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Logic-in-memory based on an atomically 
thin semiconductor

Guilherme Migliato Marega1,2, Yanfei Zhao1,2, Ahmet Avsar1,2, Zhenyu Wang1,2,  
Mukesh Tripathi1,2, Aleksandra Radenovic3 & Andras Kis1,2 ✉

The growing importance of applications based on machine learning is driving the 
need to develop dedicated, energy-efficient electronic hardware. Compared with von 
Neumann architectures, which have separate processing and storage units, brain- 
inspired in-memory computing uses the same basic device structure for logic 
operations and data storage1–3, thus promising to reduce the energy cost of 
data-centred computing substantially4. Although there is ample research focused on 
exploring new device architectures, the engineering of material platforms suitable for 
such device designs remains a challenge. Two-dimensional materials5,6 such as 
semiconducting molybdenum disulphide, MoS2, could be promising candidates for 
such platforms thanks to their exceptional electrical and mechanical properties7–9. 
Here we report our exploration of large-area MoS2 as an active channel material for 
developing logic-in-memory devices and circuits based on floating-gate field-effect 
transistors (FGFETs). The conductance of our FGFETs can be precisely and 
continuously tuned, allowing us to use them as building blocks for reconfigurable 
logic circuits in which logic operations can be directly performed using the memory 
elements. After demonstrating a programmable NOR gate, we show that this design 
can be simply extended to implement more complex programmable logic and a 
functionally complete set of operations. Our findings highlight the potential of 
atomically thin semiconductors for the development of next-generation low-power 
electronics.

Emerging data-intensive applications in fields including machine learn-
ing and the Internet of Things require highly energy-efficient hardware 
for operations such as autonomous driving10, speech recognition11 
and disease diagnosis12. Because these specific applications require 
both high-performance and energy-efficient computation, the power13 
and memory14 constraints imposed by von Neumann computers, with 
separate processing and storage units, limit the ability of standard 
processors to meet optimal requirements for these applications15. 
Next-generation architectures have therefore been an important sub-
ject of research16–19. Among them, in-memory computing, using the 
same basic device structure for logic operations and data storage1,2, is 
presenting itself as an ideal hardware architecture for tackling portable 
data-intensive20,21 and adaptive logic applications22. The success of this 
approach depends strongly on identifying an ideal material system 
capable of harnessing the full potential of this architecture.

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have 
been considered as a candidate material system for realizing scaled 
semiconducting devices and circuits23 because of their atom-scale 
thickness, the absence of dangling bonds and enhanced electrostatic 
control7. Monolayer MoS2 in particular possesses a sizeable direct band-
gap24, enabling a strong modulation of the semiconducting channel 
with a high ON/OFF current ratio (ION/IOFF ≈ 108), reduced standby cur-
rent even at nanometre-scale gate lengths25 and a subthreshold slope 

approaching the theoretical limit7. This makes it an appealing choice 
for both next-generation logic circuits26,27 and memories in the form 
of FGFETs28–31, which are attractive devices for in-memory comput-
ing. In this context, 2D materials can enable aggressive scaling below 
12 nm and at the same time also increase device reliability, thanks to 
the atom-scale thickness and reduced cell-to-cell interference between 
neighbouring thin-film floating gates in the FGFETs32.

2D materials therefore combine advantages for realizing both logic 
and memory. Their applications in neuromorphic computing are, how-
ever, rare and have been limited to single devices33–35. Moreover, over-
coming device-to-device variation and large-area integration at the 
system level remain crucial to the realization of large-scale systems that 
could open the path to creating new, unexplored circuit functionalities.

Here we demonstrate the integration of MoS2 memories into a subsys-
tem for in-memory computing, and demonstrate reprogrammable logic 
operations. The basic building block of our circuits are FGFETs with a 
monolayer MoS2 channel, allowing us to build simple logic-in-memory 
arrays1. Our MoS2 is grown using a large-grain, large-area metal–organic 
chemical vapour deposition (MOCVD) process36,37. Figure 1a, b shows 
the floating-gate memory structure used throughout this work and 
its side-view schematic. Our device has a local Cr/Pd (2 nm/80 nm) 
bottom gate and a thin-film Pt floating gate (5 nm thickness), which 
results in a continuous and smooth surface. The reduced roughness 

https://doi.org/10.1038/s41586-020-2861-0

Received: 15 January 2020

Accepted: 26 August 2020

Published online: 4 November 2020

 Check for updates

1Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. 2Institute of Materials Science and Engineering, École Polytechnique Fédérale de 
Lausanne (EPFL), Lausanne, Switzerland. 3Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ✉e-mail: andras.kis@epfl.ch

https://doi.org/10.1038/s41586-020-2861-0
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-2861-0&domain=pdf
mailto:andras.kis@epfl.ch


Nature  |  Vol 587  |  5 November 2020  |  73

of the metal surface decreases the dielectric disorder in the interface 
between the top tunnel oxide and the 2D channel, improving perfor-
mance and reliability38. Both blocking and tunnel oxides (30 nm and 
7 nm thick, respectively) consist of high-κ dielectric HfO2 deposited by 
atomic-layer deposition (ALD) to achieve effective modulation of the 
electric field within the semiconducting channel. Finally, the contacts 
to the drain and source are composed of a Ti/Au (2 nm/100 nm) stack to 
obtain ohmic-like contacts with high charge carrier injection efficiency. 
Figure 1c shows an optical micrograph of a fabricated memory array. 

We note that all the device components are fabricated in an approach 
that is scalable, that is, no exfoliated materials were used.

Floating-gate memory
The FGFET memory behaviour manifests itself in a shift of the transis-
tor threshold voltage controlled by the amount of charge stored in the 
charge trap layer (see Supplementary Note 1 for details). To read the 
memory state of the device, a constant voltage is applied to the gate 
(VG,READ) while the drain–source conductance is measured. We perform 
the basic characterization of our devices by sweeping the gate voltage 
in the range ±12.5 V under a constant 50-mV drain–source voltage (VDS), 
Fig. 2a. The total shift of the memory threshold voltage (VTH) gives an 
estimated memory window of 10.6 V, taken for a 1-nA constant current. 
The linear behaviour of the drain–source current (IDS) versus VDS traces 
(Fig. 2b) indicates ohmic-like contacts. The same multilevel behaviour 
is illustrated in Fig. 2c, in which we show the ability to set the channel 
conductance with the programming voltage (VPROG). Before applying the 
observed multilevel behaviour of our memory to in-memory comput-
ing, we check retention times to verify that the programmed conduct-
ance values are stable over time. In Fig. 2c, we show the evolution of the 
ON and OFF states of our memory as well as multiple intermediate states 
stable in a 1-h time frame, Fig. 2c. We project a retention time of about 
10 years for two-state operation (see Extended Data Fig. 1). Other critical 
memory characterization concerning device variability and memory 
behaviour under different constraints is provided in Extended Data 
Fig. 2 with band alignments shown in Extended Data Fig. 3.

In addition to programming the memory using the programming 
voltage (VPROG), we can also fine-tune the conductance states to the 
desired level by applying short potentiative (VG,PEAK = −5 V) and depres-
sive (VG,PEAK = 5 V) pulses with a 10-ms pulse width and 1-s rest time, allow-
ing a finer control over the device conductance. Figure 2d shows the 
linear evolution of the conductance values for potentiation (which can 
be used to rapidly set the desired conductance value) and for depres-
sive stages (to reset the memory state). Results of the endurance test 
(Supplementary Note 2), shown in Extended Data Fig. 4, demonstrate 
that our memories can sustain more than 10,000 programming pulses 
with no performance loss.

Programmable inverter
As shown in Fig. 3a, using FGFETs as the basic building blocks instead 
of normal FETs brings us the capability of programming the threshold 
voltage, giving an additional degree of freedom for applications in 
both digital and analogue circuits. The gate terminal can then be used 
for both setting the state of the memory using a programming voltage 
VPROG and as a terminal for applying the input voltage (VIN) during logic 
operations.

