Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dynamic functional networks in idiopathic normal pressure hydrocephalus: Alterations and reversibility by CSF tap test
 
research article

Dynamic functional networks in idiopathic normal pressure hydrocephalus: Alterations and reversibility by CSF tap test

Griffa, Alessandra  
•
Bommarito, Giulia
•
Assal, Frederic
Show more
December 9, 2020
Human Brain Mapping

Idiopathic Normal Pressure Hydrocephalus (iNPH)-the leading cause of reversible dementia in aging-is characterized by ventriculomegaly and gait, cognitive and urinary impairments. Despite its high prevalence estimated at 6% among the elderlies, iNPH remains underdiagnosed and undertreated due to the lack of iNPH-specific diagnostic markers and limited understanding of pathophysiological mechanisms. INPH diagnosis is also complicated by the frequent occurrence of comorbidities, the most common one being Alzheimer's disease (AD). Here we investigate the resting-state functional magnetic resonance imaging dynamics of 26 iNPH patients before and after a CSF tap test, and of 48 normal older adults. Alzheimer's pathology was evaluated by CSF biomarkers. We show that the interactions between the default mode, and the executive-control, salience and attention networks are impaired in iNPH, explain gait and executive disturbances in patients, and are not driven by AD-pathology. In particular, AD molecular biomarkers are associated with functional changes distinct from iNPH functional alterations. Finally, we demonstrate a partial normalization of brain dynamics 24 hr after a CSF tap test, indicating functional plasticity mechanisms. We conclude that functional changes involving the default mode cross-network interactions reflect iNPH pathophysiological mechanisms and track treatment response, possibly contributing to iNPH differential diagnosis and better clinical management.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Human Brain Mapping - 2020 - Griffa - Dynamic functional networks in idiopathic normal pressure hydrocephalus Alterations.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

4.43 MB

Format

Adobe PDF

Checksum (MD5)

047de3101747ce6e8e58d7e731f6bbd6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés