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Abstract

In Virtual Reality, having a virtual body opens a wide range of possibilities as the participant’s avatar can appear to be
quite different from oneself for the sake of the targeted application (e.g. for perspective-taking). In addition, the system can
partially manipulate the displayed avatar movement through some distortion to make the overall experience more enjoyable
and effective (e.g. training, exercising, rehabilitation). Despite its potential, an excessive distortion may become noticeable
and break the feeling of being embodied into the avatar. Past researches have shown that individuals have a relatively high
tolerance to movement distortions and a great variability of individual sensitivities to distortions. In this paper, we propose
a method taking advantage of Reinforcement Learning (RL) to efficiently identify the magnitude of the maximum distortion
that does not get noticed by an individual (further noted the detection threshold). We show through a controlled experiment
with subjects that the RL method finds a more robust detection threshold compared to the adaptive staircase method, i.e.
it is more able to prevent subjects from detecting the distortion when its amplitude is equal or below the threshold. Finally,
the associated majority voting system makes the RL method able to handle more noise within the forced choices input
than adaptive staircase. This last feature is essential for future use with physiological signals as these latter are even more
susceptible to noise. It would then allow to calibrate embodiment individually to increase the effectiveness of the proposed
interactions.
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Adapting Virtual Embodiment through
Reinforcement Learning

1 INTRODUCTION

Immersive VR is an effective complement to classical
motor learning and rehabilitation, where participants ex-
ecute repetitive physical exercises in motivating and con-
trolled conditions [1], [2], [3]. The truly unique feature
of VR motor training however lies in the possibility to
use adaptive training methods. It consists of adjusting the
visual feedback given on the executed movement in order
to push participants to overcome their own performance
limits or to correct for unconscious biases [4], [5], [6], [7],
[8], [9]. This is achieved by hiding from view the actual
movement of the physical body and by replacing it with
a visual feedback that is distorted. Under such conditions,
participants adapt their motor commands to compensate for
the distortion between actual and virtual movements. It has
been shown that the motor adaptation resulting from this
dissociation is not consciously perceived (even for rather
large differences [10], [11]), and leads to improved motor
control and compensation mechanism [12], [13], [14]. In the
context of fully immersive VR, an avatar of the participants’
body is displayed in a first person and animated in real-
time so as to provide participants with the strong sensation
of seeing their own body inside the virtual environment.
Finding the perceptual thresholds allowing concurrently
motor adaptation and feeling of owning the virtual body
is delicate, and has been studied only recently [15].

The subjective feeling of owning a virtual body as one’s
own is defined as the Sense of Embodiment (SoE). Ac-
cording to Kilteni et al. [16], SoE can be decomposed into
three sub-components: body ownership, agency, and self-
location. The sense of self-location is defined as one’s spatial
experience of being inside the body. The sense of agency is
described as the sensation of being in control of the body,
that one’s limbs are moving according to one’s will. Finally,
the sense of body ownership refers to one’s self-attribution
of a body, implying that the latter is the source of sensations.
If one of the three components is disrupted, a Break In
Embodiment (BIE) occurs [17], [18], leading to the sensation
of loosing control and dissociating from the avatar’s body.

To offer a seamless control of the virtual body during
distortion while avoiding Break In Embodiments (BIEs), De-
barba et al. [19] proposed to use linear distortion functions
for adjusting the avatar’s hand’s position relatively to the
virtual object to reach. Such distortions are well tolerated
and not noticed until an external event occurs, such as the
haptic feedback from the touch of one’s body [20]. But
in absence of such disruptions and when relying solely
on visual feedback, studies have shown that participants
tolerate rather large levels of distortion [15], [18], [21], [22],
[23]. Furthermore, the detection threshold increases if the
external force helps them to reach their goal [19]. To evaluate
the perceptual threshold of distortions, Porssut et al. [18]
asked participants to perform a non-biological movement

with their hand along an elliptic trajectory. While apparently
doable, the task is very difficult to accomplish without the
help of an additional distortion. Results show that, although
extremely high distortions indeed break the sense of embod-
iment, a large magnitude of deviation is generally accepted
and can be further extended if introduced progressively.
Indeed, participants still experience body ownership over
the virtual body, i.e. no BiE happened, even if they notice
that the movement of the virtual body deviates from their
actual physical movement [18].

However, avatar-body movement distortions suffer from
a large variability in the detection threshold between sub-
jects [18], [19], [20]. It would require to adjust the magni-
tude of the distortion to each individual to apply a well-
controlled distortion in a training or rehabilitation context.
Previous studies have tried different evaluation methods,
such as the standard staircase and the Point of Subjective
Equality (PSE) [18], [19], [24] to find the optimal distortion
value for each subject. The optimal distortion is defined as
the distortion magnitude for which subjects can have their
movement distorted without noticing it. These methods rely
on the explicit-feedback from the user (thus interrupting the
flow of interactions). Therefore, they rely on a signal which
has a good signal-to-noise ratio. Hence they are not applica-
ble in most application contexts using certain physiological
measurements with lower signal-to-noise ratio (EEG,GSR..).
The use of physiological measurements opens the opportu-
nity to gather implicitly the subjects’feedback, preventing
any interruption of the interaction flows. Here, we propose
to address this issue by proposing a more flexible (process
signals with a lot of noises) and robust (find the right
threshold) approach to adapt the distortion to each subject.

RL algorithms (SARSA and Qlearning) have already
been used online to discover a choice (among a predefined
set) by taking advantage of the detection of error-related
potentials with EEG [25], [26]. Based on these prior results
RL seems to be also suited to identify each subject’s individ-
ual threshold that, as opposed to a choice they consciously
make, characterizes their unconscious sensitivity to embod-
iment distortions. To our knowledge, none of the prior
studies have used RL to compute such a detection threshold.
This is more challenging since we try to evaluate human
perception during a continuous movement. The answer is
not known in advance and depends on each subject contrary
to a simple task choice where the choice is done among a
predefined set. Therefore, this study aims to demonstrate
that RL is able to find the detection threshold and to do it
more efficiently than prior art approaches. It opens up many
new possibilities like implicit calibration of VR interactions.

Given the wide range of reinforcement learning (RL)
algorithms used in previous studies [25], [26], [27] we first
assess the main RL algorithms through computer simulation
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for efficiency reasons. In a second stage the selected RL
algorithm is compared to the staircase algorithm [28] in a
controlled experiment with subjects performing the biolog-
ical movement task with the distortion model from Porssut
et al [18].

The contributions of this paper are threefold: (i) Provid-
ing a new online, implicit measurement-compatible method
to determine the user’s perception threshold with regards
to distortion; (ii) extend [18] by giving a framework to
automatically calibrate an interaction, and (iii) investigate
the cause of the detection variability.

The paper is organized as follows. Section 2 recalls the
state of the art on the sense of embodiment in Virtual Reality,
psychometric methods used to find a threshold and online
methods to calibrate a system. Then section 4 presents
the experimental framework and section 5 the results. The
general discussion and the conclusion end the paper.

2 RELATED WORK

The use of explicit distortion has often been used for 3D
interaction without any haptic feedback. Several different
hand remapping techniques have been elaborated implying
the hand only or the whole body. First studies have focused
on the hand only. For instance, Burns et al [24], [29] add a
constant offset between the subject real hand and the virtual
one. Since only the hand is shown (floating hand), this offset
is only applied to the hand. Bowman et al. [30] add the
user’s arm to the hand and focus on making the subject
reach actions more effectively by explicitly stretching the
arm while moving the virtual hand toward the object to
reach. Since the arm is not tracked, the distortion is still
limited to the hand location. Indeed, there is no mapping
between the subject’s real arm and the virtual one. Debarba
et al [19] extend the distortion to the full arm configuration
by tracking the subject’s full body. The distortion is linear
toward the target to reach. Molla et al. [31] introduced a
performance animation algorithm allowing to transfer the
participant movement onto an avatar of different shape
while preserving consistent self-body contacts. Finally, Az-
mandian et al. [32] redirect the hand using body warping
and world mapping extending the distortion to the whole
body and world. In their case the virtual body is a means to
enable haptic redirection.

Most of these studies could identify a threshold under
which participants do not perceive that a distortion has been
applied between the apparent movement of the avatar (seen
in first-person perspective in VR) and the actual movement
they performed. Indeed, Burns et al. [24] show that, in
absence of haptic feedback, visual feedback prevails on
the proprioceptive feedback whenever there is a perceptual
conflict [24], [29]. However, the SoE’s critical importance
for controlling and owning a virtual body is not explicitly
studied in these prior works. Since the SoE has an important
impact on the user experience [33], [34], most of the current
studies use distortion including the SoE as a central part
of the evaluation of the subjective experience. For example,
Kokkinara et al. [35] perform a spatio-temporal distortion
of the participant’s movement (2 to 4 times faster) during a
reaching task with the arm fully extended. They observe
a visuo–proprioceptive remapping, and a significant dip

Staircase Psychometric S+P RL
Robustness

to Noise X

Online X X
Model
Transfer X X X

Dynamic
Data Size X X X

Previous
Studies

[20], [36]
[38], [39]
[40]

[38], [39]
[40], [41]
[18], [36]

[39], [40]
[29], [42]
[43], [44]

[25], [26]
[27], [45]
[46], [47]

TABLE 1: Key features of the threshold identification meth-
ods (S+P= Staircase + Psychometric)./ Robustness to Noise:
characterizes the performance despite the noise in subject’s
answers (subject’s mistakes); Online: allows direct threshold
computation without the need of an extra method like psy-
chometric function (better for offline computation); Model
Transfer: model can be updated during a new session with
additional data; Dynamic data size: no need to know in
advance the number of data needed to find a subject’s
threshold; Previous Studies: are the main studies using these
methods, except for RL for which these studies demonstrate
its potential as none have used RL to identify such a detec-
tion threshold yet.

in agency, but not in body ownership. Debarba et al. pro-
pose refined spatio-temporal distortions for finger pointing
movements on a tangible surface [36]. Similarly, Zenner et
al. [37] show that even without any haptic feedback the
hand position can be redirected during a pointing task.
Esmaeili et al. [21] show that the detection threshold for
hand distortion changes according to the movement di-
rection. Bovet et al. [20] go further by using Molla et al
[31]’s algorithm to show that a self-contact distortion can
be very detrimental for body ownership. Finally, Ogawa et
al. [22] show that a realistic avatar (a floating virtual hand)
increases the self-attribution compared to an abstract avatar
(a sphere), suggesting that subjects notice the distortion less
when a realistic avatar is used.

Table 1 compares the three main families of prior art
methods together with reinforcement Learning (RL). As
highlighted in this table Reinforcement Learning (RL) al-
gorithms seem suited for the online distortion value ad-
justment, as the calibration of the distortion is completely
subjective and needs to be adapted over time. Past studies
using RL in robotics [25] [26] [27] [46] demonstrated that
a single negative feedback (transmitted when subjects feel
an error) is enough for certain RL algorithms to train a
satisfying model. For example, Kim et al. [45] had their robot
learning user-defined gestures and the association of each
gesture with a predefined robot action using intrinsic RL
techniques [45]. Luo et al. [27] manage to train a RL agent to
perform a binary-choice task in an online experiment using
a single type of negative reward as feedback. In [26], the
task was to have a robotic arm learn the position of the
basket chosen by the user. The accuracy varies depending on
the position of the chosen basket, but in general the system
managed to learn the correct position. However our context
is different in the sense that the unknown threshold to
discover with RL is not even explicitly known to the subjects
themselves. That’s why, for obvious usability reasons and
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given the variety of RL algorithms [25], [26], [27], [45],
[46] we first have to identify the one converging with the
smallest number of iterations. To this end, the present study
first compares several RL algorithms in Section 3.

Another major concern is related to the inherent noise in
subjects’answers. Indeed, over time subjects may tolerate
more the distortion and change their threshold or they
might get tired and answer wrongly. Adaptive staircase
and RL algorithms are, in general, sensitive to perturbed
answers. They will take more time or have difficulties to
converge. However, RL algorithms are more robust to noise
[47] and can even be used with signal like EEG [25], [26]. To
our knowledge no study has used adaptive staircase with
EEG signals.

3 REINFORCEMENT LEARNING

Before running an actual experiment, we need to ensure that
the selected RL algorithm is usable with subjects. It has to
converge at least below 200 iterations. Indeed, based on a
pilot study with 5 subjects, a subject spends on average
around thirty minutes to repeat the task (see 4.4) 200 times.
Based on [25], [26], [27], [45], [46], we first chose to test with
Qlearning and SARSA. To test the performances of RL algo-
rithms, the reward function is designed as follows: when the
distortion value is equal or below the subjects’ threshold,
subjects do not notice the distortion in their movements,
which yields a positive reward. Once the distortion value
exceeds their threshold, the subjects experience a Break in
Embodiment (BIE), which yields a negative reward. The
absolute value of the reward is the distortion gain. For
instance, if a subject performs the task with a distortion
gain of 2.5 and does not notice the distortion, then the RL
agent receives a reward of 2.5. On the contrary, if the subject
feels a BIE, then the RL agent receives a negative reward
of -2.5. In the ideal situation, their threshold remains stable,
thus this reward function entice the RL agent to learn the
highest possible gain to find how much distortion subjects
can tolerate. Then, the actions are defined as increasing or
diminishing the gain by steps of 0.5 or 0.25. However, under
this design, SARSA and Qlearning took more than 1000
iterations to converge ; the combination of the action space
and the state space is too large to be fully explored in a small
numbers of iterations.

Therefore, we have restricted our problem to a non-
stationary multi-armed bandit (MAB) which is more
adapted to find a threshold. Indeed, the k-armed bandit
model omits the state-space and the transition probabilities
to focus solely on finding the best action from a total of k
choices by maximizing the total rewards over a predefined
period of time [48]. Three different algorithms are tested to
find the threshold.

3.1 Comparisons

A k-armed bandit problem is chosen with each arm cor-
responding to one of the k distortion gains. The agent
receives a positive or a negative reward chosen from a
non-stationary probability distribution (i.e. the reaction of
subjects to the same distortion value might change over
time) depending on the reaction of subjects to the selected

gain. The threshold is found by maximizing the expected
reward, namely the value function, conditioned by the
action: Q∗(a) = E[Rt|At = a] where Rt is the reward at
time t and At is the action chosen at time t. The optimal
detection threshold (action) is the value with the highest
Q-value: Aopt = argmaxaQ∗(a). As the Q-value of each
action (Q∗(a)) is unknown at the beginning, an estimate of
Q∗(a) is updated for each action at each time step (update
the Q-table). As the problem is non-stationary, the update
rule at time step t is : Qt+1 = Qt+α[Rt−Qt] where α is the
learning rate that diminishes over time. Each of them are
evaluated with their cumulative rewards over 1000 steps.
The best algorithm is the one converging to the desired
cumulative rewards in the least iterations. Three different al-
gorithms have been tested and compared: a simple ε-Greedy
algorithm, Upper-Confidence-Bound (UCB) combined to ε-
Greedy algorithm and Policy Gradient.

Fig. 1: Accumulated rewards of the three algorithms with
UCB converging faster than the two other algorithms(1000
steps).

The results indicate that UCB outperforms the other two
algorithms (see Fig.1) by converging within a relatively
small number of iterations (150-200) as opposed to (500-
550) for ε-Greedy and more than 1000 for Policy Gradient
to reach the same cumulative mean reward of 1. For this
reason we retain UCB for the controlled study with subjects.

3.2 Upper Confidence Bounds
UCB combined with the ε-Greedy policy is the RL algo-
rithm chosen to find the detection threshold. As the best
action is unknown at the beginning of the experiment, the
next action is taken in the next time step using a mix
of the UCB strategy and the ε-Greedy policy. For ε % of
time, a random action is chosen, and for the (1 − ε) % of
time the action is chosen according to the UCB strategy:
At = argmaxa[Qt(a) + c

√
ln t

Nt(a)
], where c > 0 controls

the degree of exploration and Nt(a) denotes the number of
times action a has been chosen until the time step t. c is set
to 2 for this experiment. Since the highest Q-value stops to
change long before the Q-table converges, the convergence
condition has been set to 15 unchanged consecutive itera-
tions. These iterations are counting from the 35th trial. If
UCB reaches 100 iterations, the algorithm is terminated. In
this case, the gain with the highest Q-value is chosen as
the detection threshold. The exploration ratio ε is set to 1 at
start in order to let the algorithm fully explore the actions,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3057797, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

and decay following εt+1 = εt − log10
t+1
20 (t is the number

of iterations), until it diminishes to the minimal exploration
ratio 0.01. Similarly, the initial learning rate α for the Q value
update Qt+1 = Qt + α[Rt −Qt] is set to 0.5, and decays in
the same fashion: αt+1 = αt − log10

t+1
40 until it reaches the

minimal learning rate 0.001. The denominators of these two
decaying rules are found through grid search.

4 EXPERIMENT

The experiment uses an implementation of the Attraction
Well distortion [18] mechanism with the following param-
eter: R as the radius of the real tennis ball, drange as the
radius of the circular trajectory (0.35m) and G as the value
returned by UCB / staircase.

In the following sections, the robustness of an algorithm
is defined as its ability to prevent subjects from detecting
the distortion when the applied gain is equal or below the
threshold found by this algorithm. The conservativeness of
the algorithm is defined as giving a too small threshold.
In that case, subjects wouldn’t notice the distortion when
the applied gain is somewhat above this small threshold.
For each subject and each algorithm, the robustness and the
conservativeness of these algorithms are quantified using
the true positive rate (TPR) (or recall) (see Eq.1) and the
positive predictive value (PPV) (or precision) (see Eq.2).
We also define the different components of the confusion
matrix (see Sec. 5.2) as follows: the true positives (TP) are
subjects noticing the distortion above the threshold, the
true negatives (TN) are subjects not noticing the distortion
below the threshold, the false positives (FP) are subjects
not noticing the distortion above the threshold, the false
negatives (FN) are subjects noticing the distortion below the
threshold.

TPR =
TP

TP + FN
(1)

PPV =
TP

TP + FP
(2)

The purpose of this study is to find the detection thresh-
old with adaptive staircase and UCB, and compare their
performance. The ideal adaptive algorithm should be ro-
bust, not conservative, and fast-converging. The following
hypotheses have been formulated:

First, the UCB algorithm is more robust than the staircase
algorithm (H1). The ”robustness” of the two algorithms
is quantified by computing the TPR for each subject and
algorithm. The lower the FN are, the higher the TPR is
and the more robust an algorithm is for our application.
Robustness is the most important criterion for this experi-
ment. The UCB is hypothesized to be more robust, because a
mechanism has been implemented to correct a portion of the
subjects’ reaction (Sec. 4.2). If subjects have never detected
a distortion at a certain level of gain and suddenly detect it,
their response is considered noisy and corrected.

Secondly, the UCB algorithm is more conservative than
the staircase algorithm (H2). The ”conservativeness” of the
two algorithms is quantified by computing the PPV for each
subject and algorithm. The lower the FP are, the higher the
PPV is and the less conservative an algorithm is for our

application. Ideally the conservativeness of the algorithm
has to be as low as possible while keeping a high robustness.
However, it is hard to have an algorithm that is very robust
and not conservative simultaneously. Due to the way the
reward function is defined (R = ± gain of distortion
depending on if subjects experience BIE or not (Sec. 3.2)),
the UCB might converge to a lower value than the staircase
since negative rewards are very detrimental for UCB.

Finally, subjects who spent more time using an immer-
sive 3D application have a higher detection threshold (H3).
This hypothesis is more exploratory and tries to explain the
subject inter-variability found in [18], [19]. The experiment
has been designed around this idea with a demographic in-
formation survey added at the start of the experiment. Three
subtopics are about the subject’s experience with immersive
3D application (see Sec.4.4). A pilot study of 5 subjects was
conducted to adjust the task of the experiment and the
questions. Since several participants did not experience any
BIE at the original maximal distortion value of 4, it has been
increased to 10.

4.1 Distortion Function: the Attraction Well

Fig. 2: Overview of the well-shaped distortion function.
No distortion is applied when d is greater than 1, i.e. the
virtual hand is placed exactly where the real hand is situated
(region 1). When d is below 1, the virtual hand starts to get
attracted to the target (its position is closer to the target
than the position of the subjects’ real hand). The attraction
amplitude increases as d decreases from 1 to r (region 2),
then diminishes to zero as d decreases from r to 0 (region 3).

We recall here the main features of the tracking task
and its associated distortion function introduced in [18] and
used for the controlled experiment of distortion detection.
The distortion is designed to help a subject for tracking
a target moving on an elliptic trajectory while preserving
their sense of agency. The avatar’s hand is first attracted
towards the target until it reaches the outer boundary of
the moving target (i.e. a sphere slightly bigger than a tennis
ball). Then, once the virtual hand is inside the moving target,
the attraction is progressively reduced to zero until the hand
arrives at the target center.

The following notations are set: ~Ptarget is the 3D position
of the moving target of radiusR, ~Preal is the real 3D position
of the subject’s hand (more precisely, it is the position of the
center of the tennis ball held by subjects as can be seen on
Fig.6), D is the distance between the target and the hand
with D = ‖~Ptarget− ~Preal‖, and drange is the distance range
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of the attraction force centered on the moving target. Finally,
equations are expressed with the normalized variables d and
r respectively given by d = D

drange
and r = R

drange
.

Fig. 2 presents an overview of the well-shaped attraction
profile from [18] ; its amplitude is expressed as a function of
the normalized distance d. For d > 1, no distortion occurs,
hence the virtual hand position coincides with the real hand
position. An attraction is enforced whenever d < 1 thereby
bringing the avatar hand closer to the target compared to the
real hand. More precisely, this attraction is decomposed into
an outer and an inner region delimited by the normalized
moving target radius (respectively labeled 2 and 3 in Fig.
2). The outer region offers an increasing attraction until
a maximum when the real hand reaches the boundary of
the moving target. Conversely, the inner region reduces
the attraction amplitude from this maximum down to zero
when it coincides with the target. The maximum amplitude
of the attraction force is denoted as G (illustrated with the
value 2 in Fig. 2). Then:

f(d) =

{
d ∈ [0, r] G× (−2× (dr )

3 + 3× (dr )
2)

d ∈ [r, 1] G× (2× ( (d−r)
(1−r) )

3 − 3× ( (d−r)
(1−r) )

2 + 1)

(3)
Given the distortion value provided by the attraction profile
f(d), an attraction coefficient is computed 1/(1 + f(d) to
build the distorted hand position ~Pdistorted, shown to sub-
jects, from the knowledge of the current positions of the
mobile target ~Ptarget and of the real hand ~Preal. Then:

~Pdistorted = ~Ptarget + (
1

1 + f(d)
)× (~Preal − ~Ptarget) (4)

The distortion amplitude f(d) being always posi-
tive, Equation 4 ensures that the distorted hand position
~Pdistorted always lies in-between the current target position
~Ptarget and the real hand position ~Preal. Moreover both the
real and the distorted positions coincide for the boundaries
[0, 1] of the normalized distance d.

The distortion is tuned through the three following pa-
rameters. R is the radius of the moving target (tennis ball).
drange is the distance range of the attraction force centered
on the moving target, which corresponds to the radius
(0.35m) of the circular trajectory the target follows (Sec. 4.4).
Lastly, G (referred to as the ”distortion gain” or ”gain” in
the following paragraphs) is the maximum amplitude of
the attraction (G = 2 in Fig. 2). Thanks to the well-shaped
attraction profile, subjects who are successful at closely pur-
suing the target may notice that the small imperfections of
their trajectory are reflected in the movement of the virtual
hand, hence conveying a sense of being in full control of
the performed movement. Conversely, if subjects have some
issues following the target, their tracking error makes them
fall within the region with a high attraction, which makes
following the target easier. Based on previous results [18]
and pilot testing, the following discrete values of distortion
gain are used: {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5,
2.75, 3, 4, 5, 7, 10}. The last values are separated by a larger
step-size because, as the gain increases, it becomes harder
for subjects to detect a difference between two distorted
movements.

4.2 Implementation
Equipment and software

Fig. 3: Equipment: subjects have a tracker on each shoulder,
elbow, and hand, as well as a tracker on their chest. Subjects
hold the tennis ball in the right hand and the HTC Vive
Controller in the left hand.

The HTC Vive Pro Eye, a Head Mounted Display (HMD)
with 1440 x 1600 pixels per eye, 110 ◦ field of view and 90
Hz refresh rate, is used for display. This headset has a 120
Hz eye tracking system with 0.5-1.1 ◦ of accuracy. The eye
tracking is used to ensure that subjects are always looking at
their right hand in the second phase of the task. Bose Quiet-
Comfort 35 wireless headphones with active noise canceling
are used to play a non-localized white noise to the subject
during the experiment. The white noise is interrupted when
communicating with subjects. For the motion capture 8 HTC
Vive Trackers V2 are placed at the origin of the room (in
front of the chair where subjects sit) (1), on the subject’s chest
(1), shoulders (2), elbows (2) and hands (2). Subjects also
hold an HTC Vive Controller in their left hand to answer
questions while being immersed in the virtual environment.
To ensure a good tracking during all the experiment, one
HTC’s base station is placed in each corner of the room.

The virtual environment is a square room of 6× 6× 3m3

with a chair in the middle of the room. An avatar holding
a tennis ball in the right hand is calibrated to collocate with
the subject’s body. This maintains a visuo-proprioceptive
and tactile coherence between the real and virtual hands
in the absence of finger tracking. The application is imple-
mented using Unity 3D 2019.2.0f1. Subjects’ movements are
reproduced through animation by the avatar using LimbIk
from FinalIK1 package. Subjects are seated for the whole

1. root-motion.com
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duration of the experiment and only need to perform simple
movements with their right hand. Finally, the performance
of the application is monitored through the Unity Profiler to
maintain a constant frame rate (90 FPS).

The avatar is globally scaled based on the subject’s
height. After manually calibrating the position of the chest
and the shoulders, subjects have to remain seated with
their arms extended horizontally in the forward direction
to align the trackers attached to their hands with simple
rectangles attached to the avatar’s hands. The length of the
arms and the position of the hands are manually adjusted
during this step as well. The avatar mesh is not visible
during the calibration to prevent subjects from viewing
visual interpenetration.

Staircase Design

Fig. 4: Example of a converging staircase (7 turns in direc-
tion). The dots indicate the last 4 changes in direction (used
to obtain the threshold). The horizontal line indicates the
detection threshold, calculated using the mean value of the
distortion gains of the last 4 turns in direction.

The staircase implementation follows the one of Bovet et
al. [20] with slight modifications. As the step size between
our gain values is not constant, the step value used in [20]
is dismissed. The previous/next step of a gain value is its
previous/next direct neighbor. The staircase block runs 4
staircases in parallel, each having a different starting gain
(two starting low (0, 1) and two starting high(7, 10)). The
staircases are presented at each iteration in a random order
to prevent subjects from getting used to the distortion. If
subjects detect the distortion, the gain is lowered, and vice-
versa. Once a staircase converges, it returns a random gain
until all the staircases converge or terminate. The stopping
and convergence criteria remain unchanged: the staircase
converges when the direction changes seven times (seven
staircase turns) or when it reaches 20 iterations. The detec-
tion threshold is calculated using the mean of the distortion
gains of the last four turns in direction.

Perturbed rewards
Since subjects are not aware of their threshold, their reaction
to the same distortion gain is not stable. Additionally, the

reaction of the subjects might be noisy due to fatigue or to
the training effect. RL algorithms are, in general, vulnerable
to perturbed rewards. The UCB algorithm might have dif-
ficulty converging when the reaction of the subjects to the
same distortion gain is very unstable. Sometimes, it might
also converge to a wrong threshold (e.g. 0, aka no distortion,
when subjects don’t experience a BIE at a higher distortion
gain). Wang et al. [47] proposed a method to counter this
problem. When the RL agent receives the perturbed reward
from subjects’ answer, it predicts the true reward based on
the accumulated history of rewards for the corresponding
distortion gain (majority voting). For instance, subjects have
encountered the gain value g four times and have only
detected it once. Then in the next iteration if they detect
the gain g, the response is considered noisy and is corrected
to ”No detection”.

4.3 Participants

A pilot study was run with 5 participants. The experiment
has been conducted with 22 subjects. Before starting the
experiment, subjects signed a consent form approved by
the ethical committee of the canton of Vaud. Then they
were asked to fill in a form with questions about their
background (gaming experience, previous experience with
VR applications, etc.) The 22 subjects were paid 20 CHF
per hour for their participation. One subject’s data were
discarded due to technical issues.

The 21 subjects included in the analysis are aged from
18 to 25, in average 21.14 ± 1.9 years old. Five of them are
female, and sixteen of them are male. Twenty of them are
right-handed and one of them is left-handed. Subjects have
normal or corrected to normal vision.

4.4 Methods

The experiment is divided into two blocks: one using the
staircase method, and the other one using the UCB method.
The block order is counterbalanced between subject to avoid
any bias.

Fig. 5: Protocol Overview

The experiment proceeds in three steps. The first step
is calibration (Sec.4.2) (approximately 10 min). The second
step is explanation. The explanation consists of six trials
alternating between no distortion gain (0) and maximal
distortion gain (10) to show the distortion to the subjects.
The last step is the task, divided into two blocks (Sec.4.4).
The number of trials for each block is not predefined; it de-
pends on the reaction of the subjects. Each block terminates
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when the corresponding algorithm in charge of finding the
detection threshold converges or terminates. There is a break
every ten minutes to prevent from getting too tired. Subjects
are asked to remain seated at all times to avoid technical
issues. The experiment is resumed when they want. Each
block is done only once. The entire experiment lasts for
about one hour and ends with a short debriefing with
subjects.

Task

Fig. 6: Overview of a trial (Top Left: First person view; Top
right: Side view; Bottom right: Top view; Bottom Left: Front
view): The subject first puts the tennis ball inside the blue
sphere, then follows the green sphere. The trial ends after
the subject answers the question. In this figure, the red arm
illustrates the subject’s actual movement when following
the target, while the grey arm belongs to the virtual avatar.
Subjects are not shown the red arm during the experiment.
(see the video for a sample of the experiment)

The task consists of a two-phase movement and a ques-
tion. The task stays the same throughout the experiment.
Subjects start with the tennis ball held in their right hand, in
contact with their chest. In the first part of the movement,
subjects have to put the tennis ball inside a semitransparent
blue sphere in front of them and wait for a timer to finish.
From this point in time, the eye tracking system is activated
to track the eyes of the participants. They need to stay
focused on the movement of their right hand, or else the trial
is restarted. If the gaze of the subject is not fixed on the hand
for 0.5s, the trial restarts after showing a warning message
to them. While staying focused on their right hand, subjects
need to move the tennis ball from the blue sphere to the
center of a semitransparent green sphere. Then, they need to
follow the green sphere that moves along a circular trajec-
tory with a radius of 0.35m for a few seconds. This moment
of transition is illustrated in Fig.7. The task is completed if
they have followed their right hand’s movement with their
eyes and have maintained the tennis ball inside the green
sphere during at least 4 seconds. Otherwise, the trial restarts
from the beginning. Once the movement is completed, the
target spheres and the avatar become invisible.

Then, a question and a cursor (white circle) appear on
the virtual wall in front of the subjects. Subjects need to
direct the cursor with their head orientation into the ”Yes”
/ ”No” circles, and press the controller’s trigger for about

Fig. 7: This depicts the moment when the subject leaves the
first target (blue sphere) and tries to reach the moving target
(green sphere). (Left) Top view. In dark blue: the circular
trajectory of the moving target (green sphere). The vector

−→
P

is the discrepancy induced by the distortion. (Right) View
from the right. The circular trajectory has a radius of 0.35m.

two seconds to answer the question. Once the question is
answered, the objects in the virtual scene appear again at
their initial position and the next trial starts.

Question
The same description has been given as in [49] to the sub-
jects to explain the concept of Break In Embodiment (BIE).
Kokkinara et al. [49] count the number of BIEs per session
and make them say ”Now” every time they experience a
BIE. In our context, we want the subjects to keep focused
on the task and we only need their feedback about the most
recent trial. Hence They have to answer at the end of each
trial with ”Yes” or ”No” to the question: ”I felt at least
once I didn’t own the virtual body.” This method allows
the participants to answer without breaking the immersion.

Demographic Information
At the beginning of the experiment participants have to
fill a demographic information survey. It is composed of
seven subtopics (age, gender, handness, Main occupation,
VR experience, Action video game experience, video game
experience more generally). The last three are about the
subject’s experience with immersive 3D application ; they
allow to explore the cause of subject inter-variability for the
detection threshold and check the H3 hypothesis.

5 RESULTS

A within subjects comparisons of UCB and staircase per-
formance is performed using a pairwise t-test. Then the
relationship between UCB and staircase detection threshold
is examined using Pearson correlation. The assumption of
normality of residuals is tested with the Shapiro-Wilk test.
If residuals are deemed not normal the response is trans-
formed with a Box-Cox transformation yλ, which does not
alter the order of the response values. If the normality hy-
pothesis is still rejected, a two-sided Wilcoxon signed-rank
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test is performed. The exploratory analyses conducted with
the data got from the demographic information survey is
evaluated with a Spearman correlation. Since the same tests
is used repeatedly on dependent datasets, FDR correction
is applied for each Spearman correlation. For the statistical
analysis, differences are deemed statistically significant for
p-values below the threshold α = 0.05. The analysis is
conducted using Python.

5.1 Detection thresholds
5.1.1 Comparison
The threshold values are averaged across all subjects for
UCB and Staircase (Fig.9d). On average, the UCB (M = 1.93
with SD = 1.1) set a significantly (t21 = −2.2 p < 0.05)
lower threshold than the staircase (M = 2.75 with SD =
1.45). Even if both algorithms obtain quite a high average
threshold, the UCB theshold is lower. These results may
explain why the UCB is more robust. Indeed, if the threshold
is too high compared to the real subject’s threshold, there
are more risks to produce FN. The subjects may experience
breaks in embodiment more often, due to the more frequent
perception of the distortion and also due to its bigger
amplitude. Finally, the high standard deviation emphasizes
the high variability of this detection threshold between the
subjects. These results are in accordance with Porssut et al.
[18].

5.1.2 Correlation

Fig. 8: Correlation between Staircase and UCB.

To explore the link between the staircase and UCB
algorithms, Pearson correlations between their thresholds
were conducted across subjects. The correlation analysis
revealed a positive correlation (r = 0.71, p < 0.001)(see
Figure 8). Even though previously a significant difference
has been observed between the two average thresholds,
this correlation ensures that the same type of threshold is
measured and the difference is accounted for mostly by
the robustness of UCB, i.e. the reduced number of false
negatives. Indeed, the staircase’s threshold increases at the
same pace as UCB’s threshold, they follow the same trend.
This is consistent with the previous results and confirms that
both thresholds are of the same nature.

Actual Class
Distortion
Detected

Distortion
Not Detected

Predicted
Class

Distortion
Detected TP=28.6/33.3 FP=14.6/21.7

Distortion
Not Detected FN=18.3/13.6 TN=39.2/32.1

TABLE 2: Confusion Matrix Staircase/UCB (Average across
all subjects divided by the number of trials per subject (%))

5.2 Confusion Matrix
The detection threshold is used to compute the confusion
matrix for each subject. From this confusion matrix the TPR
and PPV are computed for each user and each algorithm.
The average confusion matrix across all subjects for staircase
and UCB 2 is computed to give an overview of the algorithm
answers. A total of 22 staircases that did not converge are
discarded as in [19]. UCB gives more true positive than
staircase but less true negative. On the contrary staircase
gives more false negative but less false positive than UCB.
Thus UCB seems more robust but less conservative than
staircase. The PPV and TPR are computed in the following
sections to check these first results.

5.3 Performance
5.3.1 Recall
The TPR is averaged across all subjects for UCB and
Staircase (Fig.9b). Since the residuals are deemed not nor-
mal even after the Box-Cox transformation, a two-sided
Wilcoxon signed-rank test is performed. The UCB (M =
0.74 with SD = 0.27) has a significantly (t = 43 p = 0.008)
higher TPR than the staircase (M = 0.62 with SD = 0.28).
Even if they both have quite a high TPR, the UCB is
more robust. Thus, the hypothesis (H1) is validated. This
means that the threshold obtained thanks to the UCB better
prevents subjects from detecting the distortion.

5.3.2 Precision
The PPV is averaged across all subjects for UCB and Stair-
case (Fig.9a). The UCB (M = 0.67 with SD = 0.19) has a
lower PPV than the staircase (M = 0.73 with SD = 0.18).
However, this difference is not significant (t21 = −1.31 p =
0.37). Surprisingly, both algorithms have a quite high PPV,
which means they are not especially conservative. Thus,
the hypothesis (H2) is not validated. However, UCB is at
least equivalent if not less conservative than the staircase.
Consequently, the threshold obtained is not much smaller
than the real threshold of subjects. These thresholds prevent
many false positive i.e. subjects not detecting the distortion
when the applied gain is above the found threshold.

5.3.3 Classification Accuracy
The classification accuracy is averaged across all subjects for
UCB and Staircase (Fig.9c). The UCB (M = 0.65 with SD =
0.095) has a lower classification accuracy than the staircase
(M = 0.67 with SD = 0.11). However, this difference is not
significant (t21 = −0.75 p = 0.46). They both have quite a
high classification accuracy. This means they both manage
to set a threshold which is close enough to the real subject’s
threshold.
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(a) Bar graph for the pair-
wise comparison of preci-
sion/PPV. Error bars repre-
sent the standard error of
the mean.

(b) Bar graph for the pair-
wise comparison of re-
call/TPR. Error bars repre-
sent the standard error of
the mean.

(c) Bar graph for the pair-
wise comparison of re-
call/TPR. Error bars repre-
sent the standard error of
the mean.

(d) Bar graph for the pair-
wise comparison of detec-
tion thresholds. Error bars
represent the standard er-
ror of the mean.

Fig. 9: Performance and Detection Threshold Results

5.4 3D Immersive Experience
We examined whether the subjects’ thresholds variability
(Sec.5.1.1) could be linked to the subject’s experience with
3D immersive application by computing their correlation.

Firstly, the correlation analysis revealed no correlation
(r = 0.205, p = 0.37, QFDR = 0.44) between hours of
video games and Staircase convergence threshold. How-
ever, the correlation analysis revealed a positive correlation
(r = 0.45, p = 0.041, QFDR = 0.25) for UCB convergence
threshold but it doesn’t survive the correction for multiple
comparison. This difference of results between UCB and
Staircase can be explained again because of the TPR/Recall
value which is higher for UCB. The higher number of FN
for Staircase in contrast to UCB’s limited amount of FN,
may hide the influence of this new factor on the threshold
value. Even though the correlation between video games
experiences and perception threshold didn’t survive, it gives
relevant information to study this high variability. Identify-
ing more of those factors could be an interesting extension
to this study.

Secondly, the link between action video games experi-
ences and perception threshold, for both UCB and staircase,
is analyzed. The correlation analysis revealed no correla-
tion between hours of video games and Staircase conver-
gence threshold (r = 0.148, p = 0.52, QFDR = 0.52)
and no correlation also with UCB convergence threshold
(r = 0.326, p = 0.15, QFDR = 0.26) for UCB convergence.
Action video game doesn’t seem to be one of the factors
causing this variability.

Finally, the link between VR experiences and percep-
tion threshold, for both UCB and staircase, is studied.
The correlation analysis revealed no correlation between
hours of video games and Staircase convergence threshold
(r = 0.310, p = 0.17, QFDR = 0.26) and no correlation
also with UCB convergence threshold (r = 0.343, p =
0.13, QFDR = 0.26) for UCB convergence. VR experience
doesn’t seem to be one of the factors causing this variability.

Since no significant correlation has been found between
the three scores, H3 is not validated. Indeed, thanks to all
these results it may be interesting to do a new study with a

more complete questionnaire about video game background
(habit, exposure..) [50], [51].

6 DISCUSSION

This study explores the problem of finding the detection
threshold for individual subjects. To determine what is
the best threshold, three criteria are used: 1) Robustness
(Precision); 2) Conservativeness (Recall); 3) Accuracy. The
robustness is evaluated thanks to the TPR and the PPV
averaged across subjects computed thanks to the confusion
matrix. The ideal algorithm should be both robust and the
least possible conservative, necessitating a low number of
iterations to converge. It also needs to adapt to the future
variations of subjects’ threshold. Upper-Confidence-Bounds
(UCB) is the reinforcement learning method selected and
staircase is the method used as a reference. The two algo-
rithms are compared with the three previous criteria.

Due to the design of the reward function and the cor-
rection mechanism of the reward, the UCB is hypothesized
to be more robust (H1), but also more conservative than
the staircase (H2). The result shows that UCB is more
robust (higher TPR) than staircase, and that their conserva-
tiveness is comparable (no significant differences between
their PPV). The UCB and staircase also have a similar
classification accuracy. Thus, UCB would be a better choice
considering the fact that robustness is more important than
conservativeness to avoid provoking BIEs. Finally, even
though both algorithms defined a significantly different
threshold, the correlation analyses showed that they are,
indeed, measuring the same threshold. Using reinforcement
learning algorithms to solve the problem of finding the
detection threshold seems to be a more robust alternative
than a classic staircase.