We take advantage of the fine control over the conductance states 
of the 2D material, and tune the memory cell’s threshold voltage by 
adding or removing charge carriers from the floating gate. This enables 
different electron transport regimes to be accessed when the memory is 
operated in the inverter circuit. We limit the gate voltage during regular 
operation (VG = VIN) to a range of 0−1 V, corresponding to logic ‘0’ and 
‘1’. With this, we can avoid programming currents and preserve the 
pre-programmed memory state (Q). The output voltage VOUT and the 
corresponding logic state are defined by both the logic input and the 
memory logic state X(Q). The relationship between them is shown in the 
tables in Fig. 3a. As presented in Fig. 3b–d, we can differentiate between 
three distinct and discrete states of the memory device according to 
how efficiently the gate electrode is screened by the charges present 
in the floating gate. For states Q = 1 and 3, the charges present in the 
floating gate strongly dope the FGFET channel which remains in the OFF 
(Q = 1) or ON (Q = 3) states for all values of VIN in the 0−1 V range. The 
output then becomes independent of the input and the memory logic 
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Fig. 1 | Structure of in-memory device. a, Three-dimensional view of a 
floating-gate memory device based on MOCVD-grown monolayer MoS2 with 
source and drain contacts. The floating gate is separated from the MoS2 
channel by a 7-nm-thick HfO2 tunnel oxide layer and from the bottom control 
gate by a 30-nm-thick HfO2 blocking oxide layer. b, Schematic of the device.  
D, drain; S, source; FG, floating gate; G, gate. c, Optical image of the fabricated 
floating-gate memory array, comprising eight memory cells (boxed).  
Scale bar, 10 µm.
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states are 0 (for Q = 1) or 1 (for Q = 3). For Q = 2, the amount of charge 
stored on the floating gate is insufficient for inhibiting the channel 
modulation and VTH is tuned to be in the 0−1 V range. Here, the memory 
cell functions as a normal FET with a programmable threshold voltage. 
In this case, the memory state reflects the input logic state (X(2) = IN) 
and the circuit operates as an inverter.

The programmable shift in the threshold VTH allows us to fine-tune 
the transfer curve of the inverter circuit, shown in Fig. 3e for program-
ming voltages in the 7.5–9 V range. The gain and noise margin of the 
circuit can also be configured for either a more precise (lower noise 
margin) or a more robust circuit (higher noise margin). Figure 3f show 
the evolution of both high (NMH) and low (NML) noise margin as a func-
tion of the programming voltage (VPROG; see Supplementary Note 3, 
Supplementary Table 1 and Extended Data Fig. 5 for details). Time traces 
displayed in Fig. 3g show that the different configurations of the circuit 
are stable and reproducible.

Logic-in-memory
This multitude of memory states (always ON/always OFF and a normal 
FET) opens a way to configure memory arrays as a large set of distinct 
logic circuits. When multiple FGFETs are assembled into a logic gate, 

the number of possible functions grows exponentially with the number 
of devices (see Supplementary Note 4). To demonstrate this principle, 
we show that simple logic gates (two-input NOR and three-input NOR) 
can be implemented using two or three devices, and can have their 
functionality expanded up to nine different Boolean functions (see 
Supplementary Note 4, Supplementary Tables 2, 3 and Extended Data 
Figs. 6, 7). These new logic operations emerge as subsets of the main 
function. For instance, a three-input NOR gate contains a two-input NOR 
and NOT as subset operations. Hence, the circuit area per functionality 
is greatly decreased as the circuit size grows.

We take advantage of this large number of available logic functions 
to propose in Fig. 4a a two-input logic-in-memory unit cell capable of 
acting as a universal logic gate, performing any logic operation from 
a complete set of two-input logic operations (Extended Data Fig. 8 
and Supplementary Note 5). By combining two cells, we can perform 
more complex operations, such as the addition of two numbers using 
a half-adder, shown in Fig. 4b (see Supplementary Tables 4, 5 for a 
breakdown of available functions). This is made possible by adding 
polarity control in the input and output of the cell. With this new 
degree of freedom, one unit operates as an XOR logic gate produc-
ing as a result the binary SUM (S) and the second unit producing the 
logic NAND which after inversion by the output interface generates 
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Fig. 2 | Characterization of non-volatile memories. a, Transfer characteristic 
(IDS versus VG) of the FGFET acquired for two different gate voltage sweep 
directions (red arrows). The variation of the threshold voltage VTH, the memory 
window, is estimated to be 10.6 V. b, Output characteristics (IDS versus VDS) of 
the FGFET in the ON state, after having been programmed using different 
values of the programming voltage, VPROG, for VDS = 50 mV, VG,READ = 0 V. c, Time 
dependence of the device conductance for different levels of programming 
voltage, VPROG. These retention measurements show multilevel states of the 
normalized conductance GDS versus time as a function of the programming 

voltage, VPROG (ranging from −12.5 V to 12.5 V). d, Demonstration of fine control 
over the conductance state of the memory using voltage pulses applied to  
the gate. Shown is the evolution of the memory device conductance GDS as a 
function of the number of pulses. Potentiative pulses applied to the gate  
(−5 V amplitude, 10 ms duration and 1 s rest time) can be used to increase and 
fine-tune the conductance. Depressive pulses (+5 V amplitude, 10 ms duration 
and 1 s rest time) can reset the device. The conductance measurement is 
performed at the end of the rest time period. Before the first pulse, the memory 
was initialized with a reset voltage VPROG = 12.5 V.
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the CARRY (C) value. Because the half-adder is a basic building block 
in modern processors, this shows that logic-in-memory based on 
2D materials could be extended to complex computational accel-
erators. In contrast to current logic-in-memory circuits39 (see also 
Supplementary Note 6 and Supplementary Table 6), our approach 
allows cascading different cells without the need for complex cur-
rent–voltage conversion circuits. This eliminates the extra power 
consumption and enables the creation of more complex circuits 
similar to modern CMOS digital processors. Logic-in-memory units 
can be connected in parallel to execute more complex operations, 
and the signal can be transferred to the next set of units, creating a 
structure like a field-programmable gate array.

To archive higher parallelism and more complex operation, the num-
ber of logic inputs can be further increased. As shown in Fig. 4a, the 
concept of a three-input cell increases the functionality that can be 
implemented compared to a two-input structure. As a proof of concept, 
we show in Fig. 4c a three-input cell operating in one of its possible 
states, three-input NAND, with the corresponding transfer curves for 
individual memory elements shown in Extended Data Fig. 9.

We have demonstrated here reprogrammable logic devices for 
in-memory processing architectures based on monolayer MoS2. By 
employing an innovative way of realizing a universal logic gate based on 
logic-in-memory, we have produced a programmable logic circuit that 
operates directly in memory and does not require additional terminals 
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corresponding circuit diagrams. Device elements shown are the channel, 
source and drain electrodes (yellow blocks), floating gate (orange bar) and 
control gate (grey bar), with stored and induced extra positive (blue) and 
negative (red) charges. b, Insulating state of the MoS2 channel (Q = 1, memory 
state 0). c, Semiconducting state with a continuously tunable conductance of 

the MoS2 channel (Q = 2, memory states 0 or 1). d, Conductive state of the 
channel (Q = 3, memory state 1). e, Programmable output (VOUT) curves of the 
inverter (top) and the inverter voltage gain (bottom) both as a function of the 
input voltage (VIN), for different programming conditions. f, Evolution of the 
inverter noise margin (NML and NMH) as a function of the programming 
voltage. g, Time traces showing stability of the output voltage for the three 
different configurations of the programmable inverter. Red, input voltage 
(VIN); orange, constant memory state 1 (Q = 3); blue, inverter operation; green, 
constant memory state 0 (Q = 1).



76  |  Nature  |  Vol 587  |  5 November 2020

Article

for programming40,41. This direct integration of memory and logic 
can increase processing speed, opening the way to the realization of 
energy-efficient circuits based on 2D materials for machine learning, 
the Internet of Things and non-volatile computing.
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Methods

Material synthesis
Single-crystal monolayer MoS2 was grown in a home-built system using 
the metal–organic chemical vapour deposition (MOCVD) method. 
C-plane sapphire was used as the growth substrate and annealed 
at 1,000 °C to achieve an atomically smooth surface, necessary for 
epitaxial growth42. Before growth, the substrate is spin-coated with 
NaCl solution to suppress nucleation and promote growth36,37. The 
two precursors (molybdenum hexacarbonyl, Mo(CO)6, and hydrogen 
sulfide, H2S), with a flow rate ratio of 1:6,028, were carried by Ar gas to 
the MOCVD chamber and underwent reaction at 820 °C for 30 min. 
Mo(CO)6 was kept at 15 °C in a water bath and the valve was closed 
immediately after the growth process, while H2S continued flowing 
during the cooling process. Throughout the whole growth process, the 
furnace was kept at 850 mbar pressure. Raman spectroscopy confirmed 
the monolayer nature of the grown material (Extended Data Fig. 10), 
and transmission electron microscopy (TEM) imaging also indicated 
the high quality of the material (Extended Data Fig. 11).

Continuous, 2-inch wafer-scale monolayer MoS2 film for complex 
circuits shown in Fig. 4 was synthesized using MOCVD37. Similarly to 
the synthesis of single crystals, we anneal the sapphire wafers in air 
and coat them with a 0.2 mol l−1 sodium chloride (NaCl) solution in 
deionized water. The growth process lasts for 30 min in a quartz tube at 
atmospheric pressure and a temperature of 870 °C. We use Mo(CO)6 and 
diethyl sulphide ((C2H5)2S) as precursors. An argon/hydrogen mixture 
is used as a carrier gas, delivered with flow rates of 210 cm3 STP min−1/ 
4 cm3 STP min−1. Oxygen with a flow rate of 1 cm3 STP min−1 is separately 
introduced into the growth chamber, for the purpose of balancing the 
growth rate with the O2 etching effect.

Sample transfer and TEM imaging
The sample was spin-coated with PMMA (poly(methyl methacrylate)) 
A2 at a speed of 4,000 rpm for 1 min and put on a hot plate at 85 °C for 
10 min for drying. Afterwards, the PMMA film was detached with water 
tension and floated on the water’s surface together with the MoS2 sam-
ple. Subsequently, the PMMA film was fished out using a TEM grid and 
heated for 15 min on a hot plate at 85 °C to improve the adhesion. To 
remove the PMMA film, the sample was immersed in acetone overnight 
and annealed at 250 °C in high vacuum for 6 h.

Atomic-resolution annular dark field scanning TEM (ADF-STEM) 
images were acquired with an aberration-corrected (with double Cs 
corrector) FEI Titan Themis TEM operating at 60–300 kV, equipped 
with a Schottky X-FEG electron source and a monochromator. Imag-
ing was performed at a low acceleration voltage (80 kV). The electron 
probe semi-convergence angle was set to 21.2 mrad and the typical 
beam current was 18 pA. Images were acquired with a Gatan high-angle 
annular angular dark-field (HAADF) detector using a 185 mm cam-
era length which corresponds to a 49.5–198 mrad collection angle. 
To reduce sample drift distortion, a short dwell time (8 µs) with 
512 × 512 pixels was used to capture the frames. Cross-section lamel-
lae were prepared using a focused ion beam (Zeiss NVision 40). TEM 
cross-sectional imaging was performed with a FEI Talos F200S G2, 
using 80 kV acceleration voltage. Multislice STEM image simulations 
were performed using quantitative scanning transmission electron 
microscopy (QSTEM). The simulation parameters were chosen to be 
similar to the experimental conditions and higher-order aberrations 
were reduced to zero.

Transfer procedure
The MOCVD-grown material is first spin-coated with PMMA A2 at 
1,500 rpm for 60 s. It is then dried in vacuum for 12 h. After that, with 
the support of PDMS (polydimethylsiloxane) and Gel-pak elastomer 
film, the MoS2 sample is detached from the sapphire in deionized water 
and transferred onto the patterned substrate. Finally, the sample is 

immersed in acetone, and subsequently annealed at 250 °C in high 
vacuum to remove the polymer resist.

Memory fabrication
A 270-nm-thick SiO2 layer is thermally grown using a dry plasma- 
enhanced chemical vapour deposition (PECVD) technique on a p-doped 
silicon wafer. The bottom gate contacts were patterned using e-beam 
lithography (EBL) and a 2 nm/80 nm Cr/Pd stack was deposited using 
e-beam evaporation. The 30-nm HfO2 blocking oxide was grown by 
thermal atomic layer deposition (ALD) using TEMAH (tetramethylam-
monium hydroxide) and water as precursors. The floating gate was 
patterned similarly by EBL and a 5-nm-thick Pt layer was deposited 
using e-beam evaporation. Using the same process as described earlier, 
a 7-nm-thick HfO2 tunnel barrier was grown. The MoS2 is transferred on 
top of the tunnel barrier. To define the active region, PMMA polymer 
was used and patterned by EBL. The exposed area was then etched 
by oxygen plasma. Finally, drain-source contacts were patterned by 
EBL and a 2 nm/100 nm thick Ti/Au stack was deposited using e-beam 
evaporation. Each die has 8 devices with a density of 0.386 devices per 
10 µm2. Resulting FGFETs have a typical channel length of 1 µm and a 
width of 7.5 µm. A cross-sectional TEM image of a representative device 
is shown in Extended Data Fig. 12.

Logic-in-memory fabrication
A 270-nm-thick SiO2 layer is thermally grown using a dry PECVD tech-
nique on a p-doped silicon wafer. The bottom gate contacts were pat-
terned using an MLA150 Advanced Maskless Aligner and a 2 nm/40 nm 
Cr/Pt stack was deposited using e-beam evaporation. The 30-nm 
HfO2 blocking oxide was grown by thermal ALD using TEMAH and 
water as precursors. The floating gate was patterned by EBL and a 
5-nm-thick Pt layer was deposited using e-beam evaporation. Using 
the same process as described earlier, a 7-nm-thick HfO2 tunnel bar-
rier was grown. Prepatterned pads were exposed using the Advanced 
Maskless Aligner and 2 nm/60 nm Ti-Au were deposited using e-beam 
evaporation. The MoS2 continuous film was transferred on top of the 
tunnel barrier. To define the active region, PMMA polymer was used 
and patterned by EBL. The exposed area was then etched by oxygen 
plasma. Finally, drain-source contacts were patterned by EBL and a 
2 nm/100 nm thick Ti/Au stack was deposited using e-beam evapo-
ration. Resulting FGFETs have a typical channel length of 1 µm and a 
width of 12.5 µm.

Memory characterization
Memory characterization is performed in high vacuum after in situ 
annealing at 120 °C. I–V curve acquisition and pulse programming are 
performed using an Agilent E5270B mainframe with E5287A-ATO and 
E5281B-FG modules. A 10 pF load capacitor is used for simulating the 
input capacitance of a cascade of logical stages in both FGFET inverter 
and FGFET NOR time measurements.

Logic-in-memory
The logic measurements of a two-input and a three-input unit cell, and a 
three-input NOR, were performed in air in a custom-built programmer 
using NI ELVIS II Board I/O. A detailed description of the programmer 
is given in Supplementary Note 9.

Data availability
The data that support the findings of this study are available at http://
doi.org/10.5281/zenodo.4073060.
 
42.	 Dumcenco, D. et al. Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).
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Extended Data Fig. 2 | Additional characteristics of MoS2 FGFETs. a, Device 
variability. IDS versus VG curves for six different devices on the same die. b, Fresh 
IDS versus VG curves, corresponding to the first VG sweep carried out on these 
devices. Maximal gate voltage ±VG,MAX (corresponding to VPROG) is insufficient 
for inducing charge transfer into the floating gate memory. This shows the 
behaviour of the FGFET in the initial state. c, IDS versus VG for different values of 
VDS (red curve, 50 mV; blue curve, 100 mV; green curve, 250 mV; orange curve, 

500 mV). The progressive increase of the current without a decrease in the 
memory window demonstrates that the memory effect is not due to capacitive 
charges in the contacts. d, IDS versus VG for different sweep rates. The decrease 
of the memory window is a function of the sweep rate. The decrease is most 
probably a result of charge dynamics limiting the charging and discharging of 
the floating gate.
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conduction band and the top of the valence band, respectively.  
b, Programming of the floating-gate memory by electron injection into the 

floating gate with the application of a positive gate voltage (upper panel). 
Lower panel, accompanying positive shift in the threshold voltage. c, Erase 
operation with electron extraction from the floating gate under the 
application of a negative gate voltage (upper panel). Lower panel, 
accompanying negative shift in the threshold voltage.
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Extended Data Fig. 9 | Hardware and software implementation of the 
logic-in-memory programmer. a, b, Hardware implementation of the 
four-memory programmer (a) and of the nine-memory programmer (b).  
c, Software working diagram of the programming (top) and test (bottom) 

blocks. d, Example of programming (left) and test (right) blocks working, using 
a nine-memory programmed into the following state Q1–9 = 222111111 to 
perform a three-input NAND operation.
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Extended Data Fig. 10 | Raman characterization of monolayer MoS2. Raman 
spectrum of transferred MoS2 from a single crystal (which also provided the 
material used in this paper) using 532-nm laser excitation and a 3,000 lines mm−1  

grating. The observed wavenumber difference between the A1g and E2g Raman 
modes of MoS2 is consistent with a monolayer. Black line is a fit to the data 
points (red circles).
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Extended Data Fig. 11 | ADF-STEM images of monolayer MoS2. a, Atomically 
resolved STEM image showing a large region of monolayer MoS2. Inset, fast 
Fourier transform (FFT) amplitude spectrum further shows the crystalline 
monolayer MoS2 structure. b, A magnified filtered STEM image taken from a 

shows the 2H crystal structure of monolayer MoS2. c, STEM simulation image of 
monolayer MoS2. The intensity line profiles at bottom right of b and c are taken 
along the dashed lines in those images, and show the peak positions of Mo 
atoms and S atoms.
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Extended Data Fig. 12 | FGFET TEM cross-section. a, Wide-field view of the 
device fabricated using the logic-in-memory process. b, Magnified view of the 
contact area boxed in a. c, Cross-section image of the gate stack consisting of 

(from bottom to top) Pt bottom gate, HfO2 blocking oxide, Pt floating gate, 
HfO2 tunnel oxide. The MoS2 2D channel is on top of the gate stack.
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