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Evidence accumulation relates to perceptual
consciousness and monitoring
Michael Pereira 1,2,3, Pierre Megevand4,5,6, Mi Xue Tan 1, Wenwen Chang1, Shuo Wang 3,7, Ali Rezai3,

Margitta Seeck4, Marco Corniola8,9, Shahan Momjian8,9, Fosco Bernasconi1, Olaf Blanke1,9,10 &

Nathan Faivre 1,2,10✉

A fundamental scientific question concerns the neural basis of perceptual consciousness and

perceptual monitoring resulting from the processing of sensory events. Although recent

studies identified neurons reflecting stimulus visibility, their functional role remains unknown.

Here, we show that perceptual consciousness and monitoring involve evidence accumulation.

We recorded single-neuron activity in a participant with a microelectrode in the posterior

parietal cortex, while they detected vibrotactile stimuli around detection threshold and pro-

vided confidence estimates. We find that detected stimuli elicited neuronal responses

resembling evidence accumulation during decision-making, irrespective of motor confounds

or task demands. We generalize these findings in healthy volunteers using electro-

encephalography. Behavioral and neural responses are reproduced with a computational

model considering a stimulus as detected if accumulated evidence reaches a bound, and

confidence as the distance between maximal evidence and that bound. We conclude that

gradual changes in neuronal dynamics during evidence accumulation relates to perceptual

consciousness and perceptual monitoring in humans.
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The processing of sensory signals by the human brain gives
rise to two interrelated phenomena: perceptual con-
sciousness, defined as the subjective experience associated

with a sensory event1,2, and perceptual monitoring, defined as the
capacity to introspect and reflect upon the subjective experience
associated with a sensory event3,4. The main strategy employed to
study perceptual consciousness consists in relating first-order
subjective reports to neural activity to identify the minimal set of
neuronal events and mechanisms sufficient for a specific con-
scious percept (i.e., neural correlates of consciousness or NCCs5).
To identify NCCs, most experimental paradigms have adopted a
contrastive approach, whereby distinct phenomenal experiences
induced by constant sensory stimulation are compared6. One of
the simplest contrasts is obtained when stimuli are presented at
low intensity or embedded in noise so that only a certain pro-
portion of them is detected7. A comparison of neural activity
elicited by detected and missed stimuli allows distinguishing the
neural correlates of conscious vs. unconscious sensory processing,
and therefore identifying NCCs given that specific confounds are
ruled out8. However, although rare investigations in humans have
described single neurons in the temporal lobe encoding stimulus
detection9,10, the mechanistic role of neuronal activity for per-
ceptual consciousness remains unknown. One prominent theory
of consciousness, the global neuronal workspace, proposes that a
stimulus is consciously perceived when its corresponding neural
activity is globally broadcasted across the cortex11. This theory
assumes that this global broadcast is triggered when an (uncon-
scious) evidence accumulation process reaches a threshold12

similar to the physiological processes underlying decision-
making13–15. A behavioral modeling study proposed a similar
mechanism for the subjective experience of reaching a decision16.
Various neuroimaging studies have interpreted increases in
neural activity elicited by detected stimuli17 (versus missed sti-
muli) as evidence accumulation18–20 and several animal studies
have reported single neuron correlates in detection tasks15,21,22.
However, little empirical evidence supports an evidence accu-
mulation account of perceptual consciousness, especially at the
single neuron level.

Besides perceptual consciousness, the main strategy to study
perceptual monitoring consists in assessing how second-order
reports like confidence judgments co-vary with the accuracy of a
given perceptual task23. As most studies investigating perceptual
monitoring rely on first-order discrimination tasks with stimuli
that are always detected, less is known regarding how the brain
monitors the presence or absence of subjective experience24,25.
Moreover, the interdependencies between perceptual conscious-
ness and monitoring remain to be described empirically: while
some theories argue that consciousness requires a higher order
representation of a stimulus26,27, or necessarily comes with a
sense of confidence28, other theories argue that first-order
representations may be sufficient for a conscious percept to
occur29,30. Like for perceptual consciousness, several models
propose that evidence accumulation plays an important role for
the formation of perceptual confidence31–34. Yet, to our knowl-
edge the underlying neural mechanisms of confidence in detec-
tion tasks remain to be described.

Here, we sought to investigate the role of evidence accumu-
lation in perceptual consciousness and perceptual monitoring by
asking participants to detect weak vibrotactile stimuli and rate
their confidence in having detected them. We reasoned that
both detection and confidence underlie decision-making pro-
cesses whereby participants accumulate perceptual evidence
over time and gauge its level relative to decision criteria. We
examined this possibility in a patient implanted with a micro-
electrode array in the posterior parietal cortex (PPC, Fig. 1a),
considered as one of the functional hotspots of evidence

accumulation in the non-human primate brain13,14. We isolated
368 putative single neurons (Supplementary Fig. 1) in three
different experiments with immediate responses (Experiment 1),
delayed responses (Experiment 2, 4), and no-report (Experiment
3) in order to characterize the neural correlates of detection and
confidence at the single-neuron and population levels and link
evidence accumulation in the PPC to perceptual consciousness
and monitoring. Namely, the comparison of neural signals
between paradigms involving immediate and delayed responses
ensured that the NCCs we isolated were not contaminated by
motor actions. Moreover, the use of a no-report paradigm
ensured that these NCCs reflected perceptual consciousness
per se, irrespective of task demand35. These results were gen-
eralized in a fourth experiment involving a group of healthy
volunteers in whom we recorded scalp electroencephalography,
perceptual consciousness and monitoring responses while they
detected the same vibrotactile stimuli. In a final step, we test and
propose an evidence accumulation computational model that
reproduced the behavioral and neural markers of both detection
and confidence. Together, these results indicate that subjective
reports of perceptual consciousness and monitoring involve a
common mechanism of evidence accumulation orchestrated by
the PPC.

Results
Experiment 1: immediate-response task. In Experiment 1, the
participant was asked to detect vibrotactile stimuli applied to the
right wrist (contralateral to the PPC implant) with an intensity
around detection threshold. Responses were provided by a key-
press with the left hand, immediately after perceiving a stimulus.
A trial was considered a hit when the participant responded
within 2 s following stimulus onset (41.20% of trials; mean
response time (RT) and 95% confidence interval: 0.71 ± 0.02s;
Fig. 1c), otherwise, it was considered a miss (58.80% of trials
Fig. 1b). The participant rarely responded outside this 2 s window
(0.36%; false-alarms), indicative of conservative behavior. We
found 81/186 detection-selective neurons (43.55%; Supplemen-
tary Fig. 2a; p= 0.001, Wilcoxon rank test with permutation test
across neurons) with spike counts explained by detection (yes/no
responses) between 0.5 and 1.5 s after the stimulus onset. 44/81 of
these detection-selective neurons significantly increased their
firing rate compared to a 300 ms baseline prior to stimulus onset
(Supplementary Fig. 2b; p= 0.001) while only one decreased its
firing rate (p= 0.78). Crucially, some neurons were characterized
by a hallmark of evidence accumulation with gradually increasing
firing rates prior to the keypress; to find such neurons, we tested
for correlations between RT and the slope of the firing rates
between 300 ms and the response onset. We found 14/81 such
RT-selective neurons (17.28%; p= 0.001; Fig. 1d–f; see Supple-
mentary Fig. 3 for a confirmatory analysis). Consistent with
evidence accumulation, highest correlations were negative and
related to positive choice probabilities (Fig. 1g).

Regarding misses, 16/81 neurons significantly increased their
firing rate compared to baseline (Supplementary Fig. 2c; p=
0.001). Average firing rates for these 16 neurons suggested that
this increase from baseline, was lower than the one we observed
for hits. We therefore sought for neurons that increased their
firing rates for misses and had higher spike counts for misses than
for hits. We found six such miss-coding neurons (Fig. 1g,
Supplementary Fig. 2d; p= 0.001), suggesting that some neurons
in the PPC actively code missed stimuli22. Finally, we found
qualitatively similar increases in firing rate with electrocortico-
graphy (ECoG) with an effect of detection that was strongest in
the PPC and pre-central gyrus (Fig. 1h–i). To summarize, we
uncovered individual neurons in the human PPC with firing rates
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ramping up prior to detection reports, consistent with evidence
accumulation.

Experiment 2: delayed-response task. Because the participant hit
a key as soon as they detected a stimulus in Experiment 1, the
comparison between hits and misses mentioned above may be
contaminated by motor confounds. Thus, we tested whether
neuronal responses relate to conscious perception irrespective of
motor actions by imposing a delay between stimulus onset and
reports. In Experiment 2, we asked the participant to report
vocally the detection of the stimuli with a minimal delay of 1 s
after stimulus onset (Fig. 2a, upper panel). To assess the role of
evidence accumulation for perceptual monitoring, we also asked
the participant to vocally report their confidence (high, medium,
low) in their response36,37. Similar to Experiment 1, 50.5% of
stimuli were detected (hits) (20% trials had no stimuli (catch

trials), of which 5% were false-alarms, confirming their con-
servative strategy). When a stimulus was presented, confidence
was higher following hits (2.46 ± 0.10) than misses (2.00 ± 0.08;
X²= 20.09, p= 4.3*10–5; Fig. 2a, lower panel).

We ran a factorial analysis to identify neurons encoding
detection and/or confidence. Only one neuron showed only a
main effect of detection (1.16%, p= 0.86) and two a main effect
of confidence (2.33%, p= 0.97). However, 17/86 neurons showed
an interaction between detection and confidence (19.77%, p=
0.02, permutation test) driven by firing rates for hits with high
confidence (Fig. 2b). Among these 17 neurons, we found nine
neurons showing a significant correlation between spike counts
and confidence in hits (p= 0.001). The sign of this correlation
was consistent with the choice probability in eight of these nine
neurons, suggesting that evidence for detection increases
confidence in hits. We found no miss-coding neuron, and no

Fig. 1 Neuronal correlates of detection in an immediate-response task (Experiment 1). a Intraoperative photo of the microelectrode array posterior to the
postcentral sulcus and dorsal to the intraparietal sulcus. b The participant pressed a key as soon as they felt a stimulus. In this example, the first stimulus is
a miss (i.e., no key press within 2 s following stimulus onset) and the second stimulus is a hit (i.e., key press within 2 s following stimulus onset). ISI inter-
stimulus interval. c Distribution of response times (RT) and response deadline for a trial to be considered as a hit (red vertical dashed line). The y axis
represents the number of trials. d Example detection- and RT-selective neurons. Top: raster plot time-locked to stimulus onset with spike waveform and
shaded standard deviation above. Hits were reordered according to RT (black dashed trace). Bottom: average firing rate for three terciles of RT for hits and
for misses. Statistics were performed on continuous RT data. Asterisks indicate statistical significance; left: detection-selective: p= 0.013 (Wilcoxon
ranksum test), RT-selective: p < 0.001 (Spearman correlation); Right: detection-selective: p= 0.046, RT-selective: p= 0.0056 e Top: RT-aligned spike
count histograms for neurons in d (50ms bins). The y axis represents the number of trials. Bottom: corresponding raster plots. f Average firing rates for
detection- and RT- responsive neurons, for three bins of RT for hits and for misses. Firing rates were normalized to a 0.3 s pre-stimulus baseline and time-
locked to the stimulus onset. Inset: Corresponding average firing rates time-locked to the response. g Choice probability as a function of the correlation
between the slope of the firing rate and the RT for all neurons with detection-selective neurons in light green, miss coding in red and other neuron in dark
green. RT-selective neurons are circled with red. h ECoG grid with beta (β) coefficients for detection. Non-significant electrodes are in black. i Average
ECoG amplitude, aligned to stimulus onset from one electrode posterior to the microelectrode array for three terciles of RT for hits and for misses. Asterisk
indicates statistical significance; p < 0.001 (linear model). In all panels, misses are depicted in red and hits in blue, shaded areas represent 95%-CI, black
horizontal bars represent the analysis window for statistics.
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neuron showing a significant correlation between spike count and
confidence in misses. The same pattern was observed in the
population of 86 neurons, as higher correlation coefficients
between spike counts and confidence were positively related with
choice probabilities for hits but not for misses (Supplementary
Fig. 4a–b).

To better characterize how neuronal population activity relates
to detection and confidence, we trained decoders on the firing
rate of all neurons and evaluated them out-of-sample. We
decoded hits from misses better than chance for both high
confidence (Fig. 2c; max. area under the curve (AUC): 0.88, 1.16 s
after stimulus onset) and low confidence (max. AUC: 0.63
accuracy at 0.77 s). This indicates that although low confidence
hits and misses were indistinguishable based on individual
neurons they could be discriminated at the population-level,
which confirms that our results were not driven by high-
confidence trials only. The output of the best decoder (at 1.13 s)
correlated with confidence for hits (R= 0.58; p= 0.001, permuta-
tion test) but not for misses (R=−0.15; p= 0.13), confirming
that the neuronal signal driving detection also explains
confidence for detected stimuli. Finally, we also found interaction
effects between detection and confidence in ECoG electrodes

Fig. 2 Neuronal correlates of detection and confidence in a delayed-response task (Experiment 2). a Top: Vibrotactile stimuli were applied during a 2 s
window following an auditory cue. After a 1 s delay, the participant was prompted to give detection and confidence reports. Bottom: Distribution of
confidence. For display purposes hereafter, signals corresponding to confidence values of 1 and 2 were merged into low confidence, while confidence
values of 3 were considered as high-confidence. Statistics were done on the three levels. b Example selective neurons. Top: Raster plot time-locked
to stimulus onset with spike waveform with shaded standard deviation above. Bottom: Corresponding firing rates. Asterisks indicate statistical
significance; Left: p < 0.001 (Generalized linear model with Gamma link); Right: p= 0.036. c Top: schematic representation of a decoder based on
weighted averages of neuronal firing rates. Bottom: Corresponding decoding performance for different confidence levels. Horizontal lines show times
of significant performance (p < 0.05, one-sided permutation tests to correct for multiple comparisons). d ECoG grid with beta coefficients for
detection x confidence. Non-significant electrodes are in black. e Average ECoG amplitudes, aligned to stimulus onset from the electrode next to the
microelectrode array. Asterisks indicate statistical significance (p < 0.001; linear model). f The EEG amplitude time-locked to stimulus onset and
averaged over 18 healthy controls for a cluster of significant electrodes depicted (dashed contour) on the topographic map on the right. The colormap
corresponds to the beta coefficient for the interaction effect between detection and confidence. Asterisks indicate statistical significance (p < 0.001;
linear mixed model). In all panels, misses are depicted in red, hits in blue, correct rejections in green, shaded areas represent 95% CI, black horizontal
bars represent the analysis window for statistics.

Fig. 3 Average firing rates of responsive neurons. Firing rates were
normalized using a 0.3 s pre-stimulus baseline. a Normalized firing
rate for three bins of stimulus intensity (low intensity in dark green,
medium intensity in light green, high intensity in orange), averaged
across intensity-selective neurons (N= 14). In Experiment 3, the
participant provided no detection or confidence report and was let to
mind wander. b Normalized firing rate for high and low confidence for hits
(blue) and for misses (red), averaged across all detection- and
confidence- selective neurons with higher firing rates for hits (N= 10).
In Experiment 2, the participant waited at least 1 s before reporting
detection and confidence vocally.
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surrounding the microelectrode array (Fig. 2d–e) and in
electroencephalography (EEG) signals from 18 healthy volunteers
in Experiment 4 (Fig. 2f), consistent with previous EEG
studies19,38. Together, results from Experiments 1 and 2 show
that PPC neurons exhibit evidence accumulation behavior and
encode detection and confidence reports irrespective of motor
actions and report effector (i.e., keypress in Experiment 1, voice in
Experiment 2). Of note, the latency of the evidence accumulation
process we uncovered in Experiment 2 is qualitatively compatible
with the distribution of RTs measured in Experiment 1, which
suggests that perceptual consciousness occurs with a delay of up
to 1 s following weak vibrotactile stimulation.

Experiment 3: no-report paradigm. While the use of delayed
responses in Experiment 2 ensured that the comparison of hits and
misses was not contaminated by motor confounds, a possibility
remains that the neurons we uncovered were involved in task
execution rather than subjective experience per se. To distinguish
neuronal activity associated with subjective experience from activity
associated with subjective report8,39,40, in Experiment 3 we let
the participant mind wander while they were exposed to stimuli
ranging between 0.5 and 5 times the perceptual-threshold intensity.
We reasoned that neuronal activity would still encode the intensity
even for task-irrelevant stimuli if evidence accumulation determines
conscious perception beyond mere reports. While no behavioral
task was enforced, we found that the activity of 14/96 neurons
increased with increasing stimulus intensity (14.58%, p= 0.008;
Fig. 3a). The fact that stimulus intensity was represented at the
single-neuron level although the participant was not engaged in the
task argues against the possibility that our previous results in
Experiments 1–2 reflected activity related to reporting rather than
perceptual processing leading to consciousness8,39,40.

Experiment 4: computational model of detection and con-
fidence. Informed by these human single-neuron data from
Experiments 1–3, we sought to generalize our decisional account
of perceptual consciousness and monitoring by identifying evi-
dence accumulation mechanisms underlying detection and con-
fidence in EEG data (18 healthy volunteers, task similar to
Experiment 2). Participants behaved similarly to the aforemen-
tioned patient, with a balanced number of hits and misses
(Supplementary notes) and EEG responses also showed an
interaction effect between detection and confidence (Fig. 2f). We
developed an evidence accumulation model to fit the behavioral
and EEG data, assuming that participants attempted to detect the
stimulus by continuously accumulating evidence during a 3 s
stimulation window (from trial onset until the response cue). To
model the time uncertainty in our task (participants did not know
when a stimulus could be applied), we assumed that participants
started accumulating evidence before the stimulus onset41. This
was modeled as a null drift rate across time except for a short-
lasting boost triggered by the stimulus. A stimulus was perceived
if the simulated evidence accumulation (EA) process reached a
bound16 at any time during the stimulus window (Fig. 4a),
compatible with all-or-none views of consciousness42.

Confidence was readout from the difference between accumu-
lated evidence and the decision threshold32,33, with a sign
inversion for misses and correct rejections, since the closer the
evidence to the bound, the lower the confidence (Fig. 4b).
Importantly, we sampled confidence when evidence reached a
maximum across the stimulation window, which allowed
implementing a confidence readout for misses and correct
rejections, for which no decision threshold is crossed. To fit the
model parameters to the data, we considered the shape of the
electrophysiological signature for hits and misses as a neural

correlate of evidence accumulation19,43,44, defined by the
weighted average of all EEG electrodes that maximally discrimi-
nated hits from misses. We first fitted the parameters of a
detection model to these electrophysiological responses (Fig. 4c,
Supplementary Fig. 5) as well as to hit and false-alarm rates
(Fig. 4d; Supplementary Fig. 6). We then fitted two additional
parameters for confidence bias and sensitivity to observed
confidence distributions. The resulting model fitted the con-
fidence ratings well (average R across participants 0.80 ± 0.03 for
hits, 0.83 ± 0.03 for misses, 0.82 ± 0.04 for correct rejections, and
0.33 ± 0.10 for false alarms; Fig. 4e–f, Supplementary Fig. 7),
suggesting that evidence accumulation is a plausible mechanism
underlying both perceptual consciousness and monitoring. The
data and the model were still consistent when stratifying per
confidence level. Metacognitive sensitivity predicted by our model
and observed in the data were correlated for both “yes” responses
(R= 0.66, p= 0.000, permutation test) and “no” responses (R=
0.62, p= 0.007; Fig. 4g), showing that our model also successfully
predicted metacognitive performance. Finally, an alternative
model assuming that confidence for detected stimuli is sampled
at a fixed latency after crossing the decision threshold and
confidence for undetected stimuli is sampled from a random
distribution led to a worse fit of the data (BIC= 229.31 ± 43.19
compared to BIC= 178.82 ± 38.86 for the maximal evidence
model; z=−2.33, p= 0.020; Fig. 4h).

To support the generalizability of our model, we verified that it
could reproduce qualitatively similar evidence accumulation
traces as observed in neuronal data from Experiment 1
(Supplementary Fig. 8). We also assessed whether we could
decode confidence for misses from single-neuron data in
Experiment 2 using a decoder defining confidence as the
maximum of accumulated evidence. We took the best decoder
for hits and misses (trained on stimulus-locked data) and applied
it out-of-sample across the stimulation window (i.e., cue-locked).
We decoded confidence for hits (R= 0.43, p= 0.001, permutation
test) and confidence for misses (R=−0.26, p= 0.037), which the
aforementioned stimulus-locked decoder (Fig. 2c) could not
achieve. The time corresponding to the decoded maximal
evidence correlated with stimulus onset for hits (R= 0.23, p=
0.046) but not for misses (R= 0.16, p= 0.12), suggesting that
evidence for confidence in misses was not sampled synchronously
with the stimulus, thereby verifying the plausibility of the
maximal evidence decoder on our patient’s single-neuron data.

Discussion
We propose a mechanism of evidence accumulation to explain
the behavioral and neural markers of perceptual consciousness
and monitoring. We show that tactile detection relates to an
increase of the firing rate of single neurons and ECoG amplitude
in the posterior parietal cortex of a human participant, as well as
an increased scalp EEG response recorded in a group of healthy
participants. In both cases, the amplitude of the corresponding
neural response was dependent on the confidence in hits. This
increase in neural response as well as in the detection reports
were well described by a computational model indicating that a
plausible mechanism underlying the building of confidence in
both the presence and absence of a stimulus is for the brain to
take the maximal evidence accumulated over time. Using a
combination of delayed response and no-report paradigms, we
ruled out the possibility that these effects stemmed from motor
actions or task demand.

We had the opportunity to collect data from individual neu-
rons in the human PPC, at the junction between the postcentral
and intraparietal sulcus in the superior parietal lobule. The PPC
has been associated with a multitude of functions linking
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perception to planning and action45 and receives multisensory
inputs including those from the primary somatosensory cortex46.
In Experiment 1, we found individual neurons in the PPC with
higher firing rates following detected stimuli. We argue that these
neurons are responsible for evidence accumulation based on the
following three findings. Firstly, in Experiment 1 we found neu-
rons with a gradual buildup of firing rates for hits prior to
response times47. Secondly, in Experiment 3, we observed an
increase in the firing rates for increasing intensities of (task-
irrelevant) stimuli. Based on these two hallmarks of evidence
accumulation, we argue that our results consist in the first single-
neuron account of perceptual evidence accumulation in a human
subject capable of subjective reports. Indeed, although electro-
physiological correlates of evidence accumulation have been
found in various regions of non-human primate brains, including
the frontal cortex or subcortical structures48–50, the arguably
most common region studied in relation with neural accumula-
tion of perceptual evidence is the lateral intraparietal (LIP) area of
the PPC13,14. However, whether perceptual evidence accumula-
tion neurons such as those reported in non-human primate
studies could support conscious reports is unclear, as subjective
experience cannot be measured explicitly in non-human species,
and because such neurons were—to our knowledge—not reported
in humans yet.

In Experiment 2, we asked the participant again to detect sti-
muli and found neurons similar to those in Experiment 1 with
higher firing rates after stimuli reported as perceived. The finding
of detection-selective neurons when responses were provided by
key press (Experiment 1) or orally (Experiment 2) suggests that

the mechanism of evidence accumulation we propose is response-
invariant. Importantly, we asked the participant to report the
confidence they had in their responses, and found that the change
in firing rates for detected stimuli was modulated by confidence,
showing that confidence relates to the strength of single neuron’s
responses to detected stimuli. This mechanistic overlap, which—
to our knowledge—was not yet shown in humans capable of
reporting subjective confidence was confirmed at the neuronal
population level: multivariate decoders trained to discriminate
hits vs. misses allowed us to decode confidence for hits when
time-locking to the stimulus onset and for both hits and misses
when locking on the onset of maximal evidence. This result
implies the existence of neurons aggregating the output of evi-
dence accumulating neurons, which remain to be described.

Because microelectrode implants in parietal regions are rare in
humans, we sought to generalize our findings by recording
behavioral and neural data in a group of healthy volunteers in
Experiment 4. Behavioral results revealed highly similar patterns
between the two samples, indicating that detection and con-
fidence reports in Experiments 1–2 were not impacted by the
clinical condition. Analyzing the amplitude of ECoG data and
EEG data from Experiment 4, we could generalize our single-
neuron findings at a larger scale and arguably distinct electro-
physiological processes. EEG data showed a similar dependence
of detection-related activity on confidence for hits, similar to
previous work in the visual domain using a different awareness
scale19 and a discrimination task51,52. Of note, both neural
responses recorded at the intracranial (single-neuron, ECoG;
Experiment 1–3) and scalp levels (Experiment 4) were observed at

Fig. 4 Computational model based on evidence accumulation. a Simulation: Time-varying drift rate (d; thick black trace) had a short-lasting boost after a
non-decision time following stimulus onset (dashed vertical line). Example evidence accumulation for one trial (EA; blue trace for a hit, red trace for a miss)
rises sharply after the drift boost and is attracted back to zero due to leakage. A stimulus is considered as perceived (hit) if EA reaches a decision threshold
(horizontal line), and as non-perceived (miss) if not. b The maximum of accumulated evidence with respect to the decision threshold is used as a
confidence readout. In the example in a, the blue trace results in high confidence in a hit (large distance from the bound) and the red trace results in low
confidence in a miss (small distance from the bound). c Model fit of the proxy to EA (pEA) locked on stimulus onset for hits (blue trace) and misses (red
trace). The corresponding observed EEG data for hits (upper line) and misses (lower line) is shown in grey. Average scalp topography of normalized pEA
weights is shown above. Shaded areas represent 95%-CI. d Hit rate (HR) and false-alarm rate (FAR). Datapoints are represented as ‘o’ and model
simulations as ‘x’. e Average confidence for hits (cyan), misses (red), correct rejections (green) and false alarms (black). f Model fits of the confidence
distributions. Histograms show confidence distributions with 95%-CI whiskers. Colored traces show model simulations. All shaded areas represent 95%-
CI. The y axis represents the proportion of trials. g Area under the receiver operating characteristic curve (AUROC) correlation between observed data
(horizontal axis) and simulated data (vertical axis) for “yes” responses (hits and false alarms; left) and “no” responses (correct rejections and misses;
right). Regression line is shown in red with shaded areas representing 95%-CI). h Model comparison in terms of Bayesian information criterion (BIC)
between the maximal evidence model and the alternative model. Whiskers represent 95%-CI and asterisk indicates statistical significance (p= 0.0020,
N= 18 participants, Wilcoxon signed rank).
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a rather late latency following stimulus onset (>200 ms), sug-
gesting that these responses were not related to early somato-
sensory perceptual processes. We then reasoned that since similar
increases in neural activity are assumed to reflect accumulation of
evidence43, an evidence accumulation model should predict both
behavioral results (hit rate, false-alarm rate and confidence for
hits, misses, correct rejections and false-alarms) and corre-
sponding neural responses. Using neural data to fit the model
instead of response times allowed us to fit a leakage parameter53

and to compensate for the fact that, in a detection task, response
times are unavailable for undetected stimuli. The model derives
confidence as the distance between the maximal evidence accu-
mulated over time and the decision bound. This flexible readout
provides a major advantage when computing confidence in the
absence of stimulus detection (i.e., misses) as well as in the
absence of a stimulus (i.e., correct rejections and false-alarms).
This could not be achieved with previous models using decision-
locked confidence readouts in discrimination tasks32–34. An
alternative model with a fixed timing readout and a random
confidence for unperceived stimuli performed significantly worse.
It remains unknown however, how this readout is implemented
in the brain, as we had limited anatomical coverage in this
individual patient, and did not find parietal neurons encoding
confidence irrespective of detection response.

To achieve this confidence readout, we relied on two modeling
assumptions: that evidence accumulation (i) continues after
reaching the bound and (ii) leaks information. Indeed, LIP neu-
rons documented in non-human primate studies show a sharp
drop in firing rate immediately after the decision, consistent with
an absorbing bound, implying that evidence accumulation stops
after a decision. Such a mechanism would lead to constant
maximal evidence for “yes” responses, and therefore require a
second accumulator towards the opposite choice to derive graded
confidence ratings54. This second accumulator may be repre-
sented by the neurons we found showing a higher increase in
firing rate for misses compared to hits, raising also the intriguing
possibility that misses are encoded actively. This extends a study
on non-human primates which found prefrontal neurons also
coding for misses but rather in the delay period following the
stimulus22. However, more work is needed to show how such
neurons could contribute to confidence in detection tasks.

Contrarily to LIP neurons, the firing rate of the neurons we
found in experiment 1 continued to increase shortly after the
response. Although such post-decisional evidence accumulation is
inconsistent with LIP data, it is supported by strong
computational55 and electrophysiological56 evidence and exten-
sive work in humans rely on post-decisional accounts of con-
fidence ratings33,34,51.

In our study, leakage also allowed us to reproduce the decrease
in EEG or firing rate we observed, subsequent to the stimulus
onset or response. This is again inconsistent with studies using
random-dots kinematograms, showing evidence for perfect
accumulation both at the behavioral57 and neural levels58. In such
discrimination tasks however, stimulus onset is a clearly defined
event and perfect accumulation between stimulus onset and
response can be considered as optimal. The picture is very dif-
ferent in detection tasks with unpredictable stimulus onsets, such
as in this study. Indeed, when the drift rate is zero (i.e., before
stimulus onset), a perfect accumulator with a reflexive bound at
zero would integrate noise. In such cases, leakage59 has been
shown to occur60 and could represent an efficient mechanism to
keep the accumulator close to zero and avoid integrating noise
resulting in false alarms.

Apart from being useful for first-order detection responses, a
confidence model based on leakage has been shown to be
consistent with empirical data53. Nonetheless, the question of

whether evidence accumulation is perfect or leaky remains
open. Furthermore, a recent study comparing models based on
signal detection theory showed that the model that best fit
observed data involves a second-order “metacognitive” noise to
the decisional evidence61. Our model implicitly implements this
metacognitive noise through the influence of leakage on post-
decisional evidence readouts. Indeed, in participant with strong
leakage, accumulated evidence rises and decays fast, leading to
low metacognitive noise. On the contrary, in participants with
little leakage, once no more informative evidence is accumu-
lated, the level of evidence accumulation tends to oscillate
around the reached maximum, leading to higher metacognitive
noise. A-posteriori analyses showed that the leakage parameter
correlated with metacognitive sensitivity (Supplementary
notes). Our model thus provides a simple mechanism sup-
porting metacognition, including subliminal stimuli, explains
neural responses and was verified at the single neuron and EEG
level, as we were able to decode confidence ratings above chance
using this procedure.

Our results posit that stimulus detectability involves the accu-
mulation of sampled evidence towards a decision bound, as pre-
viously discussed for discrimination tasks16 as well as several
cognitive functions. Further research will be needed to assess
whether this mechanism generalizes to other perceptual domains
beyond vibrotactile stimuli. Of note, the use of a detection task is
compatible with a contrastive study of consciousness6, as opposed
to two-alternative forced choice discrimination tasks for which
confidence ratings are well characterized, but which do not offer a
direct contrast between perceived and unperceived stimuli. The
mechanism we propose implies that perceptual consciousness is an
all-or-none process involving a threshold, compatible with several
theoretical accounts62. One could speculate that evidence accumu-
lates in the PPC until crossing a threshold, which in turns triggers
the coalescence of multiple encapsulated networks into a single
network responsible for broadcasting neural signals throughout the
brain (i.e., ignition according to the global workspace theory of
consciousness11). To determine whether PPC serves as an ignition
trigger will require electrophysiological recordings with broader
coverage. Furthermore, conceptual work will be needed to assess to
what extent evidence accumulation is necessary if not sufficient
for consciousness63,64, and how it fits within other theoretical fra-
meworks such as higher order thought theories26 or recurrent
processing theories of consciousness65.

Recently, the use of classical contrastive approaches to
delineate the neural correlates of consciousness has been criti-
cized, on the basis that it may be confounding the cognitive and
neural mechanisms associated with phenomenal experience
per se, and those associated with reporting phenomenal
experience8. Some authors have proposed the use of “no-report
paradigms”, in which perceptual experience is not inferred from
participants’ responses, but from neural or peripheral signals
while participants are passively exposed to stimuli35,40,66,67.
Importantly, we found a population of neurons encoding per-
ceptual evidence through a putative evidence accumulation
process in Experiment 3, in which the participant was passively
exposed to the stimuli similar to such no-report paradigms.
Although these effects were weaker than the ones found in
Experiment 1–2, they indicate that evidence accumulation
operated by a neuronal population in the posterior parietal
cortex is involved in conscious perception, even when the stimuli
are task-irrelevant. In addition, the mechanistic overlap between
detection and confidence we report cannot be due to similar
motor responses associated with detection and confidence
reports in Experiment 2, as those were collected separately,
seconds after the end of the stimulation window on which our
analysis was based in the delayed detection task.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23540-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3261 | https://doi.org/10.1038/s41467-021-23540-y |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


To conclude, our results posit that both detection and con-
fidence for near-threshold stimuli involve the accumulation of
evidence towards a criterion orchestrated by the PPC. We argue
that this neuronal mechanism involving a decision bound may
serve as a trigger for the neural ignition underlying perceptual
consciousness12,68 and explains how contents remaining inac-
cessible to perceptual consciousness may still be subject to per-
ceptual monitoring25,69. Our behavioral, neural, and modeling
results clarify how perceptual consciousness and perceptual
monitoring are intertwined mechanistically.

Methods
Participants. In experiments 1–3, the participant was a young right-handed adult
suffering from drug-resistant epilepsy due to a focal cortical dysplasia in the left
central sulcus. As part of the clinical management of their condition, the patient
received a 4x6 ECoG grid covering the left premotor, motor, sensory and posterior
parietal cortices. The patient accepted to participate in a clinical trial on neuronal
recordings during invasive epilepsy monitoring at the Geneva University Hospitals
(IN-MAP; NCT02932839) and a Utah microelectrode array was additionally
implanted in the left posterior parietal cortex. Data collection for this clinical trial
was completed in January 2021: results are being analyzed and will be the subject of
a later scientific communication. The present work is independent of the clinical
trial. A data sharing agreement was established between the sponsor, the clinical
institution, and the recipient third party. The main terms of this contract were as
follows: the data remain owned jointly by the sponsor and the clinical institution,
and are provided to the recipient solely for the purpose of addressing a specific field
of research. None of the pre-specified outcomes of the clinical trial are mentioned
in the present manuscript. The patient provided informed written consent for the
present study. The present study was approved by the Commission Cantonale
d’Ethique de la Recherche de la République et Canton de Genève (2016-01856).
Except for ibuprofen, paracetamol and esomeprazole, the patient was not under the
influence of any medication (i.e., no antiepileptic drug). The patient rated their
pain at 1 out of 10 on a visual analog scale, except for Experiment 3, for which they
rated their pain at 2 out of 10, reporting a slight pain around the left orbit. No
neurological or cognitive abnormality, or anxiety were reported by the clinical team
and the patient’s mood was stable. To ensure adequate power, the sample size of
the EEG experiment was pre-determined on the basis of prior experimental works
assessing perceptual decisions under temporal uncertainty41. Eighteen healthy
participants (seven females; age: 25.2 years, SD= 4.1) took part in Experiment 4 for
a monetary compensation. All participants reported being right-handed, had
normal hearing and normal or corrected-to-normal vision, and no psychiatric or
neurological history. Two participants were excluded due to excessive artifacts.
Participants gave written informed consent prior to participating and all experi-
mental procedures were approved by the Commission Cantonale d’Ethique de la
Recherche de la République et Canton de Genève (2015-00092 15-273).

Procedure. Experimental paradigms were written in Matlab (Mathworks) using
the Psychophysics toolbox70–72 (Table 1). In all experiments, stimuli were applied
on the lateral palmar side of the right wrist using a MMC3 Haptuator vibrotactile
device from TactileLabs Inc. (Montréal, Canada) driven by a 230 Hz sinusoid audio
signal lasting 100 ms. Experiments started by a simple estimation of the individual
detection threshold. The tactile stimulus was applied with decreasing intensity with
steps corresponding to 2% of the initial intensity until the participant reported not
feeling it anymore three times in a row. We then repeated the same procedure but
with increasing intensity and until the participant reported feeling the vibration
three times in a row. The perceptual threshold was estimated to be the average
between the two thresholds found using this procedure. This approximation was
then used as a seed value for an adaptive staircase during the main experiments
(see below). Experiments 1–3 were performed on different days at the patient’s
bedside.

Experiment 1. Stimuli (N= 150/session; two sessions) were applied in a pseudo-
random way with an inter-stimulus interval of two seconds plus an exponentially
distributed time (mean: 2 s). The participant was provided with a keypad and asked
to press a key every time they felt a stimulus. Answers provided during the two
seconds following a stimulus were considered as hits. Only one keypress occurred
out of this two second post-stimulus window.

Experiment 2. An auditory cue signaled the start of the two seconds stimulus
window (N= 150; one session) during which the stimuli could be applied at any
time (uniform distribution) in 80% of trials (the remaining 20% served as catch
trials, unbeknownst to the participant). Stimulus window was followed by a one
second delay to ensure that stimulus-locked activity was not contaminated by the
detection response. After this delay, a second auditory cue probed the participant
for their detection response (“yes” or “no”), followed by a three levels confidence
rating (1: “unsure”, 2: “somewhat sure”, 3: “very sure”). Detection and confidence
ratings were provided vocally and registered by the experimenter.

Experiment 3. Stimuli (N= 220; one session) were applied in a pseudo-random way
with an inter-stimulus interval of two seconds plus an exponentially distributed
time (mean: 2 s) with a random amplitude sampled from 11 intensities ranging
from zero to five times the participant’s perceptual threshold. The participant was
not given any instructions and was left free to mind wander during the experiment.

Experiment 4. Participants sat in front of a computer screen. A white fixation cross
appeared in the middle of the screen for 2 s. From the moment the fixation cross
turned green, participants were told that a tactile stimulus could be applied at any
moment during the next 2 s. During this period, stimulus onset was uniformly
distributed in 80% of trials, the 20% remaining trials served as catch trials, as in
Experiment 2. In all trials, 1 second after the green cross disappeared, participants
were prompted to answer with the keyboard whether they felt the stimulus or not.
Following a 500 ms stimulus onset asynchrony, participants were asked to report
the confidence in their first order response by moving a slider on a visual analog
scale with marks at 0 (certainty that the first-order response was erroneous),
0.5 (unsure about the first-order response) and 1.0 (certainty that the first-order
response was correct). Detection and confidence reports were provided with the left
(non-stimulated) hand, using different keys. The total experiment included 500
trials divided in 10 blocks and lasted about 2 h.

Electrophysiological data acquisition. A 96-channel silicon-based microelectrode
array (“Utah array”; Blackrock Microsystems, Salt Lake City, USA) was implanted
in the posterior parietal cortex, immediately posterior to the postcentral sulcus and
the hand representation of sensorimotor cortex (Fig. 1A). The location was con-
firmed through post hoc electrode localization (Fig. 1G), performed through a
coregistration of a preoperative MRI structural T1 scan and a postoperative CT
scan using the iELVIS toolbox73. The data from each of the 96 channels was
amplified and sampled at 30 KHz for offline analysis (NeuroPort system, Blackrock
Microsystems LLC, Salt Lake City, USA). In addition, a 24 electrode ECoG grid
(Ad-Tech Medical) covered the left hemisphere from the premotor cortex to the
superior parietal lobule (Figs. 1G, 2D). The electrodes had a 4 mm diameter with
2.3 mm exposed corresponding to an area of 4.15 mm2. The data were amplified
and sampled at 2048 Hz (Brain Quick LTM, Micromed, Treviso, Italy). In
Experiment 4, electroencephalographic data were acquired from 62 active elec-
trodes (10–20 montage) using a WaveGuard EEG cap and amplifier (ANTNeuro,
Hengelo, The Netherlands) and digitized at a sampling rate of 1024 Hz. Horizontal
and vertical electrooculography (EOG) was derived using bipolar referenced elec-
trodes placed around participants’ eyes. The audio signal driving the vibrotactile
actuator was recorded as an extra channel to precisely realign data to
stimulus onset.

Statistical analysis. We used non-parametric tests (permutations and Wilcoxon
signed-rank tests).

Invasive electrophysiological data processing and univariate analysis. The raw
signal from the microelectrode array was bandpass filtered between 300 and 3000
Hz for spike sorting. Trials with epileptic activity or other artifacts were removed
from further analysis following visual inspection of ECoG data. Spikes were
extracted and sorted using the semi-automatic template matching ‘Osort’
algorithm74. Standard quality metrics were computed for each putative single unit
in order to assess their quality (Supplementary Fig. 1). We computed the firing rate
every 1 ms with a 100 ms standard deviation Gaussian sliding window.

In Experiment 1, a neuron was considered detection-selective when a significant
(two-sided test) effect of detection was found on the number of spikes during a
time window between 0.5 and 1.5 s after stimulus onset using a Wilcoxon signed-
rank test. For the latency analysis, we fitted a regression line to the firing rate
between 300 ms and the RT, for each trial independently. A neuron was considered
RT-selective if the Spearman correlation between the slope of the regression line
and the RT was significant. We also computed neuronal choice probabilities for
detection using the area under the receiver operating characteristic’s (AUROC)
curve based on the spike counts during the 0.5–1.5 s window after stimulus onset,
normalized to the [−1,1] interval: CP= 2*AUROC-1. To ensure that there was no
overfitting and that our results were not driven by outliers, we used a non-
parametric permutation test to assess whether the number of selective neurons was
significantly above chance; we repeatedly (N=1000) applied the same tests on
shuffled data and counted the number of selective neurons. We defined the p-value
as the proportion of times that the number of selective neurons for shuffled data
was higher than the number of selective neurons found in the data37,75. When no
selective neuron was found in the shuffled data, we set p= 1/N= 0.001.

In Experiment 2, we also used a generalized linear model (GLM) with a Poisson
distribution37,76 to regress the number of spikes during a time window between 0.5
and 1.5 seconds after stimulus onset. We fitted a model with three beta regressors:
#spikes ~β0+ β1*detection+ β2*confidence+ β3*detection*confidence. We only
interpreted main effects (β1, β2) in the absence of interactions (β3). If β3 was
significant (two-sided test), we considered the neuron as detection- and
confidence-selective. If β1 was significant but β3 was not, we considered the neuron
only detection-selective (idem for confidence-selective). We applied the same
permutation test as for Experiment 1. In Experiment 3, we fitted a Poisson GLM
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with one beta regressors: #spikes ~β0+ β1*intensity to find intensity-selective
neurons showing an increased firing rate with increasing stimulus intensity and
applied the same permutation test as for Experiment 1 and 2.

For ECoG analyses, we re-referenced the channels to a common average and
applied a lowpass filter (Hamming window with a cutoff frequency of 40 Hz).
Trials with epileptic activity or other artifacts were removed from further analysis
following visual inspection. We used linear models (LM) for statistics using the
same regressors as for spike counts (see above). For display purposes only, we
additionally smoothed the data with a 200 ms Savitzky–Golay filter77.

Multivariate decoding (Experiment 2). We fed single neurons firing rates sam-
pled every 10 ms into linear discriminant decoders with a L2 regularization factor
of 0.8 (similar results were obtained with different regularization factors). These
decoders separated the space of input features with a linear hyperplane that best
discriminates hits and misses. The decoders predict a hit when the distance of a
sample to the separating hyperplane is higher than zero and a miss otherwise. To
avoid overfitting, we separated our data in 10 cross-validation folds so that for each
fold we trained decoders on the 90% of the data and tested them on the 10%
remaining (i.e., out-of-sample). The distance to the separating hyperplane was also
used to compute the area under the receiver operating characteristic’s curve
(AUROC) for out-of-sample data at each time point. We used permutation tests to
assess whether similar AUROC could have been obtained by chance while cor-
recting for multiple comparisons across time points. We selected contiguous
clusters of time points when AUROC was higher than 0.6 and then computed the
proportion of similar or bigger clusters obtained with shuffled labels. For each
permutation, we computed AUROC clusters over the whole set of time points to
keep the autocorrelation structure in the shuffled data.

Confidence was decoded at the time point corresponding to the highest
AUROC. Decoded confidence was defined as the absolute distance of a sample to
the separating hyperplane. We assessed confidence decoding by correlating
(Spearman) decoded confidence with observed confidence and assessing
significance using permutation tests (one-sided, as we could reasonably expect
positive correlations for hits and negative correlations for misses). As this
procedure was carried out on out-of-sample data, our results were not affected by
overfitting. Finally, for maximal evidence decoding, we used the same decoder to
decode firing rates between 0.8 and 3 s post cue. We excluded the first 0.8 s due to
some neurons showing post-cue activity. We then took the maximum of the
decoder over that time window, correlated it with confidence observed in the data
and assessed significance using permutation tests (one-sided). Again, this
procedure was carried out on out-of-sample data so our results cannot be affected
by overfitting.

Scalp EEG data preprocessing (Experiment 4). All channels were highpass fil-
tered using a Hamming window with a cutoff frequency of 0.1 Hz. We defined an
epoch as the 3 seconds of data centered around the event corresponding to the
vibrotactile stimuli recorded using an auxiliary channel. EEG and EOG data were
then lowpass filtered using a Hamming window with a cutoff frequency of 40 Hz
and visually inspected to remove trials and channels containing artifacts. We
computed the independent component analysis (ICA)78 on a copy of the EEG
epochs that were highpass filtered at 1Hz. The number of independent components
(ICs) computed corresponded to 99% of the variance, which resulted in 14.78 ±
1.27 ICs per subject. We used SASICA79 with default parameters to automatically
select ICs for rejection and visually inspected all components scheduled for
rejection before actually rejecting them. IC weights kept were then back-projected
to the original EEG epochs. Any channel rejected prior to the ICA was reinter-
polated using spherical interpolation (N= 0.67 ± 0.23, max 3). Finally, we visually
inspected all channels and rejected artifactual epochs. All pre-processing was done
with the EEGLAB toolbox80. The final dataset comprised 464.17 ± 13.73 epochs per
subject.

To assess which electrodes were detection- and/or confidence-selective, we used
a linear mixed model to regress single-trial average EEG responses in the 0.5 to 1.5
time-window used for single-neuron analysis. For each electrode, we tried different
random factors and kept the model with the lowest Bayesian Information
Criterion. P-values were Bonferroni corrected for multiple comparisons. To
compute the electrophysiological correlate of evidence accumulation, we sought to
find the best weighting of EEG electrodes in terms of discriminability between hits
and misses. For this, we trained decoders of hits versus misses between −0.5 and
1.5 s from stimulus onset with 20 ms steps in a 10-fold cross-validation scheme. We
repeated this procedure 10 times and searched for the time point with highest
average discriminability. We then retrained one decoder using the EEG at this time
point and used the weights of this decoder to construct one single value at every
time point, representing a proxy to the amount of evidence for hits. We baselined
this proxy signal using the 300 ms pre-stimulus.

Evidence accumulation model. To test whether the observed electrophysiological
correlate of conscious detection could index evidence accumulation, we used an
evidence accumulating EA(t) process consisting of a diffusion process plus a drift
with a leakage parameter driving the accumulated evidence back to zero81. The
model thus integrated a time-varying drift rate d(t) with a leakage factor λ plus

additive white noise W(t) with a fixed standard deviation of σ= 0.1 (Eq. 1). The
evidence accumulation process EA(t) was bounded by zero to be more biologically
plausible (since firing rates are positive).

EAðt þ 1Þ ¼ maxð½1� λ � dt� � EAðtÞ þ dðtÞ þ σWðtÞ; 0Þ ð1Þ
To model temporal uncertainty, the accumulation process started at the

beginning of the stimulus window41 with a drift of zero and ended 3 s later, as in
our experimental paradigm. On stimulus onset, and after a non-decision time
(ndt), the drift rate d(t) rose to a level γ for 100 ms (stimulus duration) and then
decayed exponentially with a factor k (Eq. 2). We used the same distribution of
stimulus onsets as in the data (from 0 to 2 s after the cue). To model variability in
the drift rate for a detection task82, γ was sampled from a half-normal distribution
with mean γ_μ and standard deviation γ_σ (i.e., absolute value of a normal
distribution). This allowed us to have variability in the drift rate while keeping it
positive.

dðtÞ ¼
0; if t < sþ ndt

1; if ðsþ ndtÞ ≤ t ≤ ðsþ ndt þ 0:1Þ
γe½t�s�ndt�0:1=k�2 ; if t > ðsþ ndt þ 0:1Þ

8
><

>:
ð2Þ

With s the onset of the stimulus. Stimuli were considered to be detected if the
accumulated evidence reached a decision bound θ.

Confidence c(t) was simulated as the accumulated evidence EA(t), scaled by a
factor α and shifted by a factor β (confidence bias), inverted if the decision bound
was not reached (invert (x)= 1− x) before being saturated to the 0–1 interval by a
sigmoidal function32 (Eq. 3). The time at which confidence c(t) was read-out
corresponded to the maximum of EA(t) over the 3 s stimulation time window. Of
note, we expressed the confidence readout in percentage of the decision bound.
This scaling did not affect simulated confidence but normalized the readout across
participants and helped restrain the grid search for good initial parameters.

cðtÞ ¼ ðeα*EAðtÞþβÞ=ðeα*EAðtÞþβ þ 1Þ ð3Þ

Model fitting. We used a two-stage fitting procedure: We first fitted the para-
meters of the decisional process to detection responses and to the pEA described
above and then fitted a second set of parameters to predict confidence ratings.

In the first stage, we simulated (N=500) trials of EA(t) along with the
corresponding detection responses. The objective function of the optimization
procedure was based on the likelihood of the model with respect to the hit rate and
false-alarm rate observed in the data and the shape of the average of pEA(t) for hits
and misses. Since our model is agnostic to the scale of pEA(t) and EA(t), we scaled
them both by their average over time and realizations (trials or simulations). The
log-likelihood thus corresponded to the log of the normal probability of observing
such a hit rate and false-alarm rate and the log of the normal probability of
observing such an electrophysiological response for hits and misses. The standard
deviation of the observation noise was set to 0.02 for hit rate and false-alarm rate
and 0.2 for EA(t) and pEA(t). We used a Nelder–Mead simplex optimization with
756 different initial parameters sampling a broad range of values for γ_μ, γ_σ, λ,
and k. For each such iteration, we first did a grid search on ndt and θ to find
plausible starting values. We kept the parameters corresponding to the model with
the best likelihood. To ensure a good fit, we did a final fitting with
N=10’000 simulated trials.

In the second stage, we also simulated (N=500) trials of EA(t) along with the
corresponding detection responses and used these to simulate confidence ratings.
We used a Kolmogorov–Smirnov test for the log-likelihood of confidence for hits,
misses and correct rejections. We used a Nelder–Mead simplex optimization with
66 different initial parameters sampling a broad range of values for α and β. We
kept the parameters corresponding to the model with the best likelihood. To ensure
a good fit, we did a final fitting with N= 10,000 simulated trials.

Metacognitive sensitivity. We evaluated metacognitive sensitivity or how well
confidence predicted task performance23. For this, we represented the posterior
probability of confidence ratings knowing the correctness of the detection report
using the area under the receiver operating characteristic (AUROC) curve, com-
puted independently for “yes” responses (hits and false alarms) and “no” responses
(correct rejections and misses).

Alternative model. We compared our maximal evidence model with an alternative
model which assumed that confidencce was readout at a fixed timing (tRO) post
decision for perceived stimuli. For unperceived stimuli (i.e., with no decision), this
alternative model assumed that participants reported random confidence estimates,
based on Gaussian noise with mean Ω and unit standard deviation. As in the
maximal evidence model, confidence corresponded to evidence scaled by a factor α
and shifted by a factor β (confidence bias) before being saturated to the 0–1 interval
by a sigmoidal function. The model thus comprised four parameters: α, β, t_RO
and Ω which were fitted with the same procedure as for the maximal evidence
model, except that the grid search for optimal initial parameters was extended to
include two initial values for tRO: 0.25 and 0.5 s. We used the Bayesian Information
Criterion to compare the two models.
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Statistics and reproducibility. Experiments were not repeated independently to
assess reproducibility.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Behavioral, electrocorticographic, and electroencephalographic data that support the
findings of this study have been deposited in a public repository (OpenNeuro: https://doi.
org/10.18112/openneuro.ds001785.v1.1.1)83. Microelectrode data are available upon
written request, dependent upon the establishment of a data sharing agreement between
the trial’s investigator, sponsor, and interested third party. Source data are provided with
this paper.

Code availability
All analyses scripts and computational models are available in a public repository (OSF:
https://doi.org/10.17605/OSF.IO/YHXDB)84.
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