Porssut et al. [18] mentioned a high variability of the
thresholds among subjects. This phenomenon is also found
in this study. Moreover, the observation that their subjects
had a relatively high detection thresholds is coherent to
what has been found. For the 21 subjects, the average
of the threshold found by all the converged staircases is
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2.75 ± 1.45, and 1.93 ± 1.10 for UCB. The averages of the
distortion gain are higher compared to Porssut et al. [18]
(1.43±0.41), which might explain why four of their subjects
had a detection threshold above 2. Indeed, some subjects can
tolerate a distortion gain up to 5, which largely exceeds the
maximal threshold (G = 2) Porssut et al. [18] had set for their
experiment. To conclude, our results are consistent with the
previous findings.

To identify the cause of the variability, the link between
subjects’ engagement level with 3D immersive application
and the detection threshold is explored. A trend suggests
that the more subjects play video games, the more the per-
ception threshold is high. However this correlation didn’t
survive the correction for multiple comparison. This trend
was only observed for the results obtained using the UCB
algorithm. This trend may be observed for the first time
because no other studies have used reinforcement learning
to find the detection threshold. It gives an interesting hint
for future experiment. It would be interesting to use and
build a new questionnaire based on previous video game
surveys [50], [51] to isolate more factors and understand the
influence of video games on the detection threshold. Indeed,
the main issue to calibrate a distortion is the high variability
of the threshold. If we were able to link this variability
with subjects’video games background, we might be able
to adjust the threshold based only on this questionnaire.

In the debriefing with the subjects, they were asked at
which moment they experienced a BIE and which factors
helped them to notice the distortion. Globally, the subjects
reported to have observed the ”jump” when they moved the
tennis ball from inside the blue sphere to follow the green
sphere. They described feeling helped by an external force,
or feeling that the avatar’s hand is automatically attracted
to the green ball. Some also reported having noticed the
distortion when the movement of the avatar’s hand is too
steady compared to the movement of their physical hand
during the movement. These remarks correspond to our
expectations as they are coherent with the behaviour of the
distortion function. They also underline the importance of
controlling the distortion value to avoid altering subjects’
experience.

There are several points of this experiment which could
be improved upon. Instead of determining one threshold
per staircase, the Point of Subjective Equality (PSE) could
have been used as in Burns et al. [29] to find one sin-
gle threshold for all the staircases and using a classical
psychometric function [52], [53], [54], [55]. However, most
of the time, these methods are used offline, as opposed
to our approach, which was online. No experimentation
has been performed with subjects to verify whether the
threshold was consistent across several days. It could have
been worthwhile to conduct the study during the span of
several days with the same subjects and methods. Finally,
the sample used for the experiment was not gender bal-
anced. To our knowledge, no study has shown an effect of
gender on movement distortion perception. However, the
motion range of the elbow changes according to gender [56].
These anatomical differences might explain a part of our
subjects’ inter-variability. It would be interesting to control
for this parameter in future studies.

7 CONCLUSION

In conclusion, reinforcement learning works well to find the
detection threshold. It has the same accuracy and conserva-
tiveness as the staircase algorithm, but it is more robust.
Overall, considering that robustness is the most impor-
tant evaluation criterion, the reinforcement learning method
used in this study (UCB) should be the method to retain for
future applications.

In this experiment, subjects were asked to answer a
question at the end of each trial to indicate if they had
experienced a break in their sense of embodiment (Break
in Embodiment (BiE)). Having explicit human feedback is
very advantageous to update the reinforcement algorithms.
However, it is very demanding and tiresome for a human
to simultaneously stay focused on the virtual scene while
continuously generating feedback. Therefore, developing an
approach to obtain implicit feedback is highly relevant.
Studies from [25], [26], [27], [45], [46], [57] demonstrated
the possibility to use supervised learning models to detect
the presence of an EEG signal generated by subjects’ brain
when they observe an error. In particular, Salazar-Gomez et
al. [57] state that the accuracy of classifying secondary EEG -
defined as the EEG signal provoked by the misclassification
of the primary EEG signal - has a higher accuracy than solely
using the primary EEG. However, none of previous works
have used EEG with RL for assessing the sensitivity to
embodiment distortions. Indeed, as opposed to a choice they
consciously make among a predefined set, the detection
threshold is highly individual and not consciously known
to the subjects themselves. With the proposed approach, it
may be possible to implicitly adjust the detection threshold
within a VR experience. The used reinforcement learning
method (UCB), is robust enough to find the maximum mag-
nitude of distortion that each subject can tolerate without
provoking a BIE in real-time for a VR application, and is
compatible with implicit feedback like EEG signals.

At last, our study could be useful for exercising and
motor rehabilitation. In particular it has been shown by
Cameirao et al. [58] that task-oriented rehabilitation com-
bined with the observation of virtual limbs facilitate the
functional recovery of the arms. In this context, finding
the correct detection threshold of the subjects would help
them consider the distorted movement as their own, which
could positively impact their recovery process. However,
our study has been restricted to homogeneous (age, video
game) healthy subjects. Therefore, for future clinical appli-
cation, the study requires to be tested with a more diverse
population and several parameters must be adapted like
the duration (1 hour might be too long) and the type of
movement. Besides, our method has only been evaluated
for a predefined movement. Testing the performance of the
algorithm when the movement is only partially known or
entirely unknown would be necessary in such an applica-
tion.

8 SUPPLEMENTARY MATERIAL

A video is provided with this paper. The dataset
is hosted in a Zenodo repository (10.5281/zen-
odo.4298840), the Unity project is hosted in a Gitlab

https://doi.org/10.5281/zenodo.4298840
https://doi.org/10.5281/zenodo.4298840
https://gitlab.epfl.ch/iig/research/adapting-virtual-embodiment-through-reinforcement-learning
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repository (gitlab.epfl.ch/iig/research/adapting-virtual-
embodiment-through-reinforcement-learning) and
the RL algorithm is hosted in a Gitlab repository
(gitlab.epfl.ch/iig/research/rlalgorithms).
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[33] L. Bréchet, R. Mange, B. Herbelin, Q. Theillaud, B. Gauthier,
A. Serino, and O. Blanke, “First-person view of one’s body in
immersive virtual reality: Influence on episodic memory,” PLoS
ONE, vol. 14, no. 3, p. e0197763, mar 2019.

[34] P. Pozeg, E. Palluel, R. Ronchi, M. Solcà, A. W. Al-Khodairy,
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