoding of the spatiotemporal context of stimuli 

(Liu et al., 2017). Tonic firing also exhibits a particularly variable range 
of responses in HO TC cells (Li et al., 2003). 

These different firing modes (tonic and burst) and levels of paired- 
pulse adaptation have been demonstrated to be reproducible in 
experimentally-constrained and biophysically-detailed TC cell models 
(Iavarone et al., 2019, see Fig. 4). 

3.2.2. Depolarizing sag 
A depolarizing “sag” in response to hyperpolarizing current injection 

has been observed in TC cells of different nuclei and species, such as in 
the ventral division of the MGB (vMGB) (Bartlett and Smith, 1999), in 
the dLGN neurons of rats and mice (Krahe et al., 2011; Williams et al., 
1996), and in a fraction of the rat VB neurons (Pinault, 2003). This sag 
has been associated with the IH current and more specifically with HCN4 
channels, an isoform present in various dorsal thalamic nuclei including 
VB, but absent from the Rt (Zobeiri et al., 2019). This sag interacts with 
IT currents and is therefore functionally relevant for bursting and 
thalamic burst-related rhymes such as slow waves and sleep spindles 
(Curró Dossi et al., 1992; Datunashvili et al., 2018; McCormick and 
Pape, 1990). 

3.2.3. NMDA spikes 
Synaptic input limited to single TC dendrites were shown to be suf-

ficient to trigger NMDA spikes/plateaux in LGN TC cells of rats and mice 
(Augustinaite et al., 2014). Due to the electrotonic compactness of TC 
cells, even NMDA spikes generated on distal dendrites can reach the 
soma, providing a powerful control mechanism for CT cells targeting 
these sites. These spikes can trigger bursting in quiescent hyperpolarized 
TC cells or can inhibit subsequent bursting by preventing T-channels 
de-inactivation in cells that recently bursted (Augustinaite et al., 2014). 
When TC cells are in tonic mode, NMDA spikes tend not to cause action 
potentials but to increase the rate of successful transmission of incoming 
action potentials, potentially providing an efficient mechanism for 
cortical control of incoming stimuli by facilitating TC cell spiking. In L5 
pyramidal cells, NMDA spikes have been reported to cause long-lasting 
depolarization in dendritic trees and constitute a cellular mechanism for 
the temporal binding of information and synaptic modification (Antic 
et al., 2010). It is currently unclear if they serve a similar role in the 

Fig. 3. Examples of PV-like burst, atypical burst, and non-bursting Rt neurons. Left three columns in P14-P18 rats, right column in P14-P18 mice (Yi et al., in prep).  
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thalamus. 

3.2.4. Interneurons 
In interneurons, a depolarizing square current pulse evokes a train of 

action potentials, which sometimes exhibit a slight oscillatory bursting 
(Leist et al., 2016). An intrinsic subthreshold oscillation of the mem-
brane potential at approximately 8 Hz has also been described (Williams 
et al., 1996). Rat interneurons have a moderately higher resting mem-
brane potential compared to TC cells (interneurons: − 52 mV; TC: − 63 
mV) (Williams et al., 1996). In mice, resting membrane potentials are 
slightly different for small versus large soma interneuron types (small: 
-62.4 mV; large: -64.8 mV). Also, small, but not large, interneurons 
exhibited rebound bursting after a hyperpolarizing pulse and had a 
pronounced voltage sag, which is indicative of a higher Ih density (Leist 
et al., 2016). 

According to the prosomere developmental model, the caudal part of 
the forebrain can be divided in three transverse domains along the 
rostrocaudal axis (p1-p3), which later forms the pretectum (p1), the 
dorsal thalamus and the habenula (p2), and the ventral thalamus (p3) 
(Nakagawa, 2019). Interestingly, recent investigations suggest that 
thalamic interneurons have an extra-thalamic origin and that they are 
mainly seeded from the tecal population (Jager et al., 2016). More 
precisely, all FO interneurons and 80 % of HO interneurons develop 
from the embryonic tectum, with the remaining 20 % deriving from the 
forebrain (Jager et al., 2021, 2016). This common origin of FO in-
terneurons is indicative of their similarities across sensory modalities 
and echoes the consistency observed with respect to the origin, mor-
phologies, and electrical properties of TC cells across modalities. It is 
further worth emphasizing that thalamic interneurons and Rt cells have 
a different origin, and hence, these two types of inhibitory cells may 
show significant functional differences (Jager et al., 2016). 

3.3. Molecular properties 

3.3.1. Ion channels 
Firing modes of TC and Rt neurons critically depend on the subtypes 

of ion channels they express. Due to its role in burst firing, IT currents are 
one of the most studied ionic currents in the thalamus and depends on 
the CaV3.1 isoforms in TC neurons (Talley et al., 1999) and the CaV3.2 
(30 %) and CaV3.3 (70 %) isoforms in Rt cells (Astori et al., 2011). In Rt 
cells, calcium imaging indicates that IT density increases from proximal 
to distal dendrites, reaching a peak at around 100 μm from the soma 
(Crandall et al., 2010). In TC neurons, the CaV3.1 channels are 

distributed in somata and dendrites, with early electrophysiological 
studies suggesting a higher density in stem dendrites compared to the 
soma (Williams and Stuart, 2000) and subsequent studies demonstrating 
their presence in intermediate and distal dendrites (Errington et al., 
2010). Because TC cells are electrotonically compact in the somatofugal 
direction, CaV3.1 channels generate “global spikes” by triggering 
low-threshold bursts simultaneously across the whole dendritic tree 
(Connelly et al., 2015). The presence of CaV3.1 channels on distal den-
dritic sites has been suggested to support the amplification of CT inputs 
targeting these sites (Errington et al., 2010), while knocking down their 
corresponding gene in mice has been associated with disturbances of 
delta waves and sleep (Astori and Lüthi, 2013). 

Hyperpolarization-activated cationic current (IH) also contributes to 
burst firing in TC and Rt neurons. This current depends on HCN ion 
channels, which all four known isoforms are expressed in varying de-
grees across the thalamus of the rat. In particular, the neuropil of VB 
shows moderate to intense immunoreactivity for HCN1, HCN2, and 
HCN4 (Notomi and Shigemoto, 2004), with levels increasing signifi-
cantly during development (i.e., approximately a 6-fold increase be-
tween P3 and P106) (Kanyshkova et al., 2009). The Rt contains 
HCN4-immunoreactive cell bodies and its neuropil is highly (HCN2) to 
moderately (HCN3, HCN4) immunoreactive for HCN isoforms (Notomi 
and Shigemoto, 2004). In mice, HCN2 and HCN4 are the major types 
expressed in VB and Rt (Abbas et al., 2006; Leist et al., 2016), with Rt 
cells being about 10 times more immunoreactive for HCN2 but equally 
immunoreactive for HCN4 when compared to TC cells (Abbas et al., 
2006). Differential distribution of HCN2 channels within TC and Rt 
morphologies is also likely to be associated with significant differences 
in IH properties in these two cell types. Further, given that IH kinetics 
varies across HCN isoforms, changes in their relative proportions may be 
linked with functional differences (Santoro et al., 2000). 

In rats, L-type high-voltage activated Ca2+ currents have also been 
recorded in dLGN TC cells, interneurons, and Rt neurons. Highest den-
sities were found at the base of TC dendrites, in more central somatic 
regions for Rt cells, and uniformly distributed across the soma for in-
terneurons (Budde et al., 1998). These currents are likely to work in 
close interaction with T-channels to control the bursting activity and the 
homeostasis of calcium concentration (Budde et al., 1998; Zhang et al., 
2002). 

Calcium influx in TC and Rt neurons contributes to the activation of 
Ca2+-activated potassium currents of the SK (small conductance) and BK 
(big conductance) types. In rats, the SK2 (KCa2.2) type dominates in Rt 
and TC cells (Gymnopoulos et al., 2014). These channels are responsible 

Fig. 4. Example of continuous adapting (cAD) and continuous non-adapting (cNAD) low threshold burst (ltb) for TC neurons of the VB in models and experiments. 
Exp: experiment. Adapted from Iavarone et al. (2019) with permission. 
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for repetitive bursting in Rt cells (Astori et al., 2013; Cueni et al., 2008). 
In the dLGN TC neurons of rats, the activation of BK channels was shown 
to decrease the number of action potentials per burst and increase the 
adaptation during tonic firing (Ehling et al., 2013). Specific antibodies 
against BK channels intensely stains all dorsal thalamic nuclei as well as 
the Rt in mice (Sausbier et al., 2006). 

In mice VB, TC neurons were also found to have M-type potassium 
currents (KV7.2 and KV7.3 subunits) which helps hyperpolarizing their 
membrane and deinactivating IT (Cerina et al., 2015) as well as A-type 
K+ currents (IA; KV4.1-K4.3 subunits) which act as a functional antag-
onist of IT and modulate the kinetics and amplitude of the low-threshold 
spike during burst firing (Kanyshkova et al., 2011). 

Like LGN TC cells, interneurons have been shown to have IT and IA 
currents. However, the ranges of steady-state activation and inactivation 
of these two currents are highly overlapping (Pape et al., 1994). Thus, 
the IA current causes a net membrane current counteracting the 
IT-driven regenerative low-threshold Ca2+ response and results in a 
different firing pattern than the low-threshold burst displayed by TC and 
Rt cells (Pape et al., 1994). 

Background K+ channels (such as two-pore-domain, K2p) TASK and 
TREK play a critical role in switching between activity states in TC 
neurons. These channels are also extensively modulated by neuro-
transmitters, such as muscarinic acetylcholine receptors (Bista et al., 
2015). 

A persistent sodium current is also active in soma and dendrites of TC 
neurons from rats dLGN, both during tonic and burst firing (Parri and 
Crunelli, 1998). 

3.3.2. Protein markers 
Molecular markers such as calcium-binding proteins (CBPs) and 

neuropeptides can be identified with conventional histological proced-
ures and have been instrumental in differentiating cell types. In general, 
excitatory neurons express only a limited number of common markers 
and this is true for TC neurons as well. For example, some calcium- 
binding proteins, such as calretinin (CR), have been detected only in 
HO (Lu et al., 2009). In rats, PV has been shown to be virtually absent 
from the dorsal thalamus, while calbindin (CB) was absent from VB TC 
cells but was expressed in about two-thirds of POm TC cells (Rubio--
Garrido et al., 2007). A differential distribution of PV and calbindin (CB) 
also distinguishes FO and HO auditory nuclei in mice, with PV densely 
and CB weakly expressed in vMGB neuropil (FO) and an inverted pattern 
in the auditory HO. The identity of the cells contributing to this PV 
immunoreactivity is, however, unclear since it can be associated with 
PV+ fibers coming from different origins, including Rt axons, ascending 
auditory fibers, and descending projections from the auditory cortex 
(Cruikshank et al., 2001). 

PV antibody labeling also differentiate VB afferents: projections from 
Rt neurons are GABA+ and PV+, dendritic terminals from local inhib-
itory interneurons are GABA+ and PV-, and ascending terminals are 
GABA- and PV+ (De Biasi et al., 1994). Faintly labeled CB+ cells were 
found in the caudal part of the VPL, while the VPM is almost devoid of 
CB+ cells. PV+ and CR+ fibers can also be found in the VPL (Arai et al., 
1994). 

The results of immunoreactivity for CBPs are more complicated in 
the dLGN (Arai et al., 1994), with CR labeling numerous fibers but few 
cell bodies (Winsky et al., 1992). In some studies (Meuth et al., 2006; 
Okoyama and Moriizumi, 2001), PV was suggested to be a marker of TC 
neurons at least in the magnocellular part of the vLGN. However, other 
studies found TC cells to be PV- (Lintas et al., 2013; Luth et al., 1993). 
Confounders may partially explain these conflicting results. For 
example, dorsal thalamus nuclei can show PV immunoreactivity due to 
incoming fibers without expressing it locally in TC cells (Cruikshank 
et al., 2001; Luth et al., 1993) and PV mRNA but not PV proteins may be 
found in rat TC cells (Sieg et al., 1998). Further, although TC cells are 
PV- in rodents (Lintas et al., 2013; Luth et al., 1993) these cells — or at 
least a proportion of these cells — seem to be PV+ in monkeys (Jones 

and Hendry, 1989; Rausell and Jones, 1991; Rausell et al., 1992). One of 
these studies (Rausell et al., 1992) differentiated regions of the VPL that 
were rich in cytochrome oxidase (CO) from regions that were CO-weak. 
They reported TC cells to be smaller, PV-, and CB+ in CO-weak com-
partments, whereas PV+ and CB+ cells were found in CO-rich com-
partments. These differences in protein markers were further associated 
with different pathways as shown by cells from these two types of 
compartments having differential laminar projections to the cortex. The 
spinothalamic pathway has also been shown to be concentrated in 
CO-weak compartments. Furthermore, such pathway segregation has 
been recently demonstrated in the mouse whisker system (El-Boustani 
et al., 2020; more on the different pathways associated with the so-
matosensory system in Section 6). 

Similarly to other inhibitory neurons in the brain, different types of 
CBPs and neuropeptides are expressed in Rt cells. This property could 
prove useful for parcellating this nucleus which is already known to be 
heterogeneous in terms of functional topographic maps and thalamic 
and cortical connections (see Section 4.4; Mitrofanis and Guillery, 
1993). In rats, PV is present in all Rt sectors, while CR and CB are mostly 
expressed in the ventromedial corner of the rostral portion of Rt (Arai 
et al., 1994; Winsky et al., 1992). In mice, Sst and PV can be found across 
the entire anterior-posterior axis of the Rt, with a different distribution 
of Sst+ neurons in the medial-lateral extent of the somatosensory sector 
(Clemente-Perez et al., 2017). Differences in the expression of these two 
proteins allows segregating two functionally distinct subpopulations of 
Rt neurons (Ahrens et al., 2015; Clemente-Perez et al., 2017). By acting 
through the Sst-5 receptors of Rt cells, Sst can inhibit the GABA release 
and the oscillatory activity of these cells (Clemente-Perez et al., 2017; 
Leresche et al., 2000; Sun et al., 2002). Similarly, the neuropeptide 
cholecystokinin (CCK) has been shown to affect the firing behavior of Rt 
neurons and the oscillatory state of the thalamic network by suppressing 
a K+ conductance (Cox et al., 1997). Neuropeptide-Y (NPY) and its re-
ceptors are also present in Rt neurons, allowing these cells to 
auto-regulate Rt activity by releasing NPY in a recurrent manner (Sun 
et al., 2003). 

4. Neuroanatomy and cell composition 

4.1. Parcellation 

A 3D volume parcellation of the brain is required in various appli-
cations, such as for atlasing cell types (Erö et al., 2018) and their con-
nections (Fürth et al., 2018), for modeling the brain at a cellular 
resolution (Markram, 2006), or for comparing brain characteristics (e.g., 
volume of regions) between conditions (e.g., age, gender, diseases). 
Two-dimensional stereotaxic atlases have been made available to allow 
precise positioning in context of experimental surgical manipulations in 
mice (Paxinos and Franklin, 2013) and rats (Paxinos and Watson, 2014). 
Although these resources can be used to generate volumetric atlases 
(Majka et al., 2012), the process of stacking annotated 2D slices creates 
severe artifacts due to partial misalignment of slightly distorted slices. 
As an alternative, the Allen Mouse Brain Connectivity Atlas provides a 
finely parcellated atlas of over 800 brain structures specified within 
their Common Coordinate Framework (CCF) and based on a population 
average of over 1,200 mice (Oh et al., 2014). For the rat, the Waxholm 
Space Atlas of the Sprague Dawley Rat Brain has been built from ex-vivo 
magnetic resonance imaging (MRI) and diffusion tensor imaging and 
provides a reconstruction free from slicing artifacts (Papp et al., 2014). 
However, due to the lower resolution of MRI compared to optical mi-
croscopy, this atlas currently1 contains a coarser parcellation of the 
brain with 118 major anatomical structures and no thalamic subregions. 

Initiatives like the CCF have proven to be highly useful, but a finer 

1 As of May 26th 2020, using the version stored on the NeuroImaging Tools & 
Resources Collaboratory website (https://www.nitrc.org). 

C. O’Reilly et al.                                                                                                                                                                                                                                

https://www.nitrc.org


Neuroscience and Biobehavioral Reviews 126 (2021) 213–235

220

parcellation is still needed to support the development of increasingly 
detailed models. For example, quantitative resources for somatotopy are 
still direly needed. Such data have often been collected (e.g., for the 
barrels (Meyer et al., 2013); see Section 4.4) but have not necessarily 
been standardized and released as a shared resource. For the thalamus, 
aside from functional maps (e.g., for somatotopy, tonotopy, and reti-
notopy), better quantitative data on the division of the Rt (e.g., head, 
tail, and tiers) (Clemente-Perez et al., 2017; Lam and Sherman, 2011; 
Pinault and Deschênes, 1998a) would be invaluable for mapping con-
nectivity. Similarly, most somatosensory thalamic nuclei could be sub-
divided in smaller subregions than what is typically available in atlases, 
i.e., PO can be divided into four sub-nuclei (Sumser et al., 2017), VPM 
can be divided in dorsomedial (VPMdm), ventrolateral (VPMvl), and 
parvocellular parts (VPMpc) (Haidarliu et al., 2008), and the VPL can be 
split in caudal (VPLc), middle (VPLm), and rostral (VPLr) regions 
(Francis et al., 2008). 

4.2. Stereological studies 

Cell distributions in the whole brain have been recently made 
available, mostly for mice due to the development of genetically 
modified strains. For example, an atlas reporting the position in space of 
every cell of a mouse brain has been created using CUBIC-X expansion 
microscopy and tissue clearing (Murakami et al., 2018). This resource is 
currently limited since the propidium iodide fluorescent agent used for 
labeling cannot distinguish glial cells from neurons, but the same tech-
nique can be combined with immunostaining or transgenic mouse lines 
to provide a more precise identification of cell types. Other resources 

mapping individual cell types (Erö et al., 2018) or counting cells 
expressing different CBPs (i.e., PV, Sst, and VIP) (Kim et al., 2017) across 
the mouse brain have also recently been made available. These new 
resources are a welcomed addition to stereological studies of the thal-
amus since the latter provide relatively scarce and very inconsistent 
information. Reported cell densities in the rodent thalamus (Diaz et al., 
1999; Huusko and Pitkanen, 2014; Lifshitz et al., 2007; Luczynska et al., 
2003; Meyer et al., 2013; Mooney and Miller, 2010, 2007; Parent and 
Descarries, 2008; Ramos et al., 1995; Ross et al., 1995; Yamada et al., 
2001) span over two orders of magnitude and show a clear and sizable 
between-laboratory effect (see Fig. 5), plainly illustrating the low reli-
ability of these estimates, a result similar to what has been observed all 
across the mouse brain (Keller et al., 2018). 

4.3. Presence of interneurons 

In rodent FO, the presence of interneurons differs significantly across 
modalities. In the visual system, the dLGN is composed of a sizable 
proportion of interneurons, although the exact numbers vary greatly 
between studies (see Table 1). 

In contrast, interneurons are very sparsely distributed in non-visual 
FO. Early studies were even suggesting their absence from VB (de 
Biasi et al., 1986; McAllister and Wells, 1981; Ottersen and 
Storm-Mathisen, 1984), but more recent investigations reported pro-
portions around 0.4–1.0 % (Arcelli et al., 1997; Harris and Hendrickson, 
1987). A recent study reported significantly higher proportions (4.2 % in 
VPM; 3.7 % in VPL) using light microscopy immunocytochemistry with 
a GABA immunogold marker in 6–12 months old Wistar rats (Cavdar 

Fig. 5. Cell densities for different thalamic nuclei, in different rodent species, and at different ages. Data pooled from a systematically annotated corpus of literature 
on the rodent thalamus (O’Reilly et al., 2018, 2017). 
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et al., 2014). Low proportion of interneurons in VB is characteristic of 
rodents, this proportion being around 20–30 % in cats and primates 
(Arcelli et al., 1997; Penny et al., 1983; Spreafico et al., 1983). 

This low prevalence is not sufficient to disregard any significant role 
since interneurons have been shown to serve important functions in 
regions with similarly low proportion, like in the striatum (Koós and 
Tepper, 1999). Further, interneuron connectivity has been ascribed 
some peculiar functional features such as triadic circuitry (Section 5.2.5; 
Sherman, 2004) and presynaptic dendrites (Cox and Beatty, 2017). 
Moreover, computational experiments suggest that they may serve 
essential roles such as transitioning between brain states (Bhattacharya 
et al., 2016). 

4.4. Functional organization 

The cellular composition and the neuronal projections have a very 
organized topology across the different types of thalamic nucleus (i.e., 
Rt, FO, and HO) and across the sensory modalities. For the somatosen-
sory system, it is most clearly evidenced in VPM by the presence of 
whisker barreloids, the thalamic counterpart of cortical barrels (Hoog-
land et al., 1987; Sugitani et al., 1990; Van Der Loos, 1976). Cellular 
density has been shown to vary substantially across barreloids, 
increasing by about 50 % when going from E1 to A4 barreloids (Fig. 6; 
Meyer et al., 2013). This regional specificity demonstrates not only the 
importance of modeling differences between septal and barreloid re-
gions but also across barreloids. In general, the whole VB has a soma-
totopic arrangement (Emmers, 1965; Saporta and Kruger, 1977; Waite, 
1973), with a primary somatotopic map containing unilateral repre-
sentations and a secondary with bilateral projections (Emmers, 1965). 

POm has also been shown to be somatotopic (Fabri and Burton, 
1991; Nothias et al., 1988; Ohno et al., 2012), with cortical driver 
projections from L5b innervating four distinctly oriented somatotopic 
maps in different subdivisions of this nucleus (Sumser et al., 2017). Early 

investigations have shown a clearer arrangement in VB than in Rt and 
POm (Hoogland et al., 1987). However, a more recent study reported VB 
and POm somatotopic maps to be equally well defined (Alloway et al., 
2003), suggesting that the precision of such spatial mapping might be 
conserved along the pathways from FO to HO. 

For the auditory system, the MGB can be divided into ventral/ 
lemniscal (vMGB) and dorsal/extralemniscal (dMGB) parts. Whereas 
tonotopic organization has been shown in the former, it is absent in the 
latter (Bartlett and Smith, 1999). More precisely, four, possibly five, 
distinct tonotopic maps have been identified in the vMGB, with pro-
jections to different subregions of the auditory and the insular cortex. 
See Tsukano et al. (2017) for a review. 

For the visual system, the dLGN has long been known to be reti-
notopic (Reese, 1988; Reese and Jeffery, 1983; Roth et al., 2016). The 
dLGN is further structured, with regions specific for ipsilateral versus 
contralateral inputs and different TC cell types in different subregions. 
Kerschensteiner and Guido (2017) recently reviewed the organizational 
principles within this nucleus. 

Regarding the Rt, it has also been shown to have a topographic or-
ganization along its plane (sectors) and across its thickness (tiers) 
(Fig. 7A; Crabtree, 1999; Crabtree et al., 1998; Jones, 1975; Lam and 
Sherman, 2005; Pinault, 2004; Shosaku et al., 1984). The posterior part 
of this nucleus is separated in a dorsal region responding to visual 
stimuli in a retinotopic way (Hale et al., 1982) and a ventral region 
responding to auditory stimuli. A somatotopic representation of the 
different whisker receptive fields and the other body parts is found 
anterior to the visual and auditory sectors (Fig. 7B; Shosaku et al., 1984). 
The most ventral part of Rt is associated with taste (Hayama et al., 1994) 
and the region immediately dorsal to it is related to visceral activity 
(Kimura et al., 2012; Stehberg et al., 2001). Limbic and motor systems 
are connected to sectors of the most rostral portion of the nuclei, with 
the motor sector also containing a somatotopic map (Cicirata et al., 
1990; Gonzalo-Ruiz and Lieberman, 1995a, 1995b; Lozsadi, 1995, 
1994). 

Further, the connectivity between the Rt and different thalamic 
nuclei supports its division in three tiers along its thickness (e.g., see 
Fig. 1 for tiers specificity of VPL, VPM, and POm projections) (Clem-
ente-Perez et al., 2017; Lee et al., 2014; Pinault, 2004; Pinault et al., 
1995a). Differences in cell bursting behavior along the dorsoventral axis 
of the nuclei (non-bursting, bursting, or atypical bursting) has also been 
reported (Lee et al., 2007) and suggest regional variation in this nucleus 
not only in terms of cell densities but also in terms of cellular electro-
physiological behavior (Fig. 7B). 

5. Microconnectivity 

Studying the connectivity patterns and the properties of synaptic 

Table 1 
Reported percentages of interneurons in dLGN.  

Percentage Method Species Reference 

5.8 % GABA-immunopositive 
interneurons counted with optical 
fractionator 

mice (Evangelio 
et al., 2018) 

8 % Golgi staining and two-dimensional 
counting 

mice (Werner et al., 
1984) 

15–20 % GABA immunostaining and thionin 
two-dimensional counting 

various 
species 

(Arcelli et al., 
1997) 

20–25 % unlabeled cells after massive 
injection of HRP into areas 17 and 
18 

cats (LeVay and 
Ferster, 1979)  

Fig. 6. Topological relationship between whiskers and barreloid in 
the rodent VPM. A) The snout of the rat with macrovibrissae arcs 
(A-E) and rows (1-4) in black and straddlers in red. B) Barreloids in 
the VPM, as represented by Haidarliu and Ahissar (2001) (repro-
duced with permission), with cellular densities per barreloid taken 
from Meyer et al. (2013). In grey, next to macrovibrissae rows are 
aggregates of neurons associated with microvibrissae, for which no 
density estimates are currently available.   
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connections is necessary for understanding and modeling the dynamics 
of TC interactions. For example, the reciprocal innervation of Rt and TC 
cells allows them to generate important rhythmic behavior (e.g., sleep 
spindles) through a ping-pong-like mutual activation (Lüthi, 2014). 
Such dynamics critically depend on microconnectivity patterns. These 
aspects are reviewed here for the microconnectivity within the TC sys-
tem and in the next section for external afferents. Cortical efferents and 
their laminar specificity are covered in Section 3.1.2 in the context of 
axonal morphology. 

5.1. Connectivity patterns 

As a rule, FO TC cells do not send collaterals within the dorsal 
thalamus. Some rare cases of lateral connections have been reported in 
young animals, but these connections are thought to be pruned during 
maturation (Lee et al., 2010). TC cells from cat LGN have been shown to 

send intranuclear collaterals that form synapses onto intralaminar in-
terneurons2 (Cox et al., 2003) and potentially even to other TC cells 
(Soltesz and Crunelli, 1992). However, the presence of such collateral 
has not been supported experimentally for other nuclei or for rodent 
species (Harris, 1987; Sawyer et al., 1994). 

TC cells target directly extrathalamic (e.g., cortical) areas, sending 
collaterals to the Rt on their way to the cortex. The Rt projects back 
inhibitory input onto FO (and other) nuclei, creating either 1) a disy-
naptic inhibitory feedback loop, 2) a disynaptic center-surround type of 
local lateral inhibition or 3) a disynaptic lateral inhibition between 
nuclei of the dorsal thalamus (Guillery and Harting, 2003; Kimura et al., 
2007). 

The literature suggests a certain number of basic rules related to 
microconnectivity in the thalamus:  

1 TC cells do not project within their nucleus.  
2 TC cells do not project directly to other nuclei of the dorsal thalamus.  
3 Rt cells do not have other external targets than the dorsal thalamus.  
4 Thalamic interneurons project only within their nucleus. 

From a theoretical point of view, these four rules eliminate a good 
number of possible connection patterns and leave 18 possible disynaptic 
or trisynaptic pathways for a TC cell to provide feedback to itself (intra- 
nucleus, closed-loop), to a neighboring TC cell (intra-nucleus, open- 
loop), or to a TC cell of another nucleus (inter-nucleus). Each of these 
combinations (i.e., intra vs. inter-nucleus, closed vs. open-loop, disy-
naptic versus trisynaptic) can have an inhibitory or excitatory impact, 
considering disinhibition as providing an overall excitatory impact 
(Fig. 8). 

Information about the relative proportion of these different 
connection patterns is key for understanding and modeling the TC sys-
tem. Even when they constitute an emergent property of a modeling 
approach (e.g., deriving connections from appositions of realistic mor-
phologies as in Hill et al. (2012)), these proportions are required for 
model validation. Relatively few studies report such figures, except for 
patterns 1 (closed thalamo-reticular loop) and 3 (open thalamo-reticular 
loop) for which proportions have been reported both structurally and 
functionally (see Table 2; Gentet and Ulrich, 2003; Lee et al., 2010; Lo 
and Sherman, 1994; Pinault and Deschênes, 1998b; Shosaku, 1986). 
Such proportions need to be assessed both structurally and functionally 
since these two types of connectivity are linked through an intricate 
relationship. Many factors are involved in how structural connections 
support functional interactions, such as the strength of the synaptic 
connections, cellular electrophysiological properties, or time-frequency 
patterns of incoming activity. For example, at low frequency, the com-
bination of patterns 2 and 9 produces a very short excitation (pattern 2) 
followed by inhibition (pattern 9). However, at high frequency, this 
combination produces only excitation because of short-term facilitation 
in the corticothalamic synapses and short-term depression in the 
reticulo-thalamic pathway (Crandall et al., 2015). 

5.2. Chemical synapses 

5.2.1. Rt-TC synapses 
The strength of reticular inhibitory connections to VB in paired re-

cordings is very variable (inhibitory postsynaptic current (IPSC) 
amplitude range: 18.5–514.0 pA; latency: 1.5–3.1 ms) and depends on 
various factors such as the proportion of postsynaptic failures, the 
amplitude of unitary IPSCs, and the density of axonal swellings. It is 
qualified as either weak (conductance: 0.46 ± 0.14 nS; range 0.35− 0.61 
nS) or strong (conductance: 4.5 ± 4.6 nS; range: 1.85–12.7 nS) (Cox 
et al., 1997). Each synaptic contact generates a unimodal (mean 

Fig. 7. Schematic representation of sources of topological variability within Rt, 
overlaid on the volumes of somatosensory thalamic regions, as parcellated by 
the Allen Mouse Brain Atlas. Thalamic regions are shown from the front side of 
the brain. Axis system: dorsal (D), ventral (V), right (R), left (L), anterior (A), 
and posterior (P). A) Right hemisphere (left side): Schematic representation of 
the topological organization of the Rt in the sectors most often described in the 
literature: somatosensory (Ss), visual (Vi), auditory (Au), visceral (Vr), taste 
(Ta), Limbic (Li), and motor (Mo). Somatotopy in the Ss sector is represented as 
proposed by Shosaku et al. (1984) (reused with permission). Although not 
represented here because of the lack of sufficiently precise descriptions, a 
similar topological organization can be observed across different modalities. 
Left hemisphere (right side): cut view of the somatosensory thalamus, including 
POm, VPM, VPL, and Rt. Rt is shown separated in head, tail, and tiers in the 
middle part. Cell densities (for adult rats) (Ross et al., 1995) in the different 
tiers are color-coded to highlight the heterogeneity of the cell composition 
across this nucleus. No cell density has been reported for the head and tail 
sections specifically. Connectivity, dendritic fields, and gap junctions networks 
have also been shown to depend on tiers (not represented here). B) Right 
hemisphere (left side): Schematic representation of the electrophysiological 
behavior of Rt cells varying along the dorsoventral axis (Lee et al., 2007). Left 
hemisphere (right side): Percentage of coupled cells depends on the plane in 
which the connectivity is probed with more electrical connectivity along the 
dorsoventral direction in coronal slices and more chemical connectivity along 
the anteroposterior direction in horizontal slices (numbers for P12-P15 rats 
from Deleuze and Huguenard (2006)). 

2 As opposed to cats, nocturnal rodents do not show clear lamination in the 
LGN (Monavarfeshani et al., 2017). 
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amplitude 12.2 ± 1.3 pA) or a bimodal (mean 13.2 ± 6.3 pA and 24.2 ±
16.8 pA) distribution of miniature IPSC (mIPSC) amplitudes (Cox et al., 
1997). 

VB responses from reticular inhibition can last up to hundreds of 
milliseconds and typically display an early Cl− -mediated GABAA 
component and a late K+-mediated GABAB component of about 20 % the 
amplitude of the GABAA component (Huguenard and Prince, 1994). 
Compared to other cells, the GABAA reversal potential in TC cells is very 
negative, suggesting the existence of a mechanism extruding Cl−

(Huguenard and Prince, 1994). 
When compared with GABAA-mediated mIPSCs recorded in dLGN TC 

cells, mIPSCs in VB TC cells have faster kinetics (VB: 1.4 ± 0.2 ms, dLGN 
1.7 ± 0.5 ms rise times; VB: 18.6 ± 3.6 pA/ms, dLGN: 14.8 ± 5.2 pA/ms 
decay slopes) and narrower half-widths (VB: 8.19 ± 1.46, dLGN: 11.6 ±
3.5 ms), but similar amplitudes (VB: 25.9 ± 0.89 pA, dLGN: 29.4 ± 0.8 

pA) (Yang et al., 2017). The slower rise time and longer half-widths of 
mIPSC are characteristics of dendritic release from dLGN interneurons 
and may be due to differences in the subunit composition of their GABAA 
receptors. This suggests that the reported differences between mIPSCs in 
VB and dLGN TC cells may be attributed to a larger contribution from 
interneurons in the dLGN (Yang et al., 2017). 

5.2.2. TC-Rt synapses 
The Rt receives excitatory inputs from TC and CT axons, with the 

latter accounting for ~60 % of the total excitatory terminals (Liu and 
Jones, 1999), in line with previous reports showing much denser CT 
than TC projections (Deschênes et al., 1998; Sherman and Koch, 1986). 
These two types of input can be distinguished by their short-term dy-
namics: L6 CT synapses onto Rt neurons are facilitating, while TC axons 
are depressing (Astori and Lüthi, 2013; Gentet and Ulrich, 2003; Gol-
shani et al., 2001). 

TC-Rt synapses in VB generate strong excitatory postsynaptic po-
tentials (EPSP; amplitudes [mean ± SEM]: 7.4 ± 1.5 mV, range 0.7− 27 
mV), few synaptic failures, and low variability of the kinetic properties 
and synaptic latencies (rise time: 0.63 ± 0.03 ms; decay time: 15.12 ±
0.91 ms) (Gentet and Ulrich, 2003). Similar EPSP amplitudes (0.5–2.0 
mV in Rt neurons held between –70 and –80 mV) and short-term 
depression were found in dLGN TC neurons of ferrets (Kim and 
McCormick, 1998). 

Depending on the baseline potential, AMPA contributes between 
68.1 ± 4.9 % and 71.4 ± 4.1 % of the total EPSP in the VB TC-Rt syn-
apses of juvenile (P14-P20) rats (Gentet and Ulrich, 2003). This 
contribution changes during development, with NMDA/AMPA ratio 
decreasing from 0.42 at P14 to 0.27 at P21-P28 in mice (Astori and 
Lüthi, 2013). Although this indicates synaptic maturation, NMDA re-
ceptors in Rt neurons continue to express GluN2B instead of seeing it 
substituted by GluN2A as it is usually the case during development 
(Astori and Lüthi, 2013). 

VB TC-Rt synapses may also contain a rare type of NMDA receptor 
subunit not requiring depolarisation to remove the Mg2+ block since 
only a low proportion of NMDA receptors are blocked at resting 

Fig. 8. All possible connectivity patterns from one TC cell to itself or to another TC cell in at most three synapses according to the four rules previously listed. Grey 
interrogation marks have been superimposed over patterns involving Rt-Rt chemical connections since evidence about their existence in adult rodents is equivocal 
(Section 5.2.2). Rt-Rt connections through electrical synapses (Section 5.4) are not represented in this figure. Inh: Inhibition; Exc: Excitation or disinhibition. 

Table 2 
Prevalence of open versus closed thalamo-reticular loops.  

Prevalence 
of open- 
loop 

Sample 
size 

Animals Region Type of 
experiment 

reference 

84 % 86 Adult rats AD(1), 
AV(1), 
LD/LP 
(5), MD 
(1), Po 
(1), VL 
(8), VB 
(5) 

Anatomical Pinault and 
Deschênes 
(1998b) 

93 % 14 Juvenile 
(P14- 
P20) rats 

VB Physiological Gentet and 
Ulrich 
(2003) 

79 % 34 Rats VB Physiological Shosaku 
(1986) 

83 % 36 Adult 
cats 

LGN Physiological Lo and 
Sherman 
(1994)  
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membrane potentials lower than − 70 mV (Gentet and Ulrich, 2003). 

5.2.3. Rt intrinsic connections 
Recurrent inhibition in Rt is controversial. Some studies in rats 

report relatively frequent recurrent connections: 40%–60% at P12-P15 
(Deleuze and Huguenard, 2006); 62 % (N = 47) at P10-P12 (Lam 
et al., 2006). However, other studies found these connections to be rare 
(2.8 % incidence of inhibitory connections (N = 180) in P4-P8 mice 
(Parker et al., 2009)) or absent (in P12-P21 rats (Landisman et al., 2002; 
Long et al., 2004)). Recent optogenetic experiments in mice suggest that 
these connections are pruned within the first two weeks after birth (Hou 
et al., 2016). However, other investigators, also using optogenetic 
stimulation, found weak but present Rt-Rt connections in 2–4 months 
old mice (Makinson et al., 2017). Reciprocal inhibitory connections in Rt 
have been hypothesized to help desynchronize Rt activity in context of 
sleep and epilepsy (Huntsman et al., 1999). GABAergic terminals in Rt 
account for about 10 % of all connections to the Rt (Guillery and 
Harting, 2003) but it is currently unclear what proportion of these ter-
minals come from external afferents (e.g., ZI, basal forebrain, globus 
pallidus, pretectum; see Section 6.3) or from recurrent Rt connections. 

5.2.4. Interneurons synapses 
Electron microscopy studies have shown that interneuron dendrites 

together with incoming retinal ganglion axons form a triadic synapse 
onto TC dendrites (Hamos et al., 1985; Morgan and Lichtman, 2020; 
Section 5.2.5). The F2 terminals of these interneurons have been shown 
to be associated with two types (A and B) of feedforward inhibitory 
responses depending on their receptors. Although every F2 terminal has 
AMPA and NMDA receptors, only those exhibiting the type B response 
also contain type 5 metabotropic glutamate receptors (mGluR5) which 
cause longer-lasting feedforward inhibition. Both types of response were 
observed in the same postsynaptic cells, and these cells were morpho-
logically different from those not displaying any response typical of F2 
terminals (Crandall and Cox, 2013). 

The amplitude and duration of IPSCs caused by interneuron spikes 
depend on the contribution of sodium and calcium conductances. In 
presence of TTX, sodium spikes of axonal and dendritic origin cause 
rapid GABAA IPSCs (10%–90% rise time: 1.2 ms) whereas dendritic 
calcium spikes generate slow IPSCs (10%–90% rise time > 20 ms) at the 
interneurons-TC synapse (Acuna-Goycolea et al., 2008). These differ-
ences indicate that these interneurons may rely on a variety of inhibitory 
signaling mechanisms. 

There is some anatomical evidence from electron microscopy that Rt 
to local interneuron synapses exist (Morgan and Lichtman, 2020). 
Further, LGN interneurons in rats have been shown to receive IPSPs 
when the Rt is extracellularly stimulated. These IPSPs are mediated only 
by bicuculline-sensitive GABAA receptors expressed by the interneurons 
(Zhu and Lo, 1999b). 

5.2.5. Glomeruli, triadic synapses, and local connectivity motifs 
Triadic synapses insulated by sheaths of astrocytic processes form 

glomerulus-like arrangements in the thalamus (Sherman, 2004; Spacek 
and Lieberman, 1974). These triadic synapses allow ascending gluta-
matergic driving inputs to trigger fast feedforward inhibition onto 

proximal TC dendrites by directly releasing GABA from interneurons 
dendrites (i.e., dendro-dendritic contacts; Fig. 9A). Compared to 
non-triadic configurations, these synapses provide faster (~1 ms delay) 
and more reliable feedforward inhibition (Blitz and Regehr, 2005). 

Because they involve interneurons, triadic synapses have been 
studied mostly in the LGN, where they have been shown to modulate 
driving inputs by controlling their gain (Heiberg et al., 2016; Sherman, 
2004) and by inducing a response lag (Vigeland et al., 2013). They also 
sharpen the temporal precision of incoming information by generating 
short windows of excitatory input on TC cells, i.e., an initial mono-
synaptic excitation followed 1 ms later by disynaptic feedforward inhi-
bition mediated by interneurons (Babadi et al., 2010; Butts et al., 2011; 
Casti et al., 2008). 

As opposed to modulatory L6 afferents that target distal TC dendrites 
with small non-glomerular synapses (Guillery and Sherman, 2002), L5 
afferents can drive thalamic activity through glomerular synapses 
formed on proximal dendrites of HO TC cells (Hoogland et al., 1991; 
Rouiller and Welker, 1991). These glomerular arrangements further 
enable L5 afferents to trigger a feed-forward inhibition of TC cells 
through incerto-thalamic terminals (Bartho et al., 2002). 

Interestingly, a single LGN thalamic interneuron creates diverse 
types of connectivity motifs, such as those illustrated in Fig. 9B-F as well 
as various other chain variants of these motifs not shown (Morgan and 
Lichtman, 2020). This suggests that the interneurons hold very complex 
computational properties and may be responsible for shaping incoming 
sensory stimuli. Computational simulations of such circuitry could serve 
as a helpful tool to parse out these sophisticated microcircuitries. 

5.3. Electrical synapses 

Gap junction (GJ) protein connexin36 is known to be highly 
expressed in Rt (Liu and Jones, 2003). Both connexin36 and connexin45 
are also expressed in VB TC cells, where they play a role in the early 
development of chemical synapses and gradually disappear during the 
first postnatal week (Lee et al., 2010; Zolnik and Connors, 2016). GJ 
protein Pannexin1 has also been reported in the thalamus (Cone et al., 
2013), particularly in Rt cells (Ray et al., 2005; Zappala et al., 2006), but 
it may not be contributing to electrical coupling (Huang et al., 2007; Lee 
et al., 2010). 

Rt GJs create a strong electrical coupling between Rt cells (Blethyn 
et al., 2008; Landisman et al., 2002; Long et al., 2004) and support the 
reticular rhythmogenesis by synchronizing neuronal activity (Long 
et al., 2004), similar to what was observed in GJ-connected cortical 
inhibitory neurons (Deans et al., 2001). Although both chemical and 
electrical synapses may be involved in different functions such as the 
synchronization of cell assemblies in the Rt of young rodents (Deleuze 
and Huguenard, 2006), the coupling remaining in adult rodents is 
mostly due to electrical synapses (Hou et al., 2016; Makinson et al., 
2017). 

Different types of GJs-connected cell clusters (~15 % elongated, ~45 
% discoid, and ~40 % spherical) may support functionally distinct 
networks in Rt (Lee et al., 2014). Elongated and discoid clusters tend to 
be constrained within single Rt tiers, spreading up to 30 % of the 
thickness of the nucleus. Accordingly, these types of clusters were 

Fig. 9. Schematic representation of triadic synapses and local 
connectivity motifs. A) A triadic synapse ensheathed in an astro-
cytic process. B-F) Examples of various connectivity motifs 
involving interneurons that have been observed (Morgan and 
Lichtman, 2020). Paler arrows indicate optional connections, i.e., 
meaning that both the motifs with and without such a connection 
exist. Most of the connections from interneurons are 
dendro-dendritic. D: Driver afferent; IN1, IN2: Two different in-
terneurons; TC: Thalamocortical relay cell.   
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reported to project to a single target (i.e., either POm or VB). That 
contrasts with spherical clusters that span up to 60 %–70 % of Rt 
thickness, covering multiple tiers which project to both POm and VB (see 
Fig. 1). The relationship between these types of clusters and the 
morphological subtypes of Rt cells (see Section 3.1.1) is currently un-
clear and should be elucidated in order to establish whether the shape of 
these clusters is an emerging property of the cellular composition or if a 
distinct mechanism is responsible. 

Neurons with inter-somatic distance up to 300 μm were shown to be 
coupled through GJ using dye-coupling imaging (Lee et al., 2014). By 
contrast, paired recordings show connections only for neurons separated 
by inter-somatic distances up to 40 μm (Long et al., 2004). However, in 
this technique, the sampling volume increases rapidly with 
inter-somatic distances, quickly reducing probabilities of successfully 
finding connected pairs. Clusters of GJ connected Rt cells obtained with 
dye-coupling were found to include many, but not all cells with short 
inter-somatic distances, suggesting selective connectivity within the 
space spanned by these clusters (Lee et al., 2014). 

Rt neurons were found to be connected through gap junctions with 8 
± 2.5 (range: 1–24; N = 9) neighbors when using dye-coupling. How-
ever, these figures are likely to be underestimated due to limited diffu-
sion of dye through gap junctions, as indicated by lower coupling 
prevalence at short inter-somatic distances when compared with paired 
recordings. Using photostimulation, between 17 % and 47 % of Rt 
neurons were reported to be locally connected through GJs (Deleuze and 
Huguenard, 2006; Lam et al., 2006). 

By introducing electrical coupling, GJs allow the low-frequency 
subthreshold activity to move across Rt cell networks (Bennett, 1966; 
Connors and Long, 2004). Membrane passive properties result in 
low-pass filtering of this activity, with stronger high-frequency attenu-
ation early in development due to a nearly four times higher membrane 
time constant at P1 (72 ± 4 ms) compared to P14 (19 ± 1 ms) in mice 
(Parker et al., 2009). 

Coupling coefficient of 0.12 ± 0.08 (N = 313) and synaptic 
conductance of 0.80 ± 0.63 nS (N = 313) have been reported for Rt GJs 
(Haas et al., 2011). However, long-term depression (LTD) can modulate 
the strength of this coupling. Two mechanisms can trigger such LTD: 1) 
simultaneous bursting in coupled neurons (Haas et al., 2011) and 2) 
activation of metabotropic glutamate receptors from cortical input 
(Landisman and Connors, 2005). These two sources of plasticity act 
through distinct mechanisms, allowing intrinsic Rt activity and cortical 
afferents to independently fine-tune the strength of GJ (Sevetson et al., 
2017). This LTD is sufficient to influence spike synchronization in 
coupled Rt cells (Landisman and Connors, 2005) and it modulates GJ 
coupling independently in both directions (Haas et al., 2011; Sevetson 
and Haas, 2015), providing a flexible mechanism for regulating the 
spread of rhythmic activity. 

5.4. Closed and open-loops 

The proportion of connections forming open or closed loops is a 
fundamental characteristic of the TC microconnectivity (Halassa and 
Acsády, 2016). The degree of convergence (closed-loop; feed-back in-
hibition) or divergence (open-loop; lateral inhibition) of information 
propagation in the system depends on the relative proportion of these 
patterns. Since most of the thalamus has a topological structure, the 
degree of divergence or convergence is likely impacting on the sharpness 
of stimuli (e.g., the resolution for the localization of a touch stimulus) 
and on selective attention. 

This topic has been more often studied in the thalamo-reticular loop 
than in the TC loop, probably because it is challenging to track long- 
distance projections between the thalamus and the cortex. The 
thalamo-reticular network comprise a mix of open and closed-loop 
connections (Deschênes et al., 1998; Desilets-Roy et al., 2002; Halassa 
and Acsády, 2016; Lam and Sherman, 2005; Pinault and Deschênes, 
1998b; Rouiller and Welker, 2000), with a dominance of 80 %–90 % of 

open-loop connections (see Table 2). However, the number of 
closed-loop connections may be underestimated due to severed con-
nections in sliced preparations. The thalamus probably needs to 
fine-tune this degree of divergence to generate TC rhythms (e.g., sleep 
spindles) that do not degenerate in uncontrolled oscillations (e.g., 
epileptic activity). A proper degree of divergence is required for pop-
ulations of cells to be recruited and initiate population rhythmic activity 
(waxing), to limit their spatial spread, and to timely desynchronize cell 
assemblies (waning) (Pita-Almenar et al., 2014). 

At the level of the TC loop, small (<1 μm) and giant (2–10 μm) CT 
axon terminals are involved in different functional networks. Small 
terminals provide cortical feedback and are more likely to form closed- 
loop, whereas giant terminals are passing along feed-forward signals 
through cortico-thalamo-cortical routes (Rouiller and Welker, 2000). 
Because of their focal and topologically accurate projection patterns, 
core TC cells from FO are likely to participate in a higher proportion of 
closed-loop circuits. By opposition, the greater spread of matrix TC 
projections from HO is likely to support a larger proportion of open-loop 
circuit associated with feed-forward cortico-thalamo-cortical commu-
nication and a lower proportion of closed-loop connections providing 
feedback to CT cells (Clasca et al., 2012). 

6. Afferents 

Thalamic afferents need to be carefully considered for both experi-
mental and modeling work in the TC system since they are closely 
related with behavioral differences in subpopulation of thalamic cells. 
By considering the direction of the flow of neural information, we can 
categorize thalamic afferents as being either ascending (from sensory 
inputs to percepts) or descending (from mental representation to motor 
actuators). To some extent, the patterns of afferent pathways can be 
generalized across modalities by considering FO/HO and driver/ 
modulatory properties of the nuclei and the afferents. However, because 
there are also many details that are specific to every sensory modality, 
our review of thalamic afferents is limited to the somatosensory system. 

6.1. Ascending projections for the somatosensory system 

The major afferent pathways for the rodent somatosensory system 
are depicted in Fig. 10. The VPL and VPM receive input from sensory 
cells through two main pathways: the lemniscal and the extralemniscal. 
For the region of the head, the lemniscal pathway goes through the 
trigeminal ganglion and forms synapses in the principal nucleus of the 
trigeminal complex (Pr5). Then it crosses contra-laterally and passes 
through the trigeminal lemniscus to reach the VPMdm (Pierret et al., 
2000; Veinante et al., 2000). For the rest of the body, first-order neurons 
have their somata in the dorsal ganglion root and project along the 
dorsal column to the brainstem where they synapse to cells in the gracile 
(lower body) or the cuneate (upper body) nuclei. Axons of these 
second-order neurons cross contra-laterally and climb up through the 
medial lemniscus, which projects to VPL, most heavily to its rostral 
portion. This route is also named the dorsal column-medial lemniscus 
pathway. It is the main pathway for fine touch, vibration, two-point 
discrimination, and proprioception. It is fast, precise, and phylogeneti-
cally recent (Ebner and Kaas, 2015). 

The extralemniscal pathway is also called neospinothalamic or spi-
nothalamic (Yu et al., 2006) and is part of the anterolateral or ventro-
lateral system. It is associated with nociception (pain) and dull 
sensations, such as crude touch and temperature sensation. It reaches 
the spine through the dorsal ganglion root, crosses to the contralateral 
side, and climbs up through the ventral and lateral spinothalamic 
fasciculi to project to VPL, most heavily to its caudal portion. Similarly, 
for the head, the analog pathway passes through the trigeminal gan-
glion, then the spinal trigeminal complex (Sp5), most importantly 
through the interpolar division (see Veinante et al. (2000) for charac-
terization of these projections separately for the oral (Sp5o), interpolar 
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(Sp5i) and caudal (Sp5c) divisions). Then, it reaches the VPMvl (Pierret 
et al., 2000; Veinante et al., 2000) through the contralateral anterior 
division of the trigeminal lemniscus. Although terminals from the Sp5 
(spinothalamic) and Pr5 (lemniscal) have been reported to be indistin-
guishable within VPM, they have been found to target distal and prox-
imal dendrites, respectively (Williams et al., 1994). 

A third pathway, the spinocervicothalamic (also named only spino-
cervical) pathway, is much less often discussed and generally only in the 
context of nociception. Contrary to the other trisynaptic pathways, it has 
four synapses. Cells from the dorsal root ganglion form synapses onto 
neurons of the spinal dorsal horn. Then, spinal neurons project to the 
ipsilateral lateral cervical nucleus. Cervical projections cross con-
tralaterally and project through the medial lemniscus to the most caudal 
part of VPL (Giesler et al., 1988). 

Another important ascending somatosensory pathway, the paral-
emniscal pathway, projects to Sp5, and more particularly to the Sp5i. It 
involves Sp5i large soma cells with thick and fast conducting axons, as 
opposed to the spinothalamic projections from Sp5i, which project thin 
and slow conducting axons from smaller cells (Pierret et al., 2000; 
Veinante et al., 2000). It reaches the PO directly and also targets the 
non-barreloid VPMvl region (Williams et al., 1994). It is associated with 
nociception (Frangeul et al., 2014) and contains poorly segregated in-
formation. For example, as opposed to the lemniscal pathway, for which 
specific input has strong single-whisker dominance (Gauriau and 

Bernard, 2004; Pierret et al., 2000), this pathway contains multi-whisker 
information (Williams et al., 1994). As opposed to lemniscal inputs to 
VPM which are only of a driver type, the paralemniscal pathway projects 
to PO with a mix of driver (29 %) and modulatory (71 %) inputs (Mo 
et al., 2017). Feedforward inhibition from ZI inhibits this driving input 
to PO. Surprisingly, electrophysiological characterization has shown 
that disynaptic trigeminal-incertal-PO inhibitory input arrives earlier to 
PO than the monosynaptic trigeminal-PO excitatory input. These tem-
poral properties explain the relatively low responsiveness of PO when it 
is only activated from this ascending driver input (Lavallée et al., 2005). 
However, PO cells are highly responsive when a paralemniscal input is 
shortly preceded by descending inputs (further discussed below; Groh 
et al., 2014). 

Some other pathways associated with the somatosensory system, 
particularly for nociception, reach other parts of the thalamus, e.g., the 
pathway reaching the centromedian parafascicular nuclei of the thal-
amus from the anterior spinothalamic tract. We do not review these 
pathways here. 

In summary, the pattern of ascending afferents is complex, with 
different pathways supporting different functions such as touch, pro-
prioception, and nociception. The thalamic regions that these pathways 
target partially overlap, but are nevertheless characterized by modality 
and afference dominance (i.e., afferents are not perfectly segregated, nor 
are they homogeneously mixed within somatosensory thalamic nuclei). 
These different afferents evolved in steps, newer systems being added on 
top but in interaction with older systems. Most ascending afferents have 
large terminals with round vesicles, which partly distinguish them from 
Rt or CT afferents, but not between themselves. Further, some ascending 
afferents (e.g., lemniscal) exhibit a mixture of driver and modulatory 
properties, which complicates their segregation from cortical afferents 
based on synaptic physiology alone. However, VGluT1/VGluT2 immu-
nohistochemistry can be used to distinguish brainstem and spinal cord 
inputs (VGluT2 positive) from cortical ones (VGluT1 positive) (Graziano 
et al., 2008). 

6.2. Descending projections for the somatosensory system 

Three distinct CT projections have been described, depending on 
their laminar origin: L5, L6a, or L6b (Hoerder-Suabedissen et al., 2018). 
To restrain the scope of this review, we focus on S1 projections, although 
other areas such as S2 and the motor cortex also project to the so-
matosensory thalamus (Rouiller et al., 1991). To facilitate the compar-
isons across these pathways, Table 3 provides a summary of some of 
their key properties. 

