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ABSTRACT

A four-dimensional plasma model able to describe the scrape-off layer region of tokamak devices at arbitrary collisionality is derived in the
drift-reduced limit. The basis of the model is provided by a drift-kinetic equation that retains the full nonlinear Coulomb collision operator
and describes arbitrarily far from equilibrium distribution functions. By expanding the dependence of the distribution function over the
perpendicular velocity in a Laguerre polynomial basis and integrating over the perpendicular velocity, a set of four-dimensional moment
equations for the expansion coefficients of the distribution function is obtained. The Coulomb collision operator as well as Poisson’s equation
are evaluated explicitly in terms of perpendicular velocity moments of the distribution function.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0024968

I. INTRODUCTION

Understanding the plasma dynamics in the scrape-off layer (SOL),
the most external plasma region in magnetic confinement devices, is of
primary importance on the way to fusion energy. In fact, this region plays
an essential role in the overall performance of a fusion device by control-
ling the interaction of the plasma with the wall, therefore regulating,
among others, the impurity dynamics, the heat flux to the vessel walls, the
fueling, and the recycling process.1 Improving our understanding of this
region is considered as a crucial step on the way to fusion energy.2

With respect to the core plasma, the SOL is characterized by large
amplitude fluctuations, including coherent filamentary structures, called
blobs,3 that develop on large spatial scales comparable to the time-
averaged SOL pressure gradient length Lp and on time scales slower than
the ion cyclotron period, Xci ¼ eB=mi, being e, B, and mi, the electron
charge, magnetic field, and ion mass, respectively. The presence of these
structures does not allow the separation of time-averaged and turbulent
quantities. At the same time, there is a wide range of plasma collisionality
in the SOL, and properly retaining collisional effects is important for its
description.4 These elements make it challenging to extend the standard
gyrokinetic approach used to study core turbulence, most often based on

the separation of equilibrium and fluctuating quantities and valid in the
low collisionality limit, to SOL conditions. Indeed, while significant pro-
gress has been made in order to port the gyrokinetic model to the condi-
tions of the tokamak boundary (see, e.g., Refs. 5–8) as well as in the
numerical implementation of the gyrokinetic model in the SOL geome-
try (see, e.g., Refs. 9–11), the numerical cost of gyrokinetic simulations of
the tokamak boundary remains prohibitive and the modeling of the SOL
region most often relies on fluid models.12–19

The SOL fluid models, typically based on a drift-reduced set of
Braginskii equations (see, e.g., Refs. 20 and 21) or on a gyrofluid model
(see, e.g., Ref. 22) in order to include finite Larmor radius effects,
assume low plasma temperatures (and associated high plasma collision-
alities) such that scale lengths are longer than the typical mean free
path and deviations from a local Maxwellian distribution are small.
However, kinetic effects might play an important role in the SOL. This
is particularly true in the high confinement mode regime, when the
edge temperature rises considerably and edge localized modes
can become unstable, leading to the presence of high-temperature low-
collisionality plasmas in the SOL.23,24 In the present Paper, we deduce a
model for the SOL plasma dynamics that, while being able to retain the
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proper kinetic effects, has the potential of describing the SOL at a
reduced cost with respect to full gyrokinetic simulations.

We take advantage of the fact that, according to experimental
results,25–27 SOL turbulence typically occurs on scale lengths that are
larger than the ion sound Larmor radius, qs ¼ cs=Xci with c2s ¼ Te=mi

the sound speed and Te the electron temperature, and identify the
small parameter

e � k?qs � 1; (1)

where k? � r? log/ � r? log n � r? logTe (while keeping k?Lp
� 1) with / the electrostatic potential and n the electron density. In
addition, we observe that typical turbulent time scales are ordered as

x
Xi
� e2; (2)

with x � @t log/ � @t log n � @t logTe, and the ion collision fre-
quencies as

�i
Xi
� e2; (3)

ensuring that the plasma remains magnetized.8

Based on the ordering in Eqs. (1)–(3), a drift-kinetic (DK) model
valid up to Oðe2Þ was developed to study the plasma dynamics in the
SOL in Ref. 28. By including the presence of large amplitude fluctua-
tions and a full Coulomb collision operator, the model in Ref. 28 states
the evolution of the guiding-center distribution function of the plasma
particles of species a, FaðR; vk; l; hÞ, where R is the particle guiding-
center position, vk ¼ v � b is the velocity parallel to the magnetic field
with v the particle velocity, b ¼ B=B is the magnetic field unit vector,
l is the magnetic moment, and h is the particle’s gyroangle. A numeri-
cally efficient implementation of the DK model was then derived by
expanding the vk and l dependence of the distribution function on a
Hermite and Laguerre polynomial basis, respectively. By projecting the
DK equation on a Hermite–Laguerre basis, the kinetic equation was
ported to a set of coupled three-dimensional equations that describe
the evolution of the moments of Fa. The approach was then general-
ized to include gyrokinetic fluctuations in Ref. 8.

While the model in Ref. 28 relies on a polynomial description of
the parallel and perpendicular velocity dependencies of the distribution
function, recent studies of magnetized plasma systems4,7,29,30 point out
that the vk dependence may require a more accurate description than
l. Indeed the linear study4 of the drift-wave instability using a full
Coulomb collision operator shows that considerably fewer moments
are necessary along the l than the vk direction to correctly estimate the
linear growth rate of this instability. The need of a refined kinetic
description of the plasma in the direction parallel to the magnetic field
arises also due to the need to properly describe the heat conductivity in
the parallel direction since this has an important impact on the evalua-
tion of the heat flux on the vessel walls.1 In addition, the sheath dynam-
ics might introduce a discontinuity of the distribution function
particularly in the parallel direction, where the vk dependence of the
electron distribution function at the entrance of the magnetic pre-
sheath might be discontinuous.31–33 As a consequence, while a descrip-
tion based on a basis expansion may be particularly efficient along the
l direction, as a low number of moments might be needed, it is worth
seeking different approaches to represent the parallel dynamics.

In the present paper, we leverage the DK model developed in Ref.
28 and propose an alternative approach to the solution of the DK

equation. We retain the Laguerre expansion of Fa along the l direc-
tion, while leaving vk as an independent variable. The DK equation is
then ported to a set of four-dimensional equations in the four-
dimensional ðR; vkÞ space for the perpendicular moments of Fa, more
precisely for the coefficients of the Laguerre expansion of Fa. Rather
than a decomposition on a polynomial basis such as in Ref. 28, the vk
dependence of the distribution function can then be treated using dif-
ferent numerical approaches such as finite difference, volume, or ele-
ment methods. Discontinuous Galerkin methods have the potential of
being particularly suited for the numerical discretization of the set of
equations we propose.10 We also express the collision operator in the
kinetic equation for the guiding-center distribution function, as well as
Poisson’s equation, as a function of the same set of perpendicular
velocity moments.

This paper is organized as follows. After the Introduction, Sec. II
recalls the main elements of the DK model introduced in Ref. 28. The
perpendicular moment expansion is then applied to the collisionless
part of the DK equation in Sec. III. The Coulomb collision operator is
introduced and expanded in perpendicular moments in Sec. IV.
Section V discusses Poisson’s equation coupled to the solution of the
kinetic equation. The Conclusions follow. In Appendix A, the aniso-
tropic version of the simplified Dougherty collision operator is derived.
Finally, in Appendixes B and C, the analytical expressions needed to
evaluate the Coulomb collision operator and its moments are
presented.

II. DRIFT-KINETIC MODEL FOR THE SCRAPE-OFF
LAYER

We briefly recall the main elements of the DK model derived in
Ref. 28 to study the SOL dynamics. We first state the main assump-
tions behind the DK model, we then derive the DK description of sin-
gle particle motion and, finally, we state the DK Boltzmann equation.

While we use the ordering in Eqs. (1)–(3), we allow for fluctua-
tions of / comparable to the electron temperature by ordering

e/
Te
� 1: (4)

We note that, from Eqs. (1) and (2), the E� B drift, vE
¼ E� B=B2 with E ¼ �r/, is small with respect to cs, i.e.,
jvEj=cs � e. In addition, we assume that the typical turbulent time
scales are comparable to the time scales associated with the E� B flow
and to the ones of the parallel flows vk � cs, therefore obtaining

x � k?jvEj � kkcs; (5)

where kk � rk/ � rkn � rkTe is the parallel wave-vector, which
can be related to its perpendicular counterpart via

kk
k?
� e: (6)

An ordering for the electron collision frequency can be derived
using Eq. (3) and the relation �i �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
ðTe=TiÞ3=2�e, yielding

�e
Xe
�

ffiffiffiffiffiffi
me

mi

r
Ti

Te

� �3=2

e2: (7)

We remark that the ion and electron temperatures are typically com-
parable in the SOL, i.e., Ti=Te � 1.34 This allows us to order
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�e=Xe �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
e2. Finally, electromagnetic fluctuations are

neglected, which restricts the present model to the case of b
¼ 8pnTe=B2 � 1, as well as frequencies below the shear Alfv�en
frequency.

We now turn to the equations of motion for a single plasma par-
ticle within the DK approximation. We start with the Lagrangian of a
single particle of species a ¼ fe; ig in the presence of an electromag-
netic field

Laðx; vÞ ¼ qaAðxÞ þmav½ � � _x � mav2

2
þ qa/ðxÞ

� �
: (8)

In order to take advantage of the DK ordering, we perform a coordi-
nate transformation from the phase-space coordinates ðx; vÞ to the
guiding-center coordinates ðR; vk;l; hÞ. For this purpose, we intro-
duce the right-handed set of orthonormal vectors ðe1; e2; bÞ and write
the particle velocity v as

v ¼ Uþ v0?; (9)

where U ¼ vkbþ vE and v0? ¼ v0?ð�sin he1 þ cos he2Þ with h the
particle gyroangle. The guiding-center position R is defined as

R ¼ x � qa; (10)

where qa ¼ jqajðe1 cos hþ e2 sin hÞ is the particle Larmor radius with
jqaj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mal=ðq2aBÞ

p
and l ¼ mav02?=2B is the magnetic moment.

We now expand the electrostatic potential / around R to first
order in e, by using the guiding-center transformation in Eq. (10),
yielding

/ðxÞ ¼ /ðRÞ þ qa � rR/ðRÞ þ Oðe2Þ: (11)

A similar expansion procedure is applied to the magnetic vector
potential A. The turbulent and gyromotion time scales are then
decoupled by defining the gyroaverage operator hvi acting on a quan-
tity v as

hvi ¼
ð2p
0

vðhÞ dh
2p
; (12)

where the integration is made at constant R. The gyroaverage operator
in Eq. (12) is applied to the Lagrangian in Eq. (8) yielding, up to OðeÞ,

hLai ¼ qaA
� � _R � qa/

� �
mav2k
2
þ l

ma
_h

qa
: (13)

In Eq. (13), we introduce the effective vector, A�, and scalar, /�,
potentials as

A� ¼ Aþma

qa
vkb̂ þ vE
� �

(14)

and

/� ¼ /þma

qa

v2E
2
þ lB

qa
; (15)

respectively. The term v2E ¼ vE � vE in Eq. (15), although formally being

Oðe2Þ, is retained since v2E � e2K2c2s with K ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ðme2pÞ

p
> 1

due to the sheath boundary conditions in the SOL that set
e/ � KTe.

The equations of motion for the guiding-center coordinates are
obtained by applying the Euler–Lagrange equations to the guiding-
center Lagrangian in Eq. (13). We derive for the guiding-center
velocity

_R ¼ Uþ B
XaB�k

� dU
dt
þ lrB

ma

� �
; (16)

and for the parallel acceleration

ma _vk ¼ qaEk � lrkBþmavE �
db̂
dt
�maa; (17)

together with _h ¼ Xa and _l ¼ 0. In Eqs. (16) and (17), we define the
convective derivative as d=dt 	 @t þ U � r.

We remark that the evaluation of the polarization drift is particu-
larly challenging from a numerical point of view. Analytical and
numerical treatments are described in the literature to approach the
treatment of this term (see, e.g., Ref. 35). We also note that in the elec-
trostatic limit considered here the total time derivative appearing in
the evaluation of db̂=dt reduces to d=dt ¼ U � r. Finally, we intro-
duce the modified magnetic field B� as B� ¼ r� A�, with its parallel
projection given by

B�k ¼ b̂ � B� ¼ Bþma

qa
b̂ � r � vkb̂ þ vE

� �
: (18)

The quantitya in Eq. (17) contains the higher-order nonlinear terms
that ensure phase-space conservation and the Hamiltonian character
of Eqs. (16) and (17),

a ¼ B
B�k

dU
dt

����
?
þ lr?B

 !
� r � U

Xa
: (19)

Having deduced the motion of a single particle, we now turn to
the collective description. As a starting point, we note that the distribu-
tion function faðx; vÞ of particle species a evolves according to the
Boltzmann equation, which can be written as

@fa
@t
þ v � @fa

@x
þ qa
ma

Eþ v � B
c

� �
� @fa
@v
¼ CaðfaÞ; (20)

where CaðfaÞ ¼
P

b Cabðfa; fbÞ is the collision operator, with the sum-
mation over b carried over all the particle species. In order to write
Boltzmann’s equation, Eq. (20), in guiding-center coordinates, we
define the guiding-center distribution function Fa as

FaðR; vk;l; h; tÞ ¼ fa xðR; vk; l; hÞ; vðR; vk; l; hÞ; t
� 	

; (21)

and we apply the chain rule to express the derivatives in Eq. (20) in
terms of guiding-center variables so as to obtain

