QUALITY EVALUATION OF STATIC POINT CLOUDS ENCODED USING MPEG CODECS
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ABSTRACT

This paper presents a quality evaluation study of point cloud
codecs that have been recently standardised by the MPEG
committee. In particular, a subjective experiment to assess
their performance in terms of bitrate against visual quality
is designed and realized in four independent laboratories.
The experimental setup of each laboratory varies; yet, the
obtained subjective scores exhibit high inter laboratory corre-
lation, confirming that the adopted assessment protocol is ro-
bust to equipment selection and viewing conditions, ensuring
reliability and facilitating repeatability. Our study confirms
the superior compression performance of the MPEG V-PCC,
when compared to MPEG G-PCC, in the case of static con-
tents. Finally, results from a benchmark of the most popular
objective quality metrics using the obtained subjective scores
as ground truth, reveal that the point2plane with mean square
error is the most accurate quality predictor, closely followed
by the point2point also using mean square error as distance
measure.

Index Terms— Point Cloud, Subjective Quality Evalua-
tion, Benchmarking, Coding

1. INTRODUCTION

Point clouds have recently attracted a strong interest in vol-
umetric representation of visual information. Such contents
commonly demand huge amounts of data; thus, efficient com-
pression solutions are essential. Considering lossy encoding,
reliable quality models are vital to assess the perceived dis-
tortions that ordinarily result from bitrate reductions.

In the literature, there are several studies targeting at the
definition of frameworks and protocols for subjective qual-
ity evaluation of point clouds. Simplistic degradations with
geometry-only contents are attempted in [1, 2], compression
artifacts using prior encoding schemes are evaluated in [3-5],
whereas in [6, 7], the contents are compressed using a sin-

gle codec. Current efforts account for a wider range of high-
performing codecs, such as the ones reported in [8, 9].

In this paper, a subjective and objective quality evalua-
tion campaign using the state-of-the-art MPEG point cloud
codecs, namely, Video-based Point Cloud Compression (V-
PCC) and Geometry-based Point Cloud Compression (G-
PCC) is conducted, in four remote test laboratories. The
objective is the establishment of a reproducible and reliable
quality evaluation framework for static point cloud contents.

2. SUBJECTIVE QUALITY ASSESSMENT

2.1. Contents

In this study, a dataset of 6 static point clouds is used with
both texture and geometry information, namely, Long Dress,
Loot, Soldier, Red and Black, which can be found in [10, 11]
and Ricardol0 and Sarah9, available at [10]. The models
represent human figures with up to about 1 million points.
Frontal views of the reference contents are illustrated in
Fig. 1. These point clouds are encoded using the MPEG
G-PCC and V-PCC codecs, as described below.

2.2. MPEG G-PCC encoding

In MPEG G-PCC [12], there are two encoding modules in-
tegrated to compress geometry information, namely, Octree
and Triangle Soup (TriSoup) [13, 14]. The first approach
is based on an Octree decomposition, which is regulated
through the positionQuantizationScale parameter (herein re-
ferred as Depth). The second approach is based on a surface
reconstruction using triangular primitives, after enclosing the
model in an octree structure. The octree can be adjusted
through the Depth parameter, while the size of the block
on which the triangular surface approximation is applied,
is determined through the trisoup_node_size_log2 parame-
ter (herein referred as Level). Octree-based encoding leads
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Fig. 1: Frontal views of each point cloud.

to regular down-sampling of the input points, whereas the
TriSoup-based encoding leads to the presence of holes in the
form of triangles. The latter approach is advised to be used
only with high-density point clouds.

The geometry of a model is initially encoded, using any
of the above solutions, and then decoded in order to define
the shape over which the color will lie. In particular, the
color attributes are associated to the output points (after ge-
ometric compression) through a re-colouring step that takes
place and uses the color values of the original model. The
color information can then be encoded using two different
approaches, namely, RAHT [15], and Prediction-plus-Lifting
(i.e., Lifting). The first alternative is based on the 3D Haar
transform, whereas the second is based on prediction of a
color value from its neighbors. In [8], it was shown that by
using the MPEG point cloud coding Common Test Condi-
tions (CTC) [16], the observers tend to prefer Lifting over the
RAHT counterpart. Thus, in this study we only consider the
Lifting codec, in order to reduce the parameter space of our
experiment, while retaining the most diverse types of artifacts.

Five out of six encoding configurations specified in the
CTC (RO1-R06) are used to encode the contents using the G-
PCC version 7 [17]. Specifically, RO1, R02, R04, RO5 and
RO6 are employed, and define 5 quality levels (Q01-QO05) that
span from very low to very high. Every content is encoded us-
ing the exact settings specified in the CTC, except of Sarah9
with the TriSoup module. In the latter case, a Depth value
of 0.5 is used to account for the higher sparsity of this par-
ticular content, instead of 1 that is applied on the rest of the
contents. Yet, the same Level values are employed for the cor-
responding quality levels. Moreover, it should be noted that
the seq_lod and the seq_dist2 parameters of the Lifting are set

as 12 and 3, respectively, for every content.

2.3. MPEG V-PCC encoding

In MPEG V-PCC [13, 18], point clouds are encoded after be-
ing projected onto a set of planes (usually six), followed by
2D encoding of the projections. The projections are repre-
sented by three sets of information; texture patches, depth
information and occupancy maps. The texture patches are
packed to create a 2D image with as few pixels as possible
which is then encoded using legacy video encoding meth-
ods. The distances from the projection plane to the points
that project onto each texture patch pixel are represented by
depth maps, also structured as patches matching the texture
patches. The depth information is encoded using 2D video en-
coding methods too. The occupancy map is a 2D binary field
that indicates which pixels in the 2D patch composite images
(texture and depth) contain meaningful information and is en-
coded using a form of spatial quantization together with raster
scanning and entropy encoding. The current MPEG V-PCC
test model, TMC2 [19], uses HEVC to encode the sequence
of projection images but other video encoders could be used.

Version 8 of the reference software is used with encoding
parameters defined in the MPEG CTC document [16]. The
selected encoding condition is C2, Lossy Geometry — Lossy
Attributes, and since we are encoding static point clouds, the
coding mode is All Intra (AI). Six rate points are selected,
five borrowed from the MPEG CTC (R01-R05 from low to
high quality) and an additional one defined on purpose for
this study to yield a lower quality than RO1 and comparable
to the lowest quality rate point used in the G-PCC.

2.4. Evaluation Methodology

The subjective experiments were conducted in 4 different lab-
oratories: University of Beira Interior (UBI), Covilha, Portu-
gal, University of Coimbra (UC), Coimbra, Portugal, Univer-
sity North (UNIN), VaraZzdin, Croatia and University of Tech-
nology Sydney (UTS), Australia. The conditions of every test
environment were adjusted to follow the ITU-R Recommen-
dation BT.500-13 [20]. The equipment and viewing condi-
tions used in each laboratory are described in Table 1. A pas-
sive subjective evaluation methodology was applied using a
customized version of the MPV video player [21]. The eval-
uated point clouds were rotated around a vertical axis passing
through the center of each model in video sequences of 60
fps with a total duration of 12 seconds. Participants provided
their scores after the completion of the playback animation.
The simultaneous Double Stimulus Impairment Scale
(DSIS) test method was adopted with a 5-level rating scale
(1 - very annoying, 2 - annoying, 3 - slightly annoying, 4 -
perceptible, but not annoying, 5 - imperceptible), including a
hidden reference for sanity check. Both the reference and the
degraded stimuli were simultaneously shown to the observer



side-by-side, and every subject rated the visual quality of the
processed with respect to the reference, which was clearly
identified. To avoid biases, in half of the individual evalu-
ations, the reference was placed on the right and vice-versa
for the rest. Also, particular care was taken to not present
the same content consecutively. At the beginning of each
individual evaluation, a training session took place in order to
familiarize the subjects with the artifacts under assessment.
A total of 96 scores were obtained per evaluation session,
considering that each subject assessed 6 test models degraded
by 3 compression schemes at 5 quality levels, plus hidden ref-
erences. Outlier detection based on the ITU-R Recommenda-
tion BT.500-13 [20] was applied on the quality scores of each
test laboratory, separately. In every case, no outliers were
found. The Mean Opinion Scores (MOS) and the 95% Con-
fidence Intervals (Cls), assuming a Student’s t-distribution
were computed on every set of scores. In Table 2, we report
observers demographical information, per test laboratory.

3. RESULTS

3.1. Subjective Scores

In Figure 2, the MOS against the achieved bitrates for all en-
coded stimuli are depicted per content, after aggregating the
scores collected from each test laboratory. The bitrate is mea-
sured in bpp and is computed as the total number of bits re-
quired for a particular stimulus divided by the number of input
points from the corresponding content. The scores are pooled
together, given that the MOS obtained from the test laborato-
ries are strongly correlated, as will be confirmed in the next
section.

3.2. Correlation between Subjective Scores

The Pearson Correlation Coefficient (PCC), the Spearman
Rank Order Correlation Coefficient (SROCC), the Root-

Table 1: Equipment information and viewing distance per test
laboratory.

[ Monitor Inches  Resolution  View Distance
UBI Eizo ColorEdge 31.17 4096x2160 1.2m
CG318-4K (£15 cm)
ucC Monitor: Sony 49” 3840x2160 1.8 m
KD-49X8005C (FV 430 cm)
UNIN Sony TV 557 3840x2160 1.5m
KD-55x8505C (FV 415 cm)
UTS Eizo ColorEdge 31.17 4096x2160 1.2m
CG318-4K (£15 cm)

Table 2: Subjects information per test laboratory.

Males Females  Overall Age Average
span age
UBI 7 9 16 19-32 22
uc 7 8 15 18-54 28
UNIN 10 5 15 19-59 29
UTS 21 6 27 21-47 32
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Fig. 2: Subjective scores pooled across test laboratories
against bitrates for every codec.

Mean Squared Error (RMSE) and the Outlier Ratio (OR)
are used to measure the linearity, monotonicity, accuracy,
and consistency between the subjective scores obtained from
each test laboratory, respectively. In particular, performance
indexes considering every pair combination are presented in
Table 3, without applying any fitting function and after linear
regression. High correlation is observed in each case, with
PCC and SROCC values always higher than 0.97. A sample
of these results can be visually confirmed in Figure 3, where
scatter plots of the MOS between different test laboratories is
presented for 3 out of the 12 possible combinations.

3.3. Benchmarking of Objective Metrics

The point-to-point (po2point) and point-to-plane (po2plane)
metrics are employed to estimate geometric distortions [22],
using the Mean Square Error (MSE) and the Hausdorff dis-
tance measures, as computed in [23]. The geometry PSNR ra-
tio is also computed for each combination following the [16].

The color MSE is employed to quantify the color degra-
dations of an encoded stimulus, after converting the default



RGB to the YCbCr colorspace, according to the implementa-
tion of [23]. Based on these measurements, the color PSNR
values are also obtained and considered in the study. More-
over, the plane-to-plane (pl2plane) metric [24] is employed
using a simple average, and the MSE distance.

For each stimulus, the normal vectors are estimated using
a quadric fitting function on neighborhoods of fixed radius
(i.e., 5), as implemented in CloudCompare [25] software. Fi-
nally, the symmetric error is used to obtain a total distortion
value for each metric; that is, the maximum error after setting
both the original and the distorted point cloud as a reference.

The PCC, SROCC, RMSE and OR performance indexes
are computed between pairs of MOS and predicted MOS, to
measure the performance of each metric against the sub-
jective ground truth, as defined in the Recommendation
ITU-T P.1401 [26]. The predicted MOS is obtained after
applying the logistic fitting function on the objective quality

Table 3: Consistency of Subjective Scores across test labora-
tories (Bold text represents the assuming Ground Truth).

| Fitting | PCC SROCC _RMSE _ OR

‘ o 0087 0980 0213 0041
UBLvs UC linear | 0987  0.980 0.183  0.052
o 0084 0982 0254  0.003

UBIvsUNIN | oor | 0984 0982 0201  0.052
o 0984 0078 0225 0093

UBLvsUTS | car | 0984 0978 0206  0.072
o 0987 0980 0213 0104

UC vs UBI linear | 0987 0980 0198  0.093
o 0986 0982 0219 0072

UCVvsUNIN | e | 0986 0982 0206  0.072
o 0989 0987 0200 0.43

UCvs UTS lincar | 0989 0987 083 0072
o 0984 0982 0234 0322

UNINVsUBL | oor | 0984 0982 0222 0260
o 098 0082 0219 0.187

UNINvsUC | e | 0986 0982 0212 0177
o 0990 0987  0.193  0.66

UNINVsUTS | e | 0990 0987  0.077  0.156
o 0984 0978 0225 0270

UTSvsUBL | i cor | 0984 0978 0212 0208
_ o 0089 0984 0218 0261

UTS vs UC linear | 0989 098 0183  0.19
e 0088 0986 0215 0.177

UTSvsUNIN | car | 0988 0986 0.184  0.140

Table 4: Performance indexes for Objective Metrics using
Symmetric error and Logistic fitting.

Metric [ PCC SROCC  RMSE OR
po2point_MSE 0.946 0.934 0.368 0.666
po2plane_MSE 0.959 0.951 0.321 0.577

PSNR_po2point- MSE 0.868 0.855 0.540 0.752
PSNR_po2plane . MSE | 0.913 0.910 0.443 0.588
po2point-HAU 0.401 0.531 1.045 0.844
po2plane_ HAU 0.534 0.613 0.966 0.877
PSNR_po2point. HAU | 0.548 0.456 0.911 0.870
PSNR_po2plane HAU | 0.580 0.547 0.887 0.847

color.Y_MSE 0.876 0.892 0.551 0.766
color.Cb_MSE 0.683 0.694 0.834 0.844
color_Cr-MSE 0.594 0.616 0.918 0.844
color_Y_PSNR 0.887 0.892 0.525 0.688
color_Cb_PSNR 0.693 0.694 0.822 0.844
color_Cr_.PSNR 0.626 0.617 0.890 0.855
pl2plane_ AVG 0.922 0.910 0.439 0.600
pl2plane_ MSE 0.925 0.912 0.432 0.611
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Fig. 3: Linear fitting, for correlation between MOS obtained
from different test laboratories (Bold text represents the as-
suming Ground Truth).
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Fig. 4: Logistic fitting, for correlation between MOS and
best-performing metrics. Each symbol V,0,0, ¢, <, 4 repre-
sents a different content in the display order of Figure 1.

scores. Based on our results, presented in Table 4, the best-
performing metrics found to be the po2plane MSE, closely
followed by the po2point_MSE. Scatter plots with the MOS
against these two metrics are presented in Fig. 4, including
the logistic fitting function. In this result, though, it should be
accounted the fact that the point clouds we use represent only
one type of contents, i.e., human figures. As shown in [8], the
performance of metrics can be remarkably improved when
point clouds of the same category are clustered together. We
aim at expanding our efforts in the near future, adopting the
described evaluation framework with more diverse conditions
and contents.

4. CONCLUSIONS

A quality evaluation of the MPEG point cloud codecs is re-
ported, unveiling the high compression performance of the
MPEG V-PCC, when used for static point cloud coding. The
adopted methodology is confirmed to be reliable and repeat-
able by producing consistent results in four independent test
laboratories, despite the differences of equipment and view-
ing conditions. Moreover, several objective quality metrics
are found to provide accurate predictions when compared to
subjective scores obtained from our evaluation experiments.
Among them, the po2plane metric with MSE is found to be
the best-performing with PCC of 0.959 and SROCC of 0.951.
The subjective data and test material are available online'.

"http://emergimg.di.ubi.pt/icip2020PC.html
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