As a population, L5 projections target more densely HO (e.g., POm) 
than FO (e.g., VB) (Hoerder-Suabedissen et al., 2018). L5 cells often 

Fig. 10. Major ascending pathways for the somatosensory system of the rodent. 
A) High-level representation of the neural paths from the periphery up to the 
somatosensory cortex. B) Detailed view of the pathways at the spinal level. The 
numbers indicate the order of the neurons involved at each step of 
the pathways. 

Table 3 
Summary table for the properties of the descending afferents to the somato-
sensory thalamus.   

L5 L6a L6b 

Rt 
collaterals 

No Yes No 

Type Driver for PO; Modulator 
for VB, except maybe at 
its fringes 

Modulator Modulator 

Target VPL Sparse collaterals with 
small varicosities; 
some large L5 varicosities 
in dorsal, medial, and 
ventral fringes of VB and 
in VPMvl 

Yes 
It occasionally has a 
few collaterals 

Target VPM Yes 
No direct collaterals; 
Sometimes dendrites 
travels back from PO 

Target PO 
Dense collaterals with 
small and large 
varicosities 

Yes Yes 

Subcellular 
target 

Proximal dendrites 
Distal dendrites; 
colocalized with ascending input  
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project only to HO (Bourassa et al., 1995; Reichova and Sherman, 2004; 
Veinante et al., 2000). The size of POm varicosities from L5 projections 
vary in a wide range, with some being relatively small (similar to those 
from L6) but also with a significant proportion being much larger (3–8 
μm) (Bourassa et al., 1995; Hoerder-Suabedissen et al., 2018). Only 
small L5 varicosities have been reported in FO (Hoogland et al., 1991), 
except for some large L5 terminals found in the dorsal, medial, and 
ventral fringes of VB as well as in VPMvl (Liao et al., 2010). L5 cells 
project to the thalamus but not to the Rt (Bourassa et al., 1995; Bourassa 
and Deschenes, 1995). They do so through collaterals, their final target 
being regions of the brainstem (e.g., superior colliculus) and the spinal 
cord (Bourassa et al., 1995; Deschênes et al., 1994). Similarly to TC 
projections, synapses from L5 afferents have a fast conduction time 
(Miller, 1996) suggesting a feed-forward role (Rouiller and Welker, 
2000). 

Through its L5 afferents to the ZI (Mitrofanis and Mikuletic, 1999), 
the cortex can lift the powerful incertal feedforward inhibition of 
paralemniscal inputs to PO (e.g., passive whisker deflection) when they 
are co-occurring with top-down stimulation (e.g., active whisking) 
(Lavallée et al., 2005). Two mechanisms are available to the cortex for 
this: 1) by triggering auto-inhibition of ZI through its network of 
re-entering GABAergic collaterals (Bartho et al., 2002; Power and 
Mitrofanis, 1999) or 2) by cortical activation of the APT projections to ZI 
(Section 6.3; Giber et al., 2008). 

As opposed to the driver afferents from L5 that targets proximal TC 
dendrites, L6 afferents are modulator and target distal TC dendrites. In 
the PO of rats and mice, synapses from L6 afferents have been shown to 
be colocalized with driving spinal trigeminal inputs, both afferents 
forming terminals close to one another (i.e., <5μm; Groh et al., 2014). 
This proximity allows PO to integrate ascending and descending 
streams, as supported by a supralinear gain for spiking probability when 
ascending input arrives within a time window spanning tens of milli-
seconds after the arrival of cortical activity. 

Afferents from L6a project to both FO and HO with a similar density 
(Hoerder-Suabedissen et al., 2018) and provide feed-forward inhibition 
through their collaterals to Rt (Bourassa et al., 1995; Bourassa and 
Deschenes, 1995; Lam and Sherman, 2010). They project only to 
sensory-specific nuclei (Bourassa et al., 1995; Deschênes et al., 1998) 
and those from barrel columns project only to corresponding barreloids 
(Deschênes et al., 1998). 

Some L6b cells have been shown to arborize in POm without any 
collaterals to either VB or Rt. A genetically labeled subset of CT axons 
from this layer of the somatosensory cortex has also been reported to 
arborize at the edge of POm, with some branches traveling back to VPM. 
As opposed to cells from L6a, they do not send collaterals to Rt and, in 
some cases, send collaterals to VPL, but not to VPM (Hoerder-Suabe-
dissen et al., 2018). These may correspond to a small proportion of CT 
cells in the lower part of L6 that have been reported to arborize only in 
POm (Bourassa et al., 1995). Deep L6 projections have more frequently 
multinuclear innervation patterns. For example, they can target asso-
ciative and/or intralaminar thalamic nuclei associated with given mo-
dalities. They also participate in the formation of rods or barreloids in 
specific nuclei (Deschênes et al., 1998). However, since L6a/L6b have 
not been clearly distinguished in earlier studies, it is difficult to unam-
biguously associate observations about lower/upper L6 with L6a/L6b. 
Further, the distinction observed within L6a and L6b may be different in 
granular versus dysgranular portion of S1 (Deschênes et al., 1998). 

Typical indicators (i.e., ionotropic glutamate receptors and 
depressing synapses located close to cell bodies) show that L5 pyramidal 
cells from S1 provide POm with driving input. This is compatible with a 
feedforward role, i.e., this pathway carries information up the hierar-
chical network of the brain. By opposition, typical indicators (facili-
tating synapses on distal dendritic domains, with both ionotropic and 
metabotropic glutamate receptors) support a modulatory role for S1 L6a 
afferents to VPM. Therefore, this pathway is likely to transmit feedback 
down the brain hierarchy (Reichova and Sherman, 2004; Sherman and 

Guillery, 1996). Synapses from L6b require better characterization 
before similar roles can be attributed to this pathway (Hoerder-Suabe-
dissen et al., 2018). 

L6 CT projections are similar to cortico-cortical projections in that 
they are characterized by a highly variable conduction time, with some 
very long delays (Kelly et al., 2001; Kwegyir-Afful and Simons, 2009). 
By opposition, L5 CT (collaterals) have a fast conduction time, similar to 
the TC projections (Miller, 1996). The variable conduction time in L6 CT 
projections has been hypothesized to allow the modulation of the tem-
poral dynamics of TC cells across time scales (Briggs and Usrey, 2008). 

Synaptic variations suggest that these afferents have different spatial 
distribution within VB: the rostral part of this complex is innervated by 
small CT terminals, whereas its caudal region contains both small and 
large CT terminals. Further, this complex also contains a shell-like re-
gion that is characterized by large terminals (Liao et al., 2010). 

Although in general, patterns of connectivity are similar across mo-
dalities, some differences exist. For example, in the auditory system, the 
FO (i.e., MGNv) has been shown to receive driving ascending input, 
whereas the HO (i.e., MGNd) is receiving ascending modulatory input 
(Lee and Sherman, 2010). Such segregation is less evident in the so-
matosensory system for which both driving and modulatory ascending 
afferents target POm (Mo et al., 2017). 

6.3. External inhibition 

Because most dorsal thalamic nuclei only have a small proportion of 
local inhibitory interneurons, a substantial part of their inhibition comes 
from external sources, mainly from Rt but also from other sources 
(Fig. 11). 

ZI, a ventral thalamic region contiguous with Rt, and particularly its 
PV+ ventral portion, is an important source of inhibition for HO (Bartho 
et al., 2002; Bokor et al., 2005; Giber et al., 2008; Lavallée et al., 2005). 
It receives projections from L5 cells (Mitrofanis and Mikuletic, 1999) 
and from ascending afferents (e.g., from SpVi) (Lavallée et al., 2005), 
but not from the dorsal thalamus (Bartho et al., 2002). ZI innervates 
large proximal HO dendrites with clustered giant boutons (major axis up 
to 6–8 μm), establishing multiple release sites. These boutons form 
glomeruli with large excitatory boutons from L5 afferents (Bartho et al., 
2002). Hence, ZI-thalamic inhibition seems to be very potent and focal, 
as opposed to Rt inhibition which is likely to have a more diffuse and 

Fig. 11. Inhibitory circuits of the somatosensory thalamus.  
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modulatory effect (small boutons, generally single release sites, sparsely 
distributed across dendritic domains). ZI projections generally avoid 
small-size distal dendrites targeted by L5 projections (Bartho et al., 
2002). Further, there is indirect but solid evidence that incertal but not 
Rt boutons have pre-synaptic type II muscarinic acetylcholine receptors. 
Although such receptors are nearly absent from VPL and VPM (except 
for the most caudal part), they constitute about half of the GABAergic 
terminals in PO, highlighting what is likely to be a considerable impact 
of ZI on the activity of this nucleus (Bartho et al., 2002). 

Projections from the APT are very similar to those from ZI. They 
project only to HO forming large multi-synaptic boutons similar to 
incertal ones (Bokor et al., 2005; Giber et al., 2008; Lavallée et al., 2005) 
and designated as F3 terminals (Wanaverbecq et al., 2008) to emphasize 
their difference from F1 and F2 terminals found in the thalamus. As for 
ZI, and as opposed to Rt, APT has rich re-entrant GABAergic connec-
tivity. However, as opposed to ZI, APT has similar connectivity with 
ascending and descending thalamic afferents (Lavallée et al., 2005) and 
sends no projections to Rt (Bokor et al., 2005; Cavdar et al., 2006). 

APT and ZI are likely working in concert for controlling the activity 
in HO since APT projects to ZI with both GABA+ and GABA- boutons. 
Further, the APT-thalamic pathway is characterized by large and potent 
synapses (Bokor et al., 2005), whereas the APT-ZI pathway seems to 
have a milder modulatory effect and has smaller boutons with one or 
two synapses (Giber et al., 2008), suggesting a certain level of segre-
gation between these two pathways. The existence of these parallel 
inhibitory pathways led to the proposal of an extrareticular system for 
the focal inhibitory control of HO, as opposed to a more modulatory 
control of the thalamus by Rt (Bokor et al., 2005). Nevertheless, this 
extrareticular system is likely to work in synergy with reticular inhibi-
tion since a ZI-Rt pathway has been reported in rats (Cavdar et al., 
2006). 

7. Outlook: gap and opportunities 

7.1. A need for further data integration and system interoperability 

Initial investigations of the TC system allowed establishing funda-
mental and structuring dichotomic concepts such as driver/modulatory 
afferents, FO/HO nuclei, core/matrix projections, and feed-forward/ 
feedback inhibition. These concepts provide guidelines for extrapo-
lating the vast amount of information required for understanding and 
modeling such a complex system using the unavoidably limited amount 
of observations that can be collected experimentally. In particular, 
although this review focuses on the somatosensory system, most prop-
erties of the TC loop in this system (e.g., the existence of a topological 
organization) can be generalized across sensory modalities and then 
fine-tuned to take into account peculiarities of given modalities. 

To understand the biophysics of the TC loop, we can increasingly rely 
on high-resolution and high-throughput experimental recording 
methods. However, the potential of these new methods will be fully 
harnessed only if we manage to pool together quantitative experimental 
results from various sources. Such a pooling requires the experimental 
results to be systematically contextualize using open-access resources, 
like standard coordinate systems (e.g., the CCF (Oh et al., 2014)), atlases 
(e.g., the Waxholm Space Atlas of the Sprague Dawley Rat (Papp et al., 
2014), the Allen Mouse Brain Connectivity Atlas (Oh et al., 2014)), 
ontological terms (e.g., the Neuroscience Information Framework 
Standard Ontology (Imam et al., 2012)), systematic curation of pub-
lished data (O’Reilly et al., 2017), and interoperable neuroinformatics 
platforms (e.g., the Blue Brain Nexus; https://bluebrainnexus.io/). In 
particular, atlases containing point-to-point connection probabilities 
from experiments such as those stored in the Allen Mouse Brain Con-
nectivity Atlas would prove invaluable. We also need to link spatial 
coordinates (i.e., not only whole brain regions) with quantitative values 
(i.e., not only dichotomic concepts) across cellular dimensions (e.g., 
electrophysiological behavior, morphological type, gene expression, 

protein expression), for example by embedding them as vectorial fields 
within shared spatial atlases. The fact that the topological variability 
shown in Fig. 7 could only be represented schematically rather than in a 
numerically accurate way is symptomatic of the absence of such re-
sources. Since these results are not provided in a common spatial 
framework, they cannot be integrated accurately in a single space 
allowing cross-fertilization of studies (e.g., inferring the precise rela-
tionship between bursting types and somatotopy). 

Reaching such a level of data integration is essential to tackle 
fundamental challenges associated with high experimental variability 
and low reproducibility, interspecies differences, complex develop-
mental trajectories, and anomalies due to diseases and idiosyncratic 
conditions. Using standard frameworks to provide such a formal con-
textualization is necessary to support meta-analyses required to reach 
reliable conclusions from highly variable experimental results, as 
demonstrated here for cell densities (see Fig. 5). Unfortunately, not all 
required frameworks are yet available, and those currently existing 
often need ongoing improvements (e.g., better sub-parcellation of 
atlases, refinement of ontologies). The advent of the “big science” 
approach might support the costly and often under-appreciated devel-
opment of such resources but will require deep cultural changes in our 
way to evaluate and reward scientific contribution and merit. 

7.2. Outstanding knowledge gaps 

A few outstanding gaps in our current knowledge are worth high-
lighting. For example, we have a rather shallow understanding of in-
terneurons in other nuclei than LGN. Aside from the widely different 
proportions that have been reported in Section 4.3, almost nothing is 
known about their electrophysiological properties, their connectivity, 
their morphologies, and their functional role. Also puzzling is the report 
of non-GABAergic neurons in Rt (Cavdar et al., 2013). Further, only a 
few paired-recording studies have investigated comprehensively the 
inhibition between interneurons and TC cells, with none reporting on 
the dynamics of short-term plasticity associated with the IPSP at the 
interneuron-TC synapse. Similarly, little is known about reticular to 
interneuron connectivity in rodents. 

Experimental and modeling investigation of the interaction between 
neurons and glial cells is necessary in order to characterize their impact 
on hemodynamics and foster a more complete understanding of 
neuronal dynamics. Although this aspect has been relatively under-
studied, it has recently received more attention and this trend is likely to 
increase as the neuroimaging community further models brain activity 
from blood oxygen levels measured by functional magnetic resonance 
imaging and similar recording modalities (Blanchard et al., 2016; 
Chander and Chakravarthy, 2012; Chhabria and Chakravarthy, 2016). 
More specifically concerning the TC loop, thalamic glial cells have also 
been the focus of very few studies, even though they have been recog-
nized to serve important functional roles and to work in synergy with 
thalamic neurons. For example, they have been shown to disinhibit VB 
TC neurons (Copeland et al., 2017). VB glial cells have also been re-
ported to form two classes, depending on their response to TC synaptic 
input, and they have been hypothesized to contribute to the processing 
of somatosensory information and the modulation of network activity 
(Parri et al., 2010). Unfortunately, reliable modeling of 
neuro-glio-vascular interactions will only be possible after these cells are 
experimentally characterized in much more detail. 

Further quantitative and high-resolution information about con-
nectivity is also necessary for neurons involved in the TC loop. It is 
challenging, with the current state of the art, to infer a precise and 
comprehensive picture of how synaptic boutons are distributed within 
thalamic nuclei and individual morphologies. Without this information, 
connectivity within biophysically-detailed models can only be roughly 
approximated, with undetermined consequences on network activity. 
Much more information is also needed to derive precise space-aware 
estimations of the prevalence of the microconnectivity patterns 
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described in Fig. 8. These need to be assessed not only structurally, but 
also functionally since they are likely modulated by CT activity, e.g., by 
facilitating the response of a group of cells through NMDA spikes or by 
inhibiting a group through extrareticular pathways. 

7.3. Future perspectives 

On the bright side, impressive methodological developments are 
promising fast progress on long-standing issues. For example, the spar-
sity and variability in stereological studies reporting cell densities 
(Keller et al., 2018) is likely to be resolved by whole-brain approaches 
relying on novel techniques such as brain clearing (Kim et al., 2017; 
Murakami et al., 2018). Also, high-throughput whole-brain sparse la-
beling and imaging of brain cells should greatly improve the thor-
oughness of our cell morphology sampling (Gong et al., 2016) and will 
support the reconstruction of much more complete (i.e., not cut by the 
slicing performed during patch-clamp experiments) morphologies 
(Economo et al., 2016; Reardon, 2017). For example, the MouseLight 
project at the Janelia Research Campus has recently made available 1, 
000 complete cell morphologies, with long range axonal projections 
spanning large portions of the mouse brain (Winnubst et al., 2019). The 
availability of morphologies with complete axonal projections will be 
invaluable for large-scale modeling and may have a profound impact on 
our way to view the TC system. 

Furthermore, since its introduction over a decade ago, optogenetics 
has allowed researchers to design in vivo experimental protocols that 
provided a strong foundation to decorticate neuronal networks in more 
natural conditions (Deisseroth, 2015). These advances have been further 
supported by the recent development of miniaturized imaging equip-
ment, such as miniscope and gradient-index (GRIN) lenses (Ghosh et al., 
2011), which made calcium imaging possible in freely behaving animals 
(Zhang et al., 2019). Similarly analyzing extracellular potentials with 
Neuropixel probes (Jun et al., 2017), will likely improve significantly 
our understanding of dynamics in the TC loop during its normal mode of 
operation. With these in vivo experimental tools, we can now probe the 
inner workings of sleep, sensory processing, and behavior. These new 
methods are likely to help us shed a new light on cellular- and 
network-level mechanisms involved in diseases associated with 
abnormal thalamic rhythmogenesis, as previously reported for condi-
tions like epilepsy, schizophrenia, and autism. Combined with 
fast-paced improvement in modeling methodologies and the steady in-
crease of available computational power, these experimental advances 
are paving the way for great leaps in our understanding of the TC system. 
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Benali, H., Wendling, F., 2016. A new computational model for neuro-glio-Vascular 
coupling: astrocyte activation can explain cerebral blood flow nonlinear response to 
interictal events. PLoS One 11. https://doi.org/10.1371/journal.pone.0147292. 

Blethyn, K.L., Hughes, S.W., Crunelli, V., 2008. Evidence for electrical synapses between 
neurons of the nucleus reticularis thalami in the adult brain in vitro. Thalamus Relat. 
Syst. 4, 13–20. https://doi.org/10.1017/S1472928807000325. 

Blitz, D.M., Regehr, W.G., 2005. Timing and specificity of feed-forward inhibition within 
the LGN. Neuron 45, 917–928. https://doi.org/10.1016/j.neuron.2005.01.033. 
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Magalhães, B.R.C., Merchán-Pérez, A., Meystre, J., Morrice, B.R., Muller, J., Muñoz- 
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