@Fa
@t
þ _R � rFa þ _vk

@Fa
@vk
þ Xa

@Fa
@h
¼ CaðFaÞ: (22)

Finally, we apply the gyroaveraging operator to Eq. (22), yielding

@hFai
@t
þ _R � rhFai þ _vk �

@hFai
@vk

¼ hCaðFaÞi: (23)

The right-hand side of Eq. (23) can be further simplified by split-
ting the distribution function into a gyrophase dependent ~Fa and
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independent hFai parts as Fa ¼ hFai þ ~Fa and ordering ~Fa by sub-
tracting Eq. (23) from Eq. (22). Estimating the size of each term in the
resulting expression, one obtains ~Fa ’ e2hFai for both electrons and
ions.28 This allows us to neglect the gyrophase dependent part of the
distribution function in the collision term CðFaÞ and write the DK
equation as

@hFai
@t
þ _R � rhFai þ _vk �

@hFai
@vk

¼ hCaðhFaiÞi: (24)

III. PERPENDICULAR MOMENT EXPANSION
OF THE DISTRIBUTION FUNCTION

In this section, we focus on the left-hand side of the DK equation,
Eq. (24). We introduce a polynomial expansion of the distribution
function hFai for the variable l that allows us to port the DK equation
into a set of four dimensional equations in the variables R and vk,
hereby denoted as moment-hierarchy. We obtain the recursion rela-
tion associated with this set of equations by performing an expansion
of the distribution function in terms of Laguerre polynomials, LjðxÞ,
defined via the Rodrigues’ formula LjðxÞ ¼ ðex=j!Þdjðe�xxjÞ=dxj. The
Laguerre polynomials Lj satisfy the recursion relation

ðjþ 1ÞLjþ1ðxÞ ¼ ð2jþ 1� xÞLjðxÞ � jLj�1ðxÞ; (25)

while their derivatives can be computed using xdLjðxÞ=dx
¼ j½LjðxÞ � Lj�1ðxÞ�. The use of Laguerre polynomials is of interest
because the functions LjðlB=TÞ are orthogonal over the interval
½0;1Þ with respect to a Maxwellian weighting function of the form

f 0a ¼
Nae�s

2
?a

pv2th?a
; (26)

via the orthogonality relationð1
0
e�xLjðxÞLj0 ðxÞdx ¼ dj;j0 : (27)

In Eq. (26), the normalized perpendicular velocity s2?a is defined as

s?a ¼
v0?
vth?a

¼
ffiffiffiffiffiffiffiffi
lB
T?a

r
; (28)

with v0? the perpendicular velocity defined in Eq. (9) and T?a the per-
pendicular temperature

T?a ¼
1
Na

ð
v02?hFaipBdvkdl: (29)

We also define the normalized parallel shifted velocity,

ska ¼
vk � uka
vthka

; (30)

with v2thka ¼ 2Tka=ma, the parallel temperature

Tka ¼
1
Na

ð
ðvk � ukaÞ2hFai2pBdvkdl; (31)

the parallel fluid velocity

uka ¼
1
Na

ð
vkhFai

2pB
ma

dvkdl; (32)

and the guiding-center particle density

Na ¼
ð
hFai

2pB
ma

dvkdl: (33)

The guiding-center distribution function hFai is then expanded
in a Laguerre basis as

hFai ¼ f 0a
X1
j¼0

Nj
aðR; vk; tÞLjðs2?Þ: (34)

Where, using the ortogonality relation in Eq. (27), the coefficients Nj
a

can be computed via

Nj
a ¼

1
Na

ð
Ljðs2?aÞhFai

2pB
ma

dl: (35)

The coefficients Nj
a can be expressed by introducing the jth per-

pendicular moment jjvjjja of a quantity v ¼ vðR; l; vkÞ, defined as

jjvjjja ¼
ð
hFaivLj

2pB
ma

dl; (36)

via Nj
a ¼ jj1jjja=Na. Using this notation, the low order fluid moments

Na; uka;Tka, and T?a can then be written as Na ¼
Ð1
0 jj1jj

0
advk;

Nauka ¼
Ð1
0 jjvkjj

0
advk; NaTka ¼ ma

Ð1
0 jjðvk � ukÞ2jj0advk, and

NaTa? ¼
Ð1
0 jjlBjj

0
advk, respectively.

We now derive the set of equations that state the evolution of the
Nj
a moments. This is a recursion relation that we denote as moment

hierarchy. As a first step, we rewrite the equations of motion, Eqs. (16)
and (17), in terms of the ska and s2?a variables. This yields

_R ¼ U0a þ U�pa þ s2?aU
�
rBa þ s2kaU

�
ka þ skaðvthkabþ U�thpa Þ (37)

and

ma _vk ¼ Fka � s2?aFMa þ skaF
th
pa �maa: (38)

In Eq. (37), the lowest-order fluid velocity, U0a ¼ vE þ ukab̂,

and the fluid rB drift, U�rBa ¼ ðT?a=maÞb̂ �rB=X�aB, are intro-

duced, as well as the fluid curvature drift U�ka ¼ ð2Tka=maÞb̂ � k=X�a,

with k ¼ b̂ � rb̂, the fluid polarization drift U�pa ¼ ðb̂=X�aÞ
�d0U0a=dt, and the thermal polarization drift U�thpa ¼ vthkaðb̂=X�aÞ
�ðb̂ � rvE þ vE � rb̂ þ 2ukakÞ, where X�a ¼ qaB�k=ma and d0a=dt

¼ @t þ U0a � r. In Eq. (38), we introduce the parallel electric
force Fka ¼ qaEk þmavE � d0b̂=dt, as well as the mirror force
FMa ¼ T?ark lnB and the thermal polarization force Fth

pa

¼ mavthkab̂ � k � E=B.
The moment-hierarchy equation is obtained by projecting the

DK equation, Eq. (24), on the Laguerre polynomials Lj polynomials,
having expressed the distribution function according to Eq. (34) and
using the orthogonality relation in Eq. (27). This yields

@Nj
a

@t
þ _R0 � rNj

a þ _vk0
@Nj

a

@vk
þ Fj

a

þ
Xjþ1
l¼j�1

Mj
1l _vk1

@Nl
a

@vk
þ U�rBa � rNl

a

 !
¼ Cj

a; (39)
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with _R0 ¼ _R � s2?aU
�
rBa the v? independent part of the guiding-

center velocity, _vk0 ¼ _vk � s2?a _vk1 the v? independent part of the par-
allel acceleration and _vk1 ¼ �FMa=ma � ðT?a=B�kÞr?B � r � U=Xa.
Furthermore, we have introduced in Eq. (39) the fluid term Fj

a given by

Fj
a ¼

X
l

Nl
a

djl
dt

Na

B

� �
þ


jðNj

a � Nj�1
a Þ

@

@t
þ _R0 � r

� �

þ
X
l

Mj
2lN

l
aU
�
rBa � r

�
ln

T
B

� �
; (40)

where the convective derivative djl=dt is defined as djl=dt ¼ dl;j@t
þ dl;j _R0 � r þMj

1lU
�
rBa � r and the perpendicular phase mixing

terms as

Mj
1l ¼ ð2jþ 1Þdl;j � ðjþ 1Þdl;jþ1 � jdl;j�1 (41)

and

Mj
2l ¼ �ðjþ 1Þ2dl;jþ1 þ ð3j2 þ 3jþ 1Þdl;j
�3j2dl;j�1 þ jðj� 1Þdl;j�2: (42)

Finally, the collision term Cj
a is defined as

Cj
a ¼

1
Na

ð
hCaðhFaiÞiLjðs2?aÞ

2pB
ma

dl: (43)

We note that, due to the presence of the phase-mixing termsMj
1l

and Mj
2l , the evolution equation for the jth moment Nj

a is coupled its
lower Nj�2

a ;Nj�1
a , and higher order Njþ1

a counterparts. Such coupling
results from the terms containing the parallel and perpendicular gra-
dients of the magnetic field strength B in the guiding-center equations
of motion, Eq. (16), and from finite temperature gradients in Eq. (40).

The moment hierarchy derived in Eq. (39) describes the evolu-
tion of moments of the DK equation with a set of fluid-like, coupled
equations, similarly to the moment hierarchy in Eq. (4.9) of Ref. 28.
However, the coefficients Nj

a of Eq. (39) retain the dependence on the
parallel velocity, whereas Eq. (4.9) in Ref. 28 is integrated over the vk
coordinate and is therefore three-dimensional. The reduced dimen-
sionality of Eq. (4.9) of Ref. 28 is balanced out by the extra rank of the
coefficients Npj

a appearing in that model.

IV. COULOMB COLLISION OPERATOR

The Coulomb (or Landau) collision operator is a collision opera-
tor of the Fokker–Planck type, derived from first principles and valid
in a wide range of plasma parameters, where small-angle Coulomb
collisions are dominant. This operator can be written as
CaðfaÞ ¼

P
b Cabðfa; fbÞ, where36

Cab ¼
X3
i;j¼1

cab
2

@

@vi

@

@vj
fa
@2Gb

@vi@vj

 !
� 2 1þma

mb

� �
fa
@Hb

@vi

" #
; (44)

with cab 	 4pZ2
aZ

2
b lnK=m2

a where lnK is the Coulomb logarithm,
while Gb andHb are the Rosenbluth potentials, defined as

GbðvÞ ¼
ð
fbðv0Þjv � v0jdv0 (45)

and

HbðvÞ ¼
ð

fbðv0Þ
jv � v0j dv

0: (46)

The importance of retaining the full Coulomb collision operator has
been shown in Refs. 4 and 7 by considering linear modes such as the
electron plasma waves and drift waves. The growth rate and general
properties of these modes might be significantly different from the
ones of the Coulomb collision operator when simplified operators are
considered, in particular at typical collisionalities of the tokamak
boundary. However, interest in simpler operators remains as they are
able to provide the necessary diffusion in velocity space needed to per-
form numerical studies of low collisionality systems while satisfying
basic conservation properties. One of these operators is the anisotropic
version of the Dougherty operator.37 This is derived in Appendix A,
together with its main conservation properties.

As a first step in porting the Coulomb collision operator in the
framework of the four-dimensional model developed herein, we note
that an equivalent representation of the Coulomb collision operator
can be derived from Eq. (44) by using the relationships r2

vGb ¼ 2Hb

andr2
vHb ¼ �4pfb: This yields

Cab ¼
cab
2

@v@vfa : @v@vGbþ2 1�ma

mb

� �
@vfa � @vHb þ 8p

ma

mb
fafb


 �
:

(47)

Gyroaveraging the collision operator in Eq. (47) and rewriting it
in terms of guiding-center coordinates, we obtain

hCabi
cab
¼ 2m2

al
2

B2

@2hFai
@l2

@2hGbi
@l2

þ m2
al
B2

@2hFai
@l2

@hGbi
@l

þ 1
2
@2hFai
@v2k

@2hGbi
@v2k

þ m2
a

B2

@hFai
@l

@hGbi
@l

þ 4pma

mb
hFaihFbi

þmal
B

@2hFai
@vk@l

@2hGbi
@vk@l

þ m2
al
B2

@hFai
@l

@2hGbi
@l2

þ 1 � ma

mb

� �
2mal
B

@hFai
@l

@hHbi
@l

þ @hFai
@vk

@hHbi
@vk

" #
;

(48)

where we retain terms up to OðeÞ and therefore gyroaveraged quanti-
ties such as hFaFbi can be written as hFaihFbi since ~Fa ’ e2hFai. To
make further progress, we simplify the expression for hCabi by leverag-
ing the expansion of the distribution function over an orthogonal
basis. We first evaluate the Rosenbluth potentials, Gb andHb, and then
integrate the Coulomb collision operator over l in order to obtain an
expression for the collisional moments Cj

a in terms of moments Nj
a

ready to be used in the moment-hierarchy equation.
In order to perform the integrals in the Rosenbluth potentials

analytically, we first rewrite Gb and Hb in spherical coordinates using
an expansion for fa in irreducible polynomials and then perform a
basis transformation to a Hermite–Laguerre polynomial basis.
Following Refs. 38–40, the distribution function fa is expanded in irre-
ducible tensorial Hermite polynomials Plk

a ðvÞ as

fa ¼ faM
X
lk

Plk
a ðvÞ �Mlk

a ðx; tÞffiffiffiffiffi
rl
k

q ; (49)
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where faM is the shifted Maxwellian

faM ¼
nae�s

2
a

p3=2v2tha
; (50)

with sa ¼ ðv � uaÞ=vtha the normalized shifted particle velocity,
ua ¼

Ð
vfadv the fluid velocity, vtha ¼ 2Ta=ma the thermal velocity,

and Ta ¼ ðTka þ 2T?aÞ=3 the temperature. Furthermore, we define

the velocity momentsMlk
a as

Mlk
a ¼

1

na
ffiffiffiffiffi
rl
k

q ð
dvPlk

a fa: (51)

In Eq. (51), rl
k is a normalization factor

rl
k ¼

l!ðl þ kþ 1=2Þ!
2lðl þ 1=2Þ!k!

; (52)

and the polynomials Plk are defined as

PlkðvÞ ¼ Llþ1=2k ðv2ÞPlðvÞ; (53)

where Llþ1=2k are the generalized (associated) Laguerre polynomials,41

given by

Llþ1=2k ðxÞ ¼
Xk
m¼0

Llkmx
m; (54)

with coefficients

Llkm ¼
ð�1Þmðl þ kþ 1=2Þ!

ðk�mÞ!ðl þmþ 1=2Þ!m!
; (55)

and PlðvÞ are the totally symmetric and traceless tensors, defined as

PlðvÞ ¼ ð�1Þ
lv2lþ1

ð2l � 1Þ!!
@

@v

� �l
1
v
: (56)

In order to analytically compute the integrals present in the
Rosembluth potentials, Gb and Hb, we expand the function jv � v0j�1
in terms of Legendre polynomials PlðxÞ ¼ ½dlðx2 � 1Þl=dxl�=ð2l l!Þ as

1
jv � v0j ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ v02 � 2vv0n0

p ¼
X1
l¼0

vl<
vlþ1>

Plðn0Þ; (57)

where v< ¼ minðv; v0Þ and v> ¼ maxðv; v0Þ, while n0 ¼ v � v0=
ðjvjjv0jÞ is the cosine of the angle between the vectors v and v0. This
yields forHb

HbðvÞ ¼
X
l0;k;l

Ml0k
affiffiffiffiffi
rl0
k

q �
ð
fbMP

l0k
b

vl<
vlþ1>

Plðn0Þv2dn0dvdh; (58)

and a similar expression for Gb is obtained. The integration over the
angle h in Eq. (58) is performed using the following identity38 for the
irreducible polynomials Pl :ð2p

0
Plðv0Þdh0v̂ ¼ 2pv0lPlðn0ÞPlðv̂Þ; (59)

and the n0 integration is performed using the orthogonality relations
for the Legendre polynomials

ð1
�1

Plðn0ÞPnðn0Þdn0 ¼
dln

l þ 1=2
; (60)

and the integration over the speed variable v is performed by splitting
the cases v0 < v and v0 > v, and defining Ikþ ¼ 2

Ð sb
0 dv0v0ke�v

02
=
ffiffiffi
p
p

and Ik� ¼ 2
Ð1
sb

dv0v0ke�v
02
=
ffiffiffi
p
p

. This yields the following form for the
Rosenbluth potentials:

Hb ¼
nb
vthb

X
l;k

Xk
m¼0

Llkmffiffiffiffiffi
rl
k

q Mlk
a � PlðŝÞ
l þ 1=2

slb
I2ðlþmþ1Þþ
s2lþ1b

þ I2mþ1�

 !
; (61)

Gb¼nbvthb
X
l;k

Xk
m¼0

Llkmffiffiffiffiffi
rl
k

q Mlk
a �PlðŝÞ
lþ1=2 slb

� 1
2lþ3

I2ðlþmþ2Þþ
s2lþ1b

þs2bI2mþ1�

 !
� 1
2l�1

I2ðlþmþ1Þþ
s2l�1b

þI2mþ3�

 !2
4

3
5:

(62)

We now write the integrals in Eqs. (61) and (62) in a form suit-
able to express the gyroaveraged Rosenbluth potentials appearing in
Eq. (48) in terms of the moments Nj

a. For this purpose, we expand the
integrals in I2kþ and I2kþ1� in powers of s. First, we Taylor-expand the
integrand in I2kþ around s0 ¼ s as

e�s
02 ¼ e�s

2
X1
q¼0

ðs2 � s02Þq

q!
; (63)

yielding

I2kþ ¼
2e�s

2ffiffiffi
p
p

X1
q¼0

s1þ2kþ2q
ðk� 1=2Þ!

2ðkþ qþ 1=2Þ! : (64)

A similar procedure is applied to the integrand in I2kþ1� , which is
Taylor expanded around s0 ¼ 0, yielding

I2kþ1� ¼
Xk
j¼0

k!

j!
s2j

e�s
2ffiffiffi
p
p : (65)

This method yields the following expression for the gyroaveraged
Rosenbluth potentials:

hHbðsÞi ¼
Nbvthbk
vthb

X1
l;k¼0

n
lk
b h

lk
00; (66)

hGbðsÞi ¼ Nbvthbvthbk
X1
l;k¼0

n
lk
b g

lk
00: (67)

In Eqs. (66) and (67), we introduce the Hermite polynomials
HpðxÞ ¼ ð�1Þp exp ðx2Þdp exp ð�x2Þ=dxp, the fluid moments

n
lk
a ¼

2lðl!Þ2

ð2lÞ!ðl þ 1=2Þrl
k

Xlþ2k
p¼0

Xkþbl=2c
j¼0

Tpj
lk

ð1
�1

HpðskÞNj
adsk; (68)

and the velocity-dependent terms

hlk00 ¼
X1
n¼0

hlknb�n? s2n? e
�b�1? s2? (69)
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and

glk00 ¼
X1
n¼0

glknb�n? s2n? e
�b�1? s2? ; (70)

with bk ¼ v2thb=v
2
thbk ¼ Tb=Tkb and b? ¼ v2thb=v

2
thb? ¼ Tb=T?b as

well as the coefficients Tpj
lk , which allow us to convert between

Hermite–Laguerre and Legendre–Laguerre polynomials via

PlðnÞslLlþ1=2k ðs2Þ ¼
Xlþ2k
p¼0

Xkþbl=2c
j¼0

Tpj
lkHpðskÞLjðs2?Þ; (71)

with the inverse transform given by

HpðskÞLjðs2?Þ ¼
Xpþ2j
l¼0

Xjþbp=2c
k¼0

T�1ð Þlk
pjP

lðnÞslLlþ1=2k ðs2Þ: (72)

An analytically closed formula for Tpj
lk and ðT�1Þlkpj is given in Ref. 28.

We note that the Tpj
lk and ðT�1Þlkpj coefficients depend only on the par-

ticle species and Tk=T? ratio and can, therefore, be pre-computed in
the numerical implementation of the model proposed herein.

We now derive the expression for the perpendicular moments Cj
a

of the Coulomb collision operator in Eq. (43) in terms of moments Nj
a

of the guiding-center distribution function. We first rewrite the veloc-
ity derivatives of the Rosenbluth potentials hlk00 and g

lk
00 as

@iþjhlk00
@sik@ðs2?Þ

j ¼
X1
n¼0

hlknij b�n? s2n? e
�b�1? s2? (73)

and

@iþjglk00
@sik@ðs2?Þ

j ¼
X1
n¼0

glknij b�n? s2n? e
�b�1? s2? : (74)

with the coefficients hlknij and glknij given in Appendix B.
The projection of the Coulomb collision operator on the

Laguerre basis can then be written in the following form:

Cj
ab ¼ �̂ab

Nb

nb

X2
i¼0

X1
lkp

@iNp
a ðskaÞ
@sika

n
lk
b c

lkpj
i

þ 4�̂ab
ma

mb

X1
np

Np
a ðskaÞNn

b ðsbkÞDn
pj; (75)

with �̂ab ¼ �abvthb ¼ cabnbvthb=v
3
tha and

c
lkpj
i ¼

X1
n¼0

X2
rs¼0

anpji;rsh
lkn
rs þ bnpji;rsg

lkn
rs ; (76)

where the numerical coefficients anpji;rs; b
npj
i;rs are given by

anpj0;01 ¼ �
4h3=2b?

b1=2
k

1�ma

mb

� �
ð1þ pÞ Cn

pþ1;j � Cn
pj

� 

; (77)

bnpj0;01 ¼ �4
h1=2a?b?

b1=2
k

ðpþ 1ÞCn
pþ1;j; (78)

bnpj0;02 ¼ 4
b2
?h3=2

b1=2
k

ðpþ 1Þ
�
2ðpþ 2Þ Cn

pþ2;j � 2Cn
pþ1;j þ Cn

pj

� 

þCn

pþ1;j � Cn
p;j

�
; (79)

anpj1;01 ¼ a1=2k 1�ma

mb

� �
Cn
pþ1;j; (80)

bnpj1;11 ¼ 2b?a1=2k ðpþ 1Þ Cn
pþ1;j � Cn

pj

� 

; (81)

bnpj2;20 ¼
1
2
h1=2akb

1=2
k Cn

p;j: (82)

In addition, the integral terms Cm
pj and Dm

pj that result, respectively,
from the product between Fa and the Rosenbluth potentials and from
the product hFaihFbi, are defined as

Cm
pj ¼

ð1
0

b�m? s2mb?Lpðs2?aÞLjðs2?aÞe�b�1? s2b?�s
2
?ads2?a (83)

and

Dm
pj ¼

ð1
0
Lpðs2?aÞLpðs2?aÞLmðs2b?Þe�s

2
b?�s

2
?ads2?a: (84)

The expressions for Cm
pj and D

m
pj are reported in Appendix C and, since

they depend only on the particle species and Tk=T? ratio, can be pre-
computed. For convenience, the dimensionless quantities h; ak;? are
introduced, which are defined as h ¼ v2tha=v

2
thb; a? ¼ Ta=Ta?, and as

ak ¼ Ta=Tak.

V. DRIFT-KINETIC POISSON’S EQUATION.

The electric field appearing in the DK equation, Eq. (24), and
subsequently in the moment-hierarchy equation, Eq. (39), is evaluated
using Poisson’s equation, which can be written as

r2/ ¼ �4p
X
a

qa

ð
fadv: (85)

In order to rewrite Poisson’s equation in terms of moments Nj
a of

the guiding-center distribution function Fa, we express the velocity
space volume element in Eq. (85) as dv ¼ dðx � R
�qÞB�kdvkdldhdR=ma, and we integrate Eq. (85) over R and h.

This allows us to rewrite the Poisson equation as

r2/ ¼ �4p
X
a

qa

ð
hFaðx � q;l; vk; hÞi

2pB�k
ma

dvkdl: (86)

Introducing the Fourier-transform of the distribution function
Fak ¼ Fakðk; vk;l; hÞ, defined via Fa ¼

Ð
dkFake�ik�R, and the

Jacobi–Anger expansion

eik�q ¼ J0ðk?qÞ þ 2
X1
l¼1

ilJlðqk?Þ cos lh; (87)

with i the imaginary unit, we obtain the following form for the
Poisson’s equation:

r2/ðxÞ ¼ �4p
X
a

qa

ð
dvkdldh

B�k
m

� C0 Fak½ � þ 2
X1
l¼1

ilCl Fak cos lh½ �
 !

; (88)
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with the Fourier–Bessel operator Cl½f � defined as

Cl f ðkÞ½ � ¼
ð
Jlðk?qÞf ðkÞe�ik�xdk: (89)

We now consider the DK limit of Poisson’s equation, Eq. (88). As
pointed out in Ref. 28, due to the asymptotic form of the Bessel func-
tion Jl for small arguments JlðxÞ � xl , and the fact that
Fa ’ hFai þ Oðe2Þ, only the zeroth order function J0 is needed.
Furthermore, J0 can be written in terms of Laguerre polynomials by
making use of the identity7,8,29

J0ðk?qÞ ¼
X1
n¼0

Knðk?qth?aÞLnðs2?Þ; (90)

with qth?a ¼ vth?a=Xa and Kn given by

Knðqth?ak?Þ ¼
1
n!

k?qth?a
2

� �2n

e�
k?qth?a

2

� 
2
: (91)

Equations (90) and (91) allow us to decouple the spatial dependence
in J0 from its velocity dependence.

We now note that KnðxÞ � x2n for x� 1. Therefore, we retain
the n¼ 0 and n¼ 1 terms in Eq. (90) for consistency with the OðeÞ
ordering adopted in the rest of the model. We also expand both K0

and K1 up toOðe2Þ, yielding

r2/ðxÞ ¼ �4p
X
a

qaNa

ð
dvk

B�k
B

� N0
a �

q2
th?a
4
r2
?N

0
a þ

q2
th?a
4
r2
?N

1
a

� �
: (92)

The final form of the DK Poisson’s equation is obtained by noting that
B�k=B ¼ 1þ OðeÞ. This allows us to write Eq. (92) as

r2/ðxÞ ¼ �4p
X
a

qaNa

�
ð
dvk �

B�k
B
N0
a �

q2
th?a
4
r2
?N

0
a þ

q2
th?a
4
r2
?N

1
a

� �
:

(93)

We remark that the Poisson equation in Eq. (93) reduces to the one in
Ref. 28 when the integration over vk is carried out.

VI. CONCLUSIONS

In the present work, a four-dimensional moment model suit-
able to describe the plasma dynamics in the SOL region of mag-
netic confinement fusion devices at arbitrary collisionality is
derived. The model is based on the moment-hierarchy equation,
Eq. (39). This equation is used to evolve the moments of the gyro-
averaged distribution function hFai, and is obtained by projecting
the collisional DK equation, Eq. (24), over a Laguerre basis in the
perpendicular velocity space, while vk remains an independent var-
iable of the resulting system of equations. A description using a
Laguerre polynomial basis allows us to express analytically the
nonlinear Coulomb collision operator, as well as the DK Poisson’s
equation, in terms of perpendicular velocity moments of hFai.

While Eq. (39) is written for an infinite number of moments and is
valid for distribution functions arbitrarily far from equilibrium, in

practice, a closure scheme must be provided in order to reduce the
model to a finite number of equations. The semi-collisional closure (see,
e.g., Refs. 28, 42, and 43) can provide the formalism to evaluate such a
closure, allowing the description of the necessary kinetic effects at an
arbitrary level of collisionality. We remark that, leveraging the work in
Ref. 8, the model derived here can be used as a starting point for the
development of a four-dimensional gyrokinetic moment-hierarchy.
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APPENDIX A: ANISOTROPIC DOUGHERTY
COLLISION OPERATOR

In addition to the Coulomb collision operator, we consider
here the Dougherty collision operator, a simplified collision opera-
tor that is of interest for implementation in the weakly collisional
case. We generalize this operator to retain temperature anisotropy
effects and we port it in the framework of the four-dimensional
model developed herein. The Dougherty operator,44 CD, is defined
as

CD fað Þ ¼ �a
@

@v
v � uað Þfa þ

Ta

ma

@fa
@v


 �
; (A1)

where ua ¼
Ð
vfadv=na is the fluid velocity. It can be shown that the

operator in Eq. (A1) conserves particles, momentum and energy,
satisfies an H-theorem and vanishes if fa is a Maxwellian.
Furthermore, when written in terms of guiding-center variables
ðR; vk;l; hÞ and applied to an isotropic Hermite–Laguerre basis
Hpj ¼ Hp½ðvk � ukaÞ=vtha�LjðlB=TaÞ with v2tha ¼ 2Ta=ma, the
Dougherty operator in Eq. (A1) yields

CDðHpjÞ ¼ ��ðpþ 2jÞHpj; (A2)

showing that a Hermite–Laguerre polynomial basis is an eigenfunc-
tion of the Dougherty operator.

To generalize the Dougherty collision operator CD to an aniso-
tropic Hermite–Laguerre basis Hpðs2kaÞLjðs2?aÞ, we first rewrite Eq.
(A1) in a covariant form, by replacing the differential operators by
their covariant counterparts, yielding

CD ¼ �ð3fa þ xifa;i þ Dijfa;i;jÞ; (A3)

with v � ua ¼ x the friction vector and Dij ¼ dijTa=ma the second-
order covariant diffusion tensor. The first and second covariant
derivatives in Eq. (A3) of the scalar function f are defined as
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f;i ¼
@f
@ni

(A4)

and

f;i;j ¼
@2f

@ni@nj
� Ck

ij
@f

@nk
; (A5)

respectively, with Ck
ij the Christoffel symbols of the second kind for

the new coordinate system nðx; vÞ. For the case of velocity guiding-
center coordinates ðl; vk; hÞ, the symbols Ck

ij can be derived from
the guiding-center metric-tensor gij,

gij ¼

B
2mal

0 0

0
2lB
ma

0

0 0 1

2
66664

3
77775; (A6)

using the following expression for Ck
ij:

Ck
ij ¼

1
2
gkl

@gil
@nj
þ @gjl
@ni
� @gij
@nl

 !
: (A7)

This yields

Cl
ij ¼

� 1
2l

0 0

0 �2l 0

0 0 0

2
6664

3
7775 (A8)

and

Ch
ij ¼

0
1
2l

0

1
2l

0 0

0 0 0

2
66664

3
77775; (A9)

as well as C
vk
ij ¼ 0.

To generalize the diffusion tensor Dij to the anisotropic case,
we start by considering the following form for Dij in the Cartesian
coordinates (x, y, z):

Dij ¼ 1
ma

Tx 0 0

0 Ty 0

0 0 Tz

2
64

3
75; (A10)

where Tx ¼
Ð
mv2x=2fdv, and analogous definitions apply to Ty and

Tz. By identifying the z axis with the direction of the magnetic field,
we consider Tx ¼ Ty ¼ T? and Tz ¼ Tk. By performing the coordi-
nate transformation from Cartesian to the DK coordinates
ðl; vk; hÞ, we obtain

Dij ¼

2T?l
B

0 0

0
Tk
ma

0

0 0
T?
2lB

2
66666664

3
77777775
: (A11)

The anisotropic Dougherty collision operator in guiding-center
coordinates can then be written as

hCD Fa½ �i ¼ �


3hFai þ vk � ukað Þ

@hFai
@vk

þ 2l
@hFai
@l

þ
Tka
ma

@2hFai
@v2k

þ 2T?a
B

@

@l
l
@hFai
@l

� ��
: (A12)

The collision operator defined in Eq. (A12) conserves particle,
momentum, and energy. It vanishes for a bi-Maxwellian faM of the
form

faM ¼
nama

p3=2vthka2T?a
exp �

ðvk � ukaÞ2

v2thka
� v2?
v2th?a

 !
; (A13)

and it can be shown that it satisfies the H-theorem for a near-
Maxwellian distribution.

Finally, the perpendicular moments Cj
a of the anisotropic

Dougherty collision operator can be derived by plugging Eq. (A12)
in Eq. (43), yielding

Cj
a ¼ � ð1� 2jÞNj

a þ sk
@Nj

a

@sk
þ 1
2
@2Nj

a

@s2k

" #
: (A14)

APPENDIX B: COEFFICIENTS OF THE ROSENBLUTH
POTENTIALS

We write the coefficients hlknij and glknij of the expansion of the
Rosenbluth potentials, H and G, needed to compute the expressions
in Eq. (73). For the H potential, we write

hlknij ¼
X2
u¼1

hlkniju ; (B1)

where

hlknij1 ¼
Xk
m¼0

Xbl=2c
j¼0

X1
q¼0

PjlLlkmffiffiffi
p
p ðmþ l þ 1=2Þ!

ðmþ l þ qþ 3=2Þ!

�
jþ qþmþ 1

n

 !
e�b�1k s2k

� fijðjþ qþmþ 1� n; l þ 2qþ 2m� 2nþ 2Þ;

hlknij2 ¼
Xk
m¼0

Xbl=2c
j¼0

Xm
q¼0

PjlLlkmffiffiffi
p
p m!

q!

�
jþ q

n

 !
e�b�1k s2k

� fijðjþ q� n; l þ 2q� 2nÞ;

Similarly, for the G potential, we expand

glknij ¼
X4
u¼1

glkniju ; (B2)

where the coefficients glkniju are given by
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glknij1 ¼
Xk
m¼0

Xbl=2c
j¼0

X1
q¼0

PjlLlkm
ð2l þ 3Þ

ffiffiffi
p
p ðmþ l þ 3=2Þ!
ðmþ l þ qþ 5=2Þ!

�
jþ qþmþ 2

n

 !
e�b�1k s2k

� fijðjþ qþmþ 2� n; l þ 2qþ 2m� 2nþ 4Þ;

glknij2 ¼
Xk
m¼0

Xbl=2c
j¼0

Xm
q¼0

PjlLlkm
ð2l þ 3Þ

ffiffiffi
p
p m!

q!

�
jþ qþ 1

n

 !
e�b�1k s2k

� fijðjþ qþ 1� n; l þ 2qþ 2m� 2nþ 2Þ;

glknij3 ¼
Xk
m¼0

Xbl=2c
j¼0

X1
q¼0

PjlLlkm
ð1� 2lÞ

ffiffiffi
p
p ðmþ l þ 1=2Þ!
ðmþ l þ qþ 3=2Þ!

�
jþ qþmþ 2

n

 !
e�b�1k s2k

� fijðjþ qþmþ 2� n; l þ 2qþ 2m� 2nþ 4Þ;

glknij4 ¼
Xk
m¼0

Xbl=2c
j¼0

Xmþ1
q¼0

PjlLlkmðmþ 1Þ!
ð1� 2lÞ

ffiffiffi
p
p

q!

