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SUMMARY

Altered states of embodiment are fundamental to the scientific understanding of bodily self con-

sciousness. The feeling of disembodiment during everyday activities is common to clinical conditions;

however, the direct study of disembodiment in experimental setups is rare compared to the extensive

investigation of illusory embodiment of an external object. Using mixed reality to modulate embodi-

ment through temporally mismatching sensory signals from the own body, we assessed how such mis-

matches affect phenomenal and physiological aspects of embodiment and measured perceptual

thresholds for these across multimodal signals. The results of a principal component analysis suggest

that multimodal mismatches generally induce disembodiment by increasing the sense of disownership

and deafference and decreasing embodiment; however, this was not generally reflected in physiolog-

ical changes. Although visual delay decreased embodiment both during active movement and passive

touch, the effect was stronger for the former. We discuss the relevance of these findings for under-

standing bodily self plasticity.

INTRODUCTION

Over the past two decades, experimental evidence has shown that the sense of body of healthy subjects is

remarkably plastic and built upon a constant prediction, weighting, and integration of multimodal signals

(e.g. Blanke, 2012; Ehrsson, 2012; Kilteni et al., 2015). Protocols involving multimodal stimulation suggest

that a majority of healthy individuals embody foreign or virtual limbs or full bodies when bodily sensations

(e.g. body movements or touch) are visually displayed in synchrony to matching sensations on the hidden

body (e.g. Botvinick and Cohen, 1998; Tsakiris et al., 2006; Lenggenhager et al., 2007; Slater et al., 2010).

Such illusory embodiment is usually manifested by the senses of body ownership and agency (Kalckert

and Ehrsson, 2012; Tsakiris et al., 2006) as well as self location (Longo et al., 2008) and has been evidenced

using a variety of experimental setups using both explicit (e.g. questionnaire) and implicit (e.g. propriocep-

tive drift or physiological response) measures (Blanke et al., 2015).

This line of research predominately investigated the influence of multimodal coherence on illusory embodi-

ment of an external or supernumerary bodily object; far more elusive, however, is how breaking multimodal

information about the own body might reduce embodiment or even induce a feeling of disembodiment

(Gentile et al., 2013; Graham et al., 2015; Hoover and Harris, 2012; Kannape et al., 2019; Newport and Pres-

ton, 2011; Otsuru et al., 2014; Newport andGilpin, 2011; Longo and Haggard, 2009; Osumi et al., 2018). This

is surprising, as disorders of bodily self awareness in clinical populations predominantly manifest in a loss of

embodiment, as a break of (own) body ownership and one’s sense of agency (Aglioti et al., 1996; Brugger

and Lenggenhager, 2014; Otsuru et al., 2014; Vallar and Ronchi, 2009). For example, in the case of soma-

toparaphrenia, resulting from a brain lesion, patients lack the feeling of ownership for the contralesional

arm, often attributing that arm to someone else (Aglioti et al., 1996; Brugger and Lenggenhager, 2014; Val-

lar and Ronchi, 2009) or even showing aggression toward it (Loetscher et al., 2006). Similarly, individuals

suffering from body integrity dysphoria feel strong alienation from one or several body parts often com-

bined with a desire for amputation (Blom et al., 2012; Brugger and Lenggenhager, 2014; Lenggenhager

et al., 2015). Such a feeling of disembodiment might also extend to the full body, both in neurological

(Smit et al., 2018) as well as in psychiatric disorders, as during depersonalization (Davidson, 1966; Sierra

et al., 2005) or borderline personality disorder (Löffler et al., 2019).

Important theoretical differences between ownership of an external body, reduced ownership for one’s

own body, and body disownership have been proposed (de Vignemont, 2011), and the degree of alteration
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in embodiment of the own body in illusory limb or full-body ownership paradigms remains elusive.

Although some authors suggest decreased ownership for the real body based on questionnaire (Longo

et al., 2008; Moseley et al., 2008; Lane et al., 2017) or even immunological data (Barnsley et al., 2011), others

found disownership of one’s own body to be rare and rather weak in rubber-hand-illusion-like setups (Fo-

legatti et al., 2009). Data from individuals with clinically caused alterations leading to loss of own-body

ownership generally suggest enhanced illusory ownership for an external body, pointing to different mech-

anisms between embodiment and disembodiment in patients suffering from schizophrenia (Thakkar et al.,

2011; see Shaqiri et al., 2018 for alternative findings during full body illusions), body integrity dysphoria

(Lenggenhager et al., 2015), or somatoparaphrenia (Smit et al., 2018; van Stralen et al., 2013; White and Ai-

mola Davies, 2017). This is further evidenced by a voxel-based lesion symptommapping study that found a

partial dissociation between brain areas involved in own-limb disembodiment as compared with supernu-

merary embodiment (Martinaud et al., 2017).

Here we directly manipulated embodiment of one’s biological hand using a controlled multisensory

conflict, without the use of a proxy/rubber hand. Previous studies suggest a feeling of disownership and

numbness during delayed and therefore conflicting visual feedback of a tactile or motor event in a mixed

reality setup using an infrared camera feed (Kannape et al., 2019), a mixed reality setup using a prerecorded

video (Gentile et al., 2013), or in theMIRAGE setup where participants enter their hand in a box where visual

aspects (spatial or temporal) of the hand are altered (e.g. Newport and Preston, 2010; Newport and Pres-

ton, 2011). We adapted such setups to be more realistic and ecologically valid using a wide field of view

webcam mounted on a head-mounted display (HMD), providing an online, naturally colored, view of the

video feed. This setup provides a direct view on the own full body in its current environment as seen

from a first-person perspective, roughly corresponding to the direct view of the own body. Our setup

was created to induce a strong prior assumption of actually viewing one’s own body and surroundings.

We then manipulated the delay of the video feed digitally, thus controlling the latency of visual as

compared to other bodily signals (i.e. tactile, motor, or potentially others). We used this setup in two

different experiments to evaluate the relative influence of multimodal mismatches about one’s own

body on the sense of embodiment and its physