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Abstract— Many envisioned applications of ad hoc networks
involve only small-scale networks that we term Vicinity Ad-
hoc Groups (VAGs). Distributed coordination services, instead of
pairwise communications, are the primary requirements of VAGs.
Existing designs for distributed services apply either a layered
structure or a vertical integration. While the former contributes
to design simplicity, the latter improves runtime efficiency. In this
paper, we argue that, since distributed services require group-
oriented communications, our NASCENT approach can achieve
both design simplicity and runtime efficiency in VAGs. NASCENT
is a network layer service dedicated for VAGs. It provides a
light-weight membership service along with a routing structure
for message passing, and it supports the concurrent execution
of various distributed algorithms. NASCENT is also tailored to
cope with the transiency of VAGs. We demonstrate how smoothly
distributed algorithms can be built on top of NASCENT. With a
complexity-based analysis, we also show that NASCENT greatly
improves the runtime efficiency of these distributed algorithms.
Finally, through simulations with ns-2, we confirm the ability of
NASCENT to support the envisioned VAG applications.

Index Terms— Ad Hoc Networks, Vicinity Ad-hoc Groups,
Network Layer Services, Distributed Algorithms.

I. INTRODUCTION

Distributed services are often required in ad hoc networks,
because centralized services relying on individual nodes are
not dependable enough. In particular, certain applications re-
quire primarily distributed services to coordinate the collective
actions of nodes in small-scale networks, whereas they barely
need pairwise connections to support stream traffic. We term
the networks implied by such applications Vicinity Ad-hoc
Groups (VAGs), in order to emphasize their small network
scale and group-oriented communication paradigms. Because
of these peculiarities, protocol re-engineering appears to be
necessary.

Currently, protocols for supporting distributed services in
ad hoc networks are usually built upon routing protocols
(e.g., AODV [1] and DSR [2]). Examples include overlay
multicast (e.g., [3], [4], [5]), membership service (e.g., [6]),
and resource discovery and management (e.g., [7], [8]). This
layered approach, inherited from the Internet architecture, aims
at reducing the protocol design complexity; as unicast routing
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provides the upper layer with a fully connected graph, virtually
any distributed algorithm can be built on top. However, this
approach can be inefficient for applications where a fully con-
nected graph is an overkill. An alternative approach [9], [10],
[11], [12] suggests that mobility aware distributed algorithms
be built directly upon the MAC layer. Although protocols
designed with this vertical integration approach are efficient at
runtime, the design complexity is increased because, without
a layered structure, low-layer protocols have to be developed
separately for individual services.

We believe that a trade-off between these two approaches
can achieve the best of both worlds in VAGs. Since com-
munications in VAGs are group-oriented, it is possible to
design a network layer service that includes common enabling
mechanisms (e.g., broadcast message routing and membership
management), and to leave only distinct requirements fulfilled
by upper layer algorithms. The design complexity of this
approach is similar to that of the layered approach, but the
runtime efficiency of resulting protocols can be improved to
the level of the vertical integration approach. In this paper,
we investigate the design of such a dedicated service and
propose NASCENT (Network 1Ayer ServiCE for viciNiTy ad-
hoc groups) as a solution. Our contributions are: (i) a general
network layer service to support various distributed services,
(i1) an embedded membership service requiring only localized
operations, (iii) algorithms to initialize a logical networking
structure among an emerging VAG, and (iv) algorithms to
recompose the structure upon the VAGs’ merging. We present
examples of distributed algorithms that are easily developed
by using the services of NASCENT. In addition, we apply a
complexity-based analysis to show the reduced runtime com-
plexity of these algorithms. Finally, we perform simulations
with ns-2; the results prove the ability of NASCENT to support
the targeted applications.

The rest of this paper is organized as follows: Section II
explains our motivation for this work. Section III states the
problem and the network model. Section IV presents our
NASCENT service. Section V gives examples of distributed
algorithms built upon NASCENT and proves the efficiency
gains over existing approaches. Simulation results are provided
in Section VI. Finally, Section VII concludes the paper. We
skip the literature survey because related topics are discussed
where they are needed.
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II. MOTIVATIONS

In this section, we first envision several applications. Then
we identify the common requirements of these applications.
The outcome of the case studies then leads to our motivations
for the protocol design.

Three examples of envisioned applications that have im-
mediate needs for both ad hoc networking and distributed
coordination services are:

a) Wireless multi-player gaming: Wireless gaming de-
vices (e.g., Nokia N-Gage™ game deck) either require
players to pay bills (with GPRS) or limit their numbers
or mutual distances (with Bluetooth). Devices based
on IEEE 802.11-like wireless MAC are more flexible,
but distributed coordinations become necessary in the
absence of a centralized control. Fig. 1(a) shows a
gaming scenario where players are contending for a
special role (the queen).

b) Cooperative robotics [13]: Using teamed robots for
unmanned explorations and rescue operations becomes
increasingly tempting. Some ongoing research (e.g. [14],
[15]) is focusing on coordinating robots with wireless
communication networks. Fig. 1(b) shows an example of
exploration robots making an agreement on the direction
of movement.
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Fig. 1.  Application examples: (a) wireless multi-player gaming, and (b)

exploration robots.

¢) Cooperative driving system [16]: Vehicles running
through highway entrances and crossroads have to be
scheduled to share the resources (i.e., these critical
points), in order to avoid collisions. Distributed algo-
rithms relying on inter-vehicle communications could be
a conflict resolution method performed by the vehicles
themselves.

The aforementioned applications share several characteris-
tics. First, the scale of the network is small (either geographi-
cally or logically, or both). This is easy to see because, for
example, people in one city do not play a wireless game
with people in another city (in which case they can play
games over the Internet). Secondly, these networks tend to be
transient. For example, players join and leave a wireless game
spontaneously; and task dedicated groups of robots might
change when finishing a job and starting another. The network
topology also changes with time due to node mobility. Thirdly,
broadcast (with reliability requirements in most cases) is
the dominating communication paradigm within the network.
Nodes in such a network have the same goals (performing

specific tasks or sharing certain resources), while the nodes
are inherently distributed with each one having only local
information. This situation calls for network-wide reliable
communications to coordinate the behavior of nodes.
Following the aforesaid discussions, we term such a small
network VAG (i.e., Vicinity Ad-hoc Group) to depict these
peculiarities. We also summarize our motivations as follows:

¢ A dedicated network layer service could be more efficient
than unicast routing protocols (which support point-to-
point stream traffic) in supporting various distributed
algorithms, considering the broadcast nature of commu-
nications in a VAG.

o This service should also take care of membership man-
agement, because distributed algorithms usually have
the same need of membership information, in spite of
different intentions.

o The transiency of VAGs requires the service to have the
ability of prompt initialization and to cope with frequent
topology and membership changes. It also suggests that a
global membership tracking would be highly inefficient.

III. GOALS AND MODELS

Given all the aforementioned incentives, we now formally
define the problem we want to solve and the considered
environments.

We consider small-scale ad hoc networks (or VAGs), where
the network diameter is about 3 or 4 hops and group com-
munication is the dominating communication paradigm. Our
goal is to develop a group-oriented network layer service, other
than a unicast routing protocol, to support distributed services
(in particular, distributed algorithms such as reliable broadcast
and resource allocation) in VAGs.

We assume that every node in a VAG has a unique address
addr.! Nodes may experience only recoverable failures (i.e.,
crashing). All communications between nodes are assumed
to rely on the underlying MAC protocol, so that only nodes
within the transmission range of each other can communicate
directly and are thus termed neighbors. Each communication
link is assumed to be bidirectional and FIFO.> A link is
reliable for unicast (denoted by a SEND() primitive),? but it
is unreliable for broadcast (denoted by a BCAST() primitive).
The network is modeled as an undirected graph G = (V, E),
with nodes as vertices and an edge existing only between
neighbors. The graph changes dynamically and is not nec-
essarily connected. We further assume that the members of a
VAG follow group-based movements (e.g., [17]); each member
is aware of the mobility group defined by its VAG application
(which is not the case for [17]). This implies that partitions
of a VAG seldom occur and that most partitions are transient.

lUsually, an identifier is used to designate a node. However, as we
will see later, the identifier (or ¢d) of a node is used by protocols to
dynamically indicate the status of the node. Therefore, we use address for
node identification.

2Qur protocols refrain from using any unidirectional link.

3IEEE 802.11, for example, provides reliable link layer data transmission
using the well-known Stop&Wait ARQ.
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IV. NASCENT: GROUP-ORIENTED NETWORK LAYER
SERVICE

We present NASCENT in this section. We first over-view its
architecture, then we briefly justify our design considerations.
The protocol is detailed afterward.

A. Overview of NASCENT

As shown in Fig. 2(a), NASCENT is a service to replace
routing protocols in the protocol stack for VAG members. It
acts as a building block of the group-oriented communications
in a VAG, and provides support to distributed algorithms
such as Mutual Exclusion (MX, a special case of resource
allocation), Leader Election (LE), Reliable Broadcast (RB),
etc. The protocol architecture contrasts clearly with the layered
structure based on unicast routing in Fig 2(b) and the vertical
integration approach in Fig 2(c) (introduced in Section I).

‘ MX H LE H RB ‘ Interface tofupper layer
NASCENT =
Rotating Coordination +
Link Abstraction + Verocal . DAG Token
Membership Management %gciirig'p Maintenance|| Passing
Protocol Protocol
| MAC and Physical Layer | | _Protocl

(a)

[mx J[LE |[RB | ..

MX LE RB

Membership Management

\ Unicast Routing Protocols\
| MAC and Physical Layer | | MAC and Physical Layer |

(b) ()

Fig. 2. Comparisons between the approach of NASCENT (a) and two existing
designs of distributed algorithms (b)&(c).

Fig. 2(a) also shows the components of NASCENT. The
Local Membership Tracking Protocol (LMTP) keeps track of
the members within 2 hops by exchanging lists of neigh-
bors with neighbors. The DAG Maintenance Protocol (DMP)
transforms the undirected graph G into a token-oriented DAG
(directed acyclic graph with its sink holding a token) and
maintains the DAG when G is undergoing any changes. The
combination of LMTP and DMP acts as the membership
service of NASCENT, and DMP also facilitates the (broadcast)
message routing. The Token Passing Protocol (TPP) causes a
unique token to visit every member periodically and reshapes
the DAG upon a token transfer. The token holder becomes a
centralized control of its VAG temporarily, which is a key to
building the upper layer algorithms.

B. Design Rationale

We hereby address the main decisions about our design.
Why local membership tracking instead of global?:
Making global agreements on membership views is highly
inefficient in a VAG, because the network topology and mem-
bership change frequently and because possible node failures
are often transient.

Why apply a DAG?: A logical structure provides paths
to route messages. It also binds all local views together and
this results in a functional membership service. DAG is better
than other structures (e.g., ring and tree) because it provides
enough redundancy to cope with the transiency of VAGs.

Why circulate a token?: The token passing, sometimes
called a rotating coordinator paradigm, has long been regarded
as an efficient way to support (ordered) reliable broadcast [18],
[19] and mutual exclusion [20], [10]. We further observe that
a circulated token can be a basis of virtually any distributed
algorithm.

C. Protocol Details

We describe NASCENT in detail in this section. Each
subsection is devoted to a protocol.

1) Local Membership Tracking Protocol (LMTP): Each
member of a VAG periodically broadcasts a beacon message
(bmsg) including the ids of its neighbors. A member, upon
receiving the message, infuses the ids into its local view
(lview). An id is removed from the local view if no bmsg
from that member is received in 7, consecutive beacon periods.
Note that the id of a member is not exactly its address
addr but a tuple including the address. The format of an d
and the group identifier gid are introduced in Section IV-C.2
(where they are used by DMP). Fig. 3 illustrates the exchange

gid nids (nnids) 84L&
Local view

nid: id of neighbor ;
nnid: id of neighbors’””

neighbor O Ry
2 84234560 g
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Beacon message
gid: id of group
sid: id of sender

[gid[1]2.3.5
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e

Fig. 3. Beacon-based local membership tracking (addrs instead of ids are
shown to save spaces).

of bmsgs, as well as the format of a bdmsg and lview.
Through this information exchange, each member is aware of
other members within 2 hops and also synchronizes with its
neighbors. The GBCAST primitive (explained in Section V-
A.2) takes advantage of this information to reduce its costs.
2) DAG Maintenance Protocol (DMP): We propose new
algorithms to initialize a token-oriented DAG in a newly
formed VAG and to recompose the DAG upon the VAGSs’
merging. We let the id of a member ¢ (i.e., addr = i) be
a triple [y, 0;,1], where a and (3 are two intergers. These
ids, ranked lexicographically,* form a total order sequence.
By varying the values of o and (3 in its id, a member can
change its rank within the sequence without modifying its
physical address. Member ¢ considers a communication link
with member j as an outgoing edge if id; > id;, otherwise the

4idi>idj<:>
oci>ocj\/(a,-:aj/\,8i>,8j)\/(ai:aj/\ﬁi:ﬁj/\i>j)
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link is an incoming edge. As a result, the communication graph
G is transformed into a DAG. The idea of associating a triple
with each node and defining logical directions for all links
based on these triples (originally described in [21]) allows for
dynamical manipulation of network structure.

Initialization: Initially, the id of member ¢ is set to
[0,0,%], so the DAG may have more than one sink. In the
example of Fig. 5(a), members 1,2, and 3 are all sinks. Since
we let a sink hold a token, this situation does not guarantee the
uniqueness of the token in a VAG. In order to remove those
superfluous sinks (e.g., members 2,3), each member adjusts its
id according to the incoming bmsgs. Algorithms describing
these adjustments are shown in Fig. 4. Each member initializes

procedure INIT(id ;)
lview;.gid «— id;; init; < true

upon RECV(bmsg) do
if (bmsg.gid < lview;.gid) A init; then
lview;.gid «— bmsg.gid
id;.3 «— bmsg.sid.f + 1

AR

Fig. 4. Initialization at member ¢

the gid in lview (refer to Fig. 3 for details) with its id (line 2).
Upon receiving a bmsg, each member checks if there exists a
gid that is smaller than the one it knows (line 4). The lower
gid is then taken and the id is adjusted properly (lines 5-6).
Fig. 5(b) shows the situation after each member broadcasts
the first bmsg following the initialization of its lview.gid. At
some point in time, gids of different sinks will arrive at the
same members. These members form a collision region, shown
in Fig. 5(c). Members belonging to a collision region choose
the sink with a lower gid as the token holder; the following
bmsgs will confirm the outgoing edge to the token holder
and reverse the edge to other sinks. This procedure continues
until all superfluous sinks are removed, which terminates the
algorithm and results in a token-oriented DAG (with member
1 being the initial token holder), as shown in Fig. 5(d).

10,0,3] @®,10:1.3]
@/.,

6

10,1,1]

10,0,1] 10,0,

10,2,1]

10,2,1]

[0,1,1]

[0,1,1] [0,1,1]

(c) (C))

Fig. 5. Initialization of a token-oriented DAG. The gid and id of each
member is put in a compact way, such that the first two elements are o and
(3 of an id and the third element is the addr of a gid.

We prove the correctness of this algorithm by showing that
the following two properties of the algorithm hold.

Property 1: The algorithm eventually terminates.

Proof: The lview.gid of each member will be set to the
smallest initial id in the network ([0, 0, 1] in Fig. 5) after some
time. The algorithm terminates because of the conditional
statement in line 4. [ ]

Property 2: The resulting DAG has only one sink.

Proof: Assume, in contradiction, that, after the algorithm
terminates, there is an extra sink whose initial 7d is not the
smallest one. Since the algorithm has terminated, the lview.gid
of this member is set to the smallest initial id in the network.
Considering that the initial lview.gid is larger than the final
one, the algorithm must reach line 6 once exactly before the
algorithm terminates, which implies that it has an outgoing
link. The link will not be reversed after that, because the
lview.gid at the other end of this link has already been
the smallest initial ¢d (i.e., the algorithm has terminated), a
contradiction. [ ]

A timer is also set to force the algorithm to stop in case of
long converge time. The timeout value of this timer is set
according to the time complexity of the algorithm (refer to
Section V-B for details). The accuracy of this value is not quite
relevant because, even if the algorithm is stopped too early due
to an improper value, the resulting token collision is solved
by keeping the token with the smallest gid and removing all
others.

Other operations: With proper extensions, the algorithm
of Fig. 4 also handles group merging, member join and leave.
Note that group merging is similar to group initialization
since both have to solve the collision of multiple sinks; we
refer to [22] for detailed explanations. To cope with topology
changes due to node mobility, we reuse the partial reversal
method described in [21]. It is known that the algorithm in [21]
becomes unstable in partitions that disconnect from the token
holder. Partition detection mechanisms (e.g., TORA [23]) can
be one solution. We will describe an alternative solution based
on a timer in Section IV-C.3.

3) Token Passing Protocol (TPP): TPP circulates a token
within a VAG. The token is a message that contains certain
system states. A token holder acquires and modifies these
states, and thus acts as a temporary coordinator, which fa-
cilitates various distributed coordinations. We propose two
algorithms, TPP-Q and TPP-R, for circulating the token. In
TPP-Q, the token circulation is performed by a distributed
Queueing system. This system guarantees that the token repet-
itively visits each member with a period linear with n. TPP-R
applies a more heuristic method based only on local Recency
information, which brings less overhead but comes with a
larger worst-case upper bound of the circulation period. Note
that, in addition to token circulation, TPP also guarantees that
only a unique sink of the DAG holds the token, by reshaping
the DAG upon a token transfer. We provide only intuitive ideas
of TPP in this section and refer to the APPENDIX for the
corresponding pseudocodes.
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Token Circulation with a Queueing System (TPP-Q): As
a follow-up of Fig. 5, Fig. 6 provides an example of one token
circulation period with TPP-Q. Each VAG member is equipped
with a queue. Upon completing initialization, each member,
except the token holder, enqueues its own request of the token
and also forwards a request to a member with minimum 4d in
its local view. A request contains the requester’s address saddr

—> Directed logical link defined by id

—> Directed logical link defined by request

A
i
roq)

Fig. 6. One cycle of token circulation by TPP-Q. Each request in the queue
is represented by saddr(epoch), and the queue is FIFO with its header at
the bottom.

and a counter epoch that denotes which cycle the request
is for. Fig. 6(a) shows that the distributed queueing system
actually builds a rooted spanning tree. Then, as exhibited by
Fig. 6(b),(c),(d), the token will travel along the tree edges.
They also show that the epoch of every queued request is
stepped up by one after the token has visited all members.
As a consequence, the token will repeat the same trajectory
that it follows in the first cycle and thus visit each member
periodically. We distinguish the case where a member is
visited by the token from the case where a member receives
the token. A member is considered to be visited only if its
request is the first in the queue when it receives the token.
Token Circulation with Recency Information (TPP-R):

TPP-R requires each VAG member to keep an array that
records the time when the token visits each neighbor recently.
A member that receives the token is visited by it only if the
member has the least recency record among all neighbors,
otherwise it forwards the token to a neighbor with the least
recency record. The recency information is piggybacked with
the token to inform a member about the records of its neigh-
bors. Although TPP-R usually has a smaller token circulation
period than that of TPP-Q (because shortcuts can be exploited
to avoid backtrackings), the worst-case upper bound of this
period is much larger (refer to Section VI-D for an example).
A similar scheme is also described in [24].

For both cases of TPP-Q and TPP-R, a timer is set after
a token holder releases the token, in order to detect group

partitions. A timeout leads to a new initialization phase. If
partitions really happen, all members that are disconnected
from the token holder will enter the initialization phase and
thus regenerate a token for each connected partition. If it is a
false positive, the member can either rejoin the previous VAG
or merge with the VAG. Since false positives make a VAG
unstable, setting the timeout value is crucial for reducing the
probability of false positives. The following property of TPP-
Q facilitates this value setting.

Property 3: The time for a token to visit all VAG members
in one cycle is upper bounded by T = D uznTy +nTy if the
VAG remains static during that time period. Here D, , is the
degree of the undirected graph G, n is the cardinality of the
VAG, T; and T are the one way transmission time and the
time for the token to sojourn at a visited member, respectively.

Proof: The distributed queue maintained by TPP-Q
creates a rooted spanning tree 7 = (V, Er), where Er is
the set of all tree edges. The exact time to visit all vertices in
T is 2|E7|T, + |V |T;, where |E7| < $Dpneen and |V| = n.
Note that the upper bound is tight if T; < Tk. ]
Although TPP-R has a larger worst-case upper bound, T works
well in most cases. Therefore, we set the timeout value to T
and the parameters can either be adaptively changed on-line
or be estimated off-line (e.g., the maximum number of roles
in a game is known to every player). The way to make on-
line adaptations or off-line estimations depends on specific
applications, so NASCENT provides the upper layer with an
interface to set 7.

V. DISTRIBUTED ALGORITHMS ON TOP OF NASCENT

In this section, we sketch the implementation of distributed
algorithms on top of NASCENT and we also perform a
complexity-based analysis on NASCENT and these algo-
rithms. Our goal is to demonstrate how NASCENT simplifies
the design of distributed algorithms and improves their runtime
efficiency.

A. Algorithm Descriptions

We briefly describe several distributed algorithms built upon
NASCENT. It is straightforward to see that the design of these
algorithms is simplified thanks to the use of services provided
by NASCENT.

1) Resource Allocation: We consider a general resource
allocation problem, where several instances of a single system
resource exist and only one member can access one instance
each time. We distinguish between local multi-instance and
distributed multi-instance resource allocation. In the former
case, all instances of the resource are geographically close to
each other. The latter case is more broad.

The local multi-instance resource allocation can be solved
by simply extending the mutual exclusion algorithm: a token
holder, instead of allowing only itself to access the resource,
also grants permission to its neighbors for accessing other
instances of the resource. We hereafter focus on the distributed
multi-instance resource allocation. Let the token carry m
sub_tk that represent m instances of a certain resource. Fig. 7
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upon REQRES() do 1: upon RELRES() do
req-res; <— true 2: req-res; < false

BN —

upon RECV(token) do
if req_res; A (3i € [1,m] s.t. token.sub_tk[i].id = null) then
token.sub_tk[i].id — id;
/* now access the resource and release the token */
4:  ifTegres; A (Ji € [1,m] s.t. token.sub_tk[i].ed = id;) then
5 token.sub_tk[i].id «— null
/* now release the token */

LN =

Fig. 7. Request and release a resource instance at member %

shows an algorithm for allocating these instances. The point is
that only members that catch a sub_tk can access one instance
of the resource. In addition, the token can also carry a queue
that orders the resource requests to ensure fairness.

2) (Ordered) Reliable Broadcast: A reliable broadcast en-
sures that a message broadcast by a member is delivered by
all correct members [25]. Our solution built upon NASCENT
is similar to what is proposed in [18]. As shown in Fig. §, a

. procedure RBCAST(msg)
SMsgBuffer, «— SMsgBuffer; U {msg}

1

2

3: wpon RECV(token) from id; do

4 if SMsgBuffer; # 0 then

5: for all msg € SMsgBuffer; do

6: GBCAST(msg)

7: token.view[id;][msg.mid].recv «— true

8 SMsgBuffer; «— SMsgBuffer;/{msg}

9 for all msg s.t. token.view[id][msg.mid].recv # true do
10 if msg € RMsgBuffer then

11: token.view[id;][msg.mid].recv «— true

12: else

13: request msg from id;

14:  if Fnid s.t. token.view[nid][msg.mid].recv = false then
15: DELIVER(msg) /* to the upper layer */

16: upon RECV(msg) from id; (sent by BCAST) do
17:  if msg ¢ RMsgBuffer, then

18: RMsgBuffer, — RMsgBuffer; U {msg}
19: GBCAST(msg)
20:  beast_view[msg.mid] «— bcast_view|[msg.mid] U {id;}

21: procedure GBCAST(msg)
22: if 3nid € lview s.t. nid > id; N

nid € J,, idy.lview,Vidy € beast_view[msg.mid] then
23: BCAST(msg) /* see Section IIl */

Fig. 8. Reliable broadcast at member 4

member broadcasts a message only when holding the token
(lines 1-8), by invoking the GBCAST primitive (lines 21-23).
The token contains a record about message receptions. A mes-
sage is delivered to the upper layer only if all members have
received it (lines 9-15), and a missed message is requested
from the previous token holder. A member stores a broadcast
message received for the first time and rebroadcasts it, also by
the GBCAST; the member also memorizes the sender of each
received message (lines 16-20).

The GBCAST primitive leverages on the token-oriented
DAG and on the neighborhood information in [view to reduce
collisions in the MAC layer and gains reliability and efficiency
over flooding. It is also more robust than a tree-based multicast
protocol, since the VAG members are linked by a (directed)
mesh. The reliability of GBCAST is further enhanced as
only one member (the token holder) can initiate a group-

wide message dissemination. As a consequence, negative
acknowledgements (line 13) are rarely sent by a member,
resulting in an efficient reliable broadcast algorithm. Urgent
messages from a non-token holder can be sent through proxy-
broadcasts. This is possible because the DAG supports unicasts
from all members to the token holder. The protocol implicitly
guarantees FIFO order and causal order [25], whereas a
slightly modified version that requires each member to deliver
messages according to their order in the token solves the
total order broadcast problem (i.e., all correct members deliver
messages in the same order).

3) Leader Election: Solutions to the leader election prob-
lem become trivial if both mutual exclusion and reliable
broadcast are solved. As defined in [9], leader election needs to
ensure that a group whose topology remains static sufficiently
long will eventually have exactly one leader. Our solution
is the following: a leader candidate who acquires the token
before other candidates declares itself to be the leader; it then
broadcasts its addr with the RBCAST primitive (Fig. 8). An
alternative way is to put its ¢d into the token, thus trading
latency for reduced communication costs.

B. Complexity Comparisons

In this section, we defend our claim that NASCENT im-
proves the runtime efficiency of the described algorithms. For
this purpose, we show that the complexity of maintaining
NASCENT is of the same magnitude as unicast routing proto-
cols, and that the complexity of running distributed algorithms
upon NASCENT is greatly reduced. Note that the former
complexity is measured against one network perturbation (i.e.,
node or link failures) and the latter is evaluated with respect
to one specific operation.

We make use of time complexity (TC) and communication
complexity (CC) to quantify the performance of protocols.
TC is defined as the number of steps needed to perform a
protocol operation, and CC is the number of messages needed
to perform a protocol operation; we refer to [26] for detailed
definitions of these two terms and related synchrony assump-
tions. In Table I, we compare the performance of several

| [ DSDV | AODV; DSR | GB; TORA | NASCENT |

TC; | O(d) 0O(2d) 0O(2d) 0O(2d)

TC; | O(d) 0O(2d) O(l); O(2d) | O()

CC; | O(n) O(2n) O(2n) O(2n +n)*
CCs; | O(n) O(2n) O(z); O(2z) | O(2z + x)

n = Number of node in the network

d = Network diameter

z = Number of nodes affected by a topological change

| = Diameter of the affected network segment

* CC of DAG maintenance + CC of token request forwarding
Note that the second part appears only if TPP-Q is used.

TABLE I
PERFORMANCE COMPARISONS BETWEEN ROUTING PROTOCOLS AND
NASCENT.

routing protocols (DSDV [27], AODV [1], DSR [2], GB [21],
and TORA [23]) with NASCENT. Note that DSDV is used
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as a representative of table driven protocols. The complexity
computations of routing protocols are borrowed from [28],
[29]. Each protocol is evaluated in two situations, namely
initialization and postfailure, distinguished by the subscript
of performance terms (i and f, respectively). The compar-
isons show that the postfailure complexity of NASCENT
is comparable to those of routing protocols, whereas the
initialization complexity is slightly higher. However, directly
comparing table driven protocols (DSDV and NASCENT)
with on-demand protocols (AODV, DSR, TORA) is unfair,
since the complexity of an on-demand protocol is evaluated
for each route. In the case of group-oriented communications
(where one node needs routing paths to every other node), on-
demand protocols would incur a much higher complexity than
table driven protocols because, in the worst case, an actual CC
is the one shown in Table I times n(n — 1)/2. Furthermore,
given a topological change, GB and TORA incur a much larger
value of x than NASCENT does, because GB and TORA
maintain up to n DAGs whereas NASCENT needs only one.

The comparisons in Table I do not prove that NASCENT is
better than DSDV for supporting distributed services in VAGs.
However, if we look at distributed algorithms that make use of
the services provided by these two protocols, the superiority
of NASCENT becomes clear. In Table II, we use reliable
broadcast as an example to show the complexity of building
distributed algorithms on top of DSDV and NASCENT. The

| [ DSDV+HTRB | DSDV+RB | NASCENT+RB |
TC O(n) O(n) O(n)
cC O(n)* OBn+z)T+1° | OBn)F+17

HT_RB: the reliable broadcast protocol describe in [25]
RB: the reliable broadcast protocol describe in Section V-A.2
* Broadcast T Multi-hop unicast ¥ Single-hop unicast

TABLE II
PERFORMANCE COMPARISONS BETWEEN RELIABLE BROADCAST
PROTOCOLS BUILT UPON DSDV AND NASCENT.

algorithm proposed in [25] (we refer to it as HT_RB to credit
the authors) is a representative of non-token-based solutions. It
can be roughly described as “each member, upon first receiving
a message, broadcasts it to other members”. This explains why
it has a complexity of O(n) for both TC and CC. However, it is
much more expensive than a token-base approach, considering
that each message is broadcast within the group. If only the
number of messages is counted, the token-based algorithm we
proposed in Section V-A.2 has quite similar CCs when running
on top of DSDV and NASCENT, i.e., 1 broadcast message
(Fig. 8 line 6) and 3n unicast messages in the worst case (1
token passing message, 1 negative ack and 1 response for each
member), whereas the algorithm has to maintain a DAG with
x extra messages if it is based on DSDV. However, a unicast
message in the case of DSDV is transmitted through multi-
hop routing and DSDV does not provide an efficient way to
do broadcasting. Therefore, the algorithm based on NASCENT
is much more efficient thanks to the single-hop unicastings and
the collision avoidance GBCAST (Fig. 8 lines 21-23). Note

that although the messages used to pass the token are a part of
NASCENT, they are counted in Table II since these messages
are involved in operations (e.g., broadcasts) instead of coping
with network perturbations.

Actually, there are two other network layer services that
would compete with NASCENT: flooding and multicast (e.g.,
MAQODYV [30], ODMRP [31]). The complexity of flooding is
comparable to NASCENT+RB in the case of broadcast (but
without any reliability guarantee), but 2 flooding messages and
n (multi-hop) unicast messages are needed to achieve 1 mutual
exclusion [32]. With NASCENT, up to n mutual exclusions
can be achieved with n (single-hop) unicast messages (which
correspond to the cost of circulating the token). Multicast
protocols perform broadcasts within a subset of network nodes,
whose goal is different from VAG requirements. They are
less efficient than flooding for network-wide broadcast, and
they still have the aforementioned drawbacks of flooding: i.e.,
lack of reliability guarantee and efficient support to other
distributed algorithms.

VI. SIMULATIONS

Having provided complexity-based analysis, we use sim-
ulations to verify the ability of NASCENT to support the
envisioned applications.

A. Simulation Setup

We take ns-2.26 as the simulation platform. We use IEEE
802.11 with 2Mbps transmission rate as the wireless MAC
but reduce the nominal range from 250m to 100m, in order
to make our simulations more realistic. A two-ray ground
reflection model is used for radio propagation.

We simulate VAGs with 20 and 30 nodes in a square area
of 1km?, during 200 seconds of simulated time. Initially,
members of a VAG are randomly distributed within a region
of 250mx250m such that they are in the “vicinity” of each
other. The movement pattern is defined by a group mobility
model similar to [17] where the following process is repeated”:
a VAG chooses a group speed uniformly distributed between
zero and a maximum value as well as a random direction,
then each member chooses a velocity following a 2-D normal
distribution parameterized by the group speed and a standard
deviation and begins to move for a certain time period.
Upon timing out, the VAG remains static for some pause
time. Both moving time and pause time are described by a
uniform distribution between zero and a maximum value. Note
that assuming a random moving time instead of an arbitrary
destination partially solves the problem of decreasing average
speed pointed out by [33], which allows us to have a short
simulation time (e.g., 200s) without any warming-up period.
In this mobility model, the only parameter that has a significant
impact on the performance of NASCENT is the standard
deviation of individual member velocities (vStd hereafter).
Therefore, we fix the maximum values of group speed, moving

5This model is not compatible with some of the cooperative driving
scenarios described in Section II. Dedicated traffic modeling should be applied
for detailed investigations on these cases, so we leave it as future work.
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time, and pause time to 20m/s, 50s, and 10s, respectively, and
test NASCENT only under different vStds.

We set the beacon period to 200ms and test NASCENT
under T, = 100ms and 10ms (defined in Section IV-C.3). We
also assume a 18-byte beacon message and a 50-byte token
message. Members perform NASCENT initialization within
the first 2 seconds, then the member with the smallest id (i.e.,
the sink) generates a token and starts to circulate it. Each
simulation is carried out 10 times with different scenario files.

B. Stability of Token Circulation

In a static network, we say that the token circulation is stable
if the token visits every member in a cycle and the period of a
cycle remains constant. According to Property 3, NASCENT
meets this requirement. However, no protocol can be qualified
with this criterion in networks with a dynamic topology and
membership, notably because the token cannot visit a member
temporarily broken from the network in the current cycle.
Therefore, we take an alternative criterion: a token circula-
tion is stable if (i) the distribution of the circulation period
has a small variance and (ii) the token visits each member
infinitively often. The stability of token circulation under
different vStds is a major performance index of NASCENT,
because a stable token circulation guarantees the correctness
of upper layer distributed algorithms and indicates an effective
membership tracking.

Fig. 9(a) and (b) show the verification of the conditions
(1) and (ii), respectively. The value of vStd in the figure is
the ratio between a standard deviation and a mean value (the
group speed for the polar distance of the velocity and 7 for
the polar angle). Fig. 9(a) shows distributions of the circulation
period, and Fig. 9(b) presents distributions of the number of
token visits to a member (a way to check condition (ii) within
limited simulation time). Each distribution is characterized by
a mean value and a standard deviation. The mean values of the
circulation period are all quite close to n7T,, which matches
the prediction by PROPERTY 3 (D471} can be neglected if
T; < T). In the quasi-static scenarios with vStd = 0.01 (e.g.,

115
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The distributions of (a) token circulation period and (b) number of token visits to a member under different vStds, with Ts = 100ms.

a group of wireless game players in a moving train), the token
is stably circulated for both 20 and 30 node VAGs, since the
standard deviations of the circulation period and the number
of token visits to a member are relatively small (mainly due
to the fluctuation of wireless links). The stability is modestly
degraded in scenarios with vStd = 0.02,0.1, and 0.2 (real life
examples could be teamed robots).

C. Circulating Token with Smaller T

Fig. 9(a) shows that the token circulation period is in the
order of seconds with 7y, = 100ms (i.e., the token stays
100ms at each member in a cycle). Fig. 10 shows that, with
T, = 10ms, NASCENT provides a circulation period of
several hundred milliseconds. In practice, applications need
a certain amount of time to process backlogged operations
upon acquiring the token. Therefore, the value of T (and thus
the circulation period) is defined according to the processing
capacity of given devices.

For wireless multi-player gaming, T, = 10ms is a reason-
able value, because the device needs only to exchange some
state information with the token. Therefore, the resulting circu-
lation period is short enough to prevent impatient players from
giving up the game. Cooperative robotics need a relatively
long T since the behaviors of a token holder could involve
mechanical movements. Fortunately, a circulation period in
the order of seconds is tolerable, again due to the low-speed
mechanical movements involved in the applications.

D. Comparing TPP-Q with TPP-R

Both TPP-Q and TPP-R perform well in most cases. How-
ever, we have observed in simulations that there exist some
special situations where these algorithms fail to guarantee the
stability of token circulation. For example, in Fig. 11(a), mem-
ber a cannot pass the token to member b due to a link breakage,
but b is not aware of this until the breakage is detected by
LMTP after 7;, beacon periods. TPP-Q, in this case, leads to a
virtual partition since members that have sent requests to b will
not receive the token in the current cycle although the network
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Fig. 11. Special cases where (a) TPP-Q and (b) TPP-R fail to guarantee the
stability of token circulation.

is connected. A worst-case scenario for TPP-R is shown in
Fig. 11(b). Assume that addr is used to break a tie, the token
will follow the path @ — b — ¢ — - - -. Therefore, the token
will not visit members to the right side of a before it revisits all
members to the left side of a. The significance of the effect
of the virtual partition shown in Fig. 11(a) depends on the
values of T, and the beacon period. If they are comparable
or Ty is larger, the effect becomes less significant and TPP-Q
outperforms TPP-R, otherwise TPP-R wins. This conclusion
can be observed in Fig. 9 and 10. The conclusion also suggests
different application domains (defined by required 75 and
beacon period) for TPP-Q and TPP-R.

VII. CONCLUSION

In this paper, we focus on small-scale ad hoc networks (or
VAGs) that involve mainly group-oriented communications.
Our NASCENT aims at replacing routing protocols for VAGs
applications; it integrates a directed acyclic graph (DAG) with
token circulation to concurrently support various distributed
services. While the DAG is used to route messages to and
from a token holder and to bind VAG members together,
the circulated token grants temporary control to its holders.
The two components greatly facilitate the implementation of
distributed algorithms based on NASCENT. The light-weight
membership service embedded in NASCENT requires only
localized operations. NASCENT also includes new algorithms
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The distributions of (a) token circulation period and (b) number of token visits to a member under different vStds, with Ts = 10ms.

to initialize a token-oriented DAG among an emerging VAG
and to recompose the DAG upon the VAGs’ merging. These
are all crucial functions for coping with the transiency of
VAGs.

We have given examples of building distributed algorithms
on top of NASCENT and perform both complexity-based
analysis and simulations. We show that the complexity of
maintaining NASCENT is of the same magnitude as unicast
routing protocols, but that NASCENT greatly reduces the
complexity of building and running distributed algorithms,
compared with unicast and broadcast/multicast routing pro-
tocols as well as flooding. Further simulations prove the
feasibility of NASCENT,; it circulates a token stably and timely
even when networks undergo topology changes.

In terms of future work, we expect to gather more data on
the performance of NASCENT in different environments with
the implementation and field tests; this will further encourage
the deployment of NASCENT.
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APPENDIX

PSEUDOCODES FOR TOKEN PASSING PROTOCOL (TPP)
We report only the pseudocodes of TPP-Q in Fig. 12

but refer

to [22] for detailed algorithm descriptions of TPP

(including both TPP-Q and TPP-R).

name functions
epoch A counter that logs which cycle of token circulation the member is in.
reqgsent A pointer that directs to another member to which a token request has
been sent.

Q A queue that stores token requests (token_regs) from neighbors.
tokenheld | A flag that designates whether the member holds the token or not.

1: upon VIEWCHG do

2:  if |Q;| # O then

3: if tokenheld; A (token.gid > lview;.gid) then

4: tokenheld; <« false; STORE(token)

S: FWDREQ(ture)

6: else

7: priority + minegeo,{req.epoch}

8: for all nid & lview; and

all nid € lview; s.t. nid < id; do

9: DELETE(Q;, nid.addr)

10: if id; > minyigemicw; {nid} then

11: if (id; < regsent;) V (regsent; ¢ lview;) then

12: FWDREQ(true)

13: else if priority # minge,ec o, {req.epoch} then

14: FWDREQ(false)

15: else

16: regsent; «— id;

17: procedure FWDREQ(redirect)
. if redirect then

regsent; <« minnidewiew; {Nid}

20:  token_req.saddr <« addr;
21:  token_req.epoch <« mingeg,{req.epoch}
22:  SEND(token_req) to regsent;.addr

23: upon RECV(token_req) from id; do
24: i (|Qi| #0) A (id; < idj) then

25:
26:
27:

priority «— mingeeo, {req.epoch}
ENQUEUE(Q;, token_req)
if priority # min,.eo, {req.epoch} then

FWDREQ(false)
if Inid € lview; s.t. nid = id; then
INSERT (lview; , id ;) /* incur VIEWCHG */

31: upon RECV(token) from id; do

32:  if ISSTORETOKEN() then

MERGETOKEN(token)

34:  regsent; «— GETIDINVIEW(lview;, DEQUEUE(Q;))
35: if regsent; = id; then

36: tokenheld <+ true

37: DELIVER(token) /* to the upper layer */
38:  else

39: SEND(token) to regsent,;.addr; FWDREQ(false)

40:  if Anid € lview; s.t. nid = id; then

INSERT (lview;, id ;) /* incur VIEWCHG */

42: upon RELEASE(token) do

43:  regsent; «— GETIDINVIEW (lview;, DEQUEUE(Q;))
44:  SEND(token) to regsent,.addr

45:  tokenheld; « false; epoch; <« epoch; + 1
46:  req.saddr «— addr;; req.epoch «— epoch;

47:  ENQUEUE(Q;, req)

48: FWDREQ(false)

49:  token_timer; «— 0

50: upon TIMEOUT(token_timer;, Tpar) do
51:  init; < true; init_timer; <« O

52:  liew;.gid.B « lview;.gid.B — 1
53:  lview;.gid.addr «— addr;

Fig. 12. Response to different events in TPP of member 14
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