�
qþ j

n

 !
e�b�1k s2k

� fijðjþ q� n; l þ 2qþ 2m� 2nÞ:

In the previous expressions, the function fij is introduced

f00ðx; yÞ ¼
syk

by=2
k

;

f01ðx; yÞ ¼
sy�2k

by=2�1
k

x �
s2k
bk

" #
;

f10ðx; yÞ ¼
sy�1k

by=2
k

y � 2
s2k
bk

" #
;

f11ðx; yÞ ¼
sy�3k

by=2�1
k b?

xðy � 2Þ � ð2x þ yÞ
s2k
bk
þ 2

s4k
b2
k

" #
;

f02ðx; yÞ ¼
sy�4k

by=2�2
k b2

?
x �

s2k
bk

 !2

� x

2
4

3
5;

f20ðx; yÞ ¼
sy�2k

by=2
k

yðy � 1Þ � 2ð2y þ 1Þ
s2k
bk
þ 4

s4k
b2
k

" #
;

together with the coefficients Pli, defined as

Pli ¼
ð�1Þi

2l
l
i

� �
2l � 2i

l

� �
: (B3)

APPENDIX C: LAGUERRE INTEGRALS

We compute the Laguerre integrals Cm
pj and Dm

pj appearing in
Eq. (75) by following two different approaches. The first approach
is based on recursive relations between higher-order and lower-
order integrals, while in the second approach the integrals are com-
puted directly using hypergeometric functions. In order to simplify
the derivation in both approaches, we rewrite the integrals in Eqs.
(83) and (84) using the fact that s2b? ¼ hb?s

2
a?=a?. We then note

that the integrals Cm
pj and Dm

pj in Eqs. (83) and (84) are only a func-
tion of x ¼ ha�1? and y ¼ ha�1? b?, respectively, yielding

Cm
pj ðxÞ 	

ð1
0
xmzmLpðzÞLjðzÞe�ð1þxÞzdz; (C1)

Dm
pjðyÞ 	

ð1
0
LpðzÞLjðzÞLmðyzÞe�ð1þyÞzdz: (C2)

We first consider the approach based on recursive relations.
We leverage the work in Refs. 45–48, where closed analytical
expressions for Eqs. (C1) and (C2) with x ¼ y ¼ 1 are obtained.
We start by computing C0

pjðxÞ, performing the change of variables
z0 ¼ ð1þ xÞz and using the transformation rule for Laguerre
polynomials

LnðxzÞ ¼
Xn
k¼0

n
n� k

� �
xkð1� xÞn�kLkðzÞ: (C3)

From Eq. (C3), it is straightforward to obtain that

C0
pjðxÞ ¼

xpþj

ð1þ xÞpþjþ1
Xminðp;jÞ

k¼0

p
p� k

� �
j

j� k

� �
x�2k: (C4)

To calculate Cm
pj , for m> 0, one can make use of the recursion rela-

tion for Laguerre polynomials in Eq. (25) to compute a recurrence
formula between Cmþ1

pj and integrals of lower order in the index m.
We generalize the procedure outlined in Ref. 48 for the case of
x¼ 1, to an arbitrary x. We thus have

Cmþ1
pj ðxÞ ¼ ð1þ 2pÞxCm

pjðxÞ � ðpþ 1ÞxCm
pþ1;jðxÞ � pxCm

p�1;jðxÞ;
(C5)

with the boundary values of

Cm
p0 ¼ Cm

0p ¼
Xminðp;mÞ

k¼0

p
p� k

� �
m

m� k

� �
m!ð�1Þkxpþm�k

1þ xð Þpþmþ1
: (C6)

To compute Dm
pj for m> 0, it is also possible to derive a recursion

relation that involves integral of lower order in m. Using again Eq.
(25), we obtain

ðmþ 1ÞDmþ1
pj ðyÞ ¼ 2mþ 1� yð2pþ 1Þ½ �Dm

pjðyÞ
�mDm�1

pj ðyÞ þ yðpþ 1ÞDm
pþ1;jðyÞ þ ypDm

p�1;jðyÞ;
(C7)

where

D0
pjðyÞ ¼ C0

pjðyÞ (C8)

with the boundary values of
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Dm
p0ðyÞ ¼ Dm

0pðyÞ ¼
yp

ð1þ yÞpþmþ1
ðpþmÞ!
p!m!

: (C9)

As a second approach, we note that the integrals Cm
pj and Dm

pj
can also be obtained as a special case of the general expression for
the integral of k Laguerre polynomials,49 i.e.,ð1

0
xq�1e�rxLn1ðk1xÞ…LnkðkkxÞdx

¼ r�qCðqÞFðkÞA q;�n1;…;�nk; 1;…; 1|fflfflffl{zfflfflffl}
ktimes

;
k1
r
;…;

kk
r

0
@

1
A; (C10)

where q;r > 0 and FðkÞA is the first Lauricella hypergeometric func-
tion of k variables, which is defined by

FðkÞA a; b1;…; bk; c1;…; ck; x1;…; xkð Þ

¼
X1
m1¼0

…
X1
mk¼0

ðaÞm1þ���þmk
ðb1Þm1

� � � � � ðbkÞmk

ðc1Þm1
� � � � � ðckÞmk

m1!…mk!
xm1
1 …xmk

k ;

(C11)

where the Pochhammer symbol ðqÞn denotes the rising factorial,

ðqÞn ¼ qðqþ 1Þ…ðqþ n� 1Þ ¼ Cðqþ nÞ
CðqÞ : (C12)

The k¼ 2 Lauricella function is also known in the literature as the
Appell hypergeometric function F2.

50 It is worth mentioning that,
although the Lauricella function is defined in general only for
jx1j þ � � � þ jxkj < 1, in our specific case the integral is well defined
and converges for any value of m, p, j, and x> 0, since the argu-
ments b1;…; bk are always negative and equal to �1, and therefore
the sums in Eq. (C11) are bounded. Finally, leveraging the results of
Ref. 49, we write the integrals Cm

pj and Dm
pj as

Cm
pjðxÞ ¼

Cðmþ 1Þxm

ð1þ xÞmþ1
F2 mþ 1;�p;�j; 1; 1; 1

1þ x
;

1
1þ x

� �
(C13)

and

Dm
pjðyÞ ¼

1
1þ y

Fð3ÞA 1;�j;�m;�p; 1; 1; 1; 1
1þ y

;
y

1þ y
;

1
1þ y

� �
:

(C14)

It can be shown that Eqs. (C13) and (C14) are equivalent to
Eqs. (C5) and (C7), respectively, by verifying that they reduce to
Eq. (C4) when m¼ 0 and that they satisfy the recursion relation in
Eqs. (C5) and (C7) for m> 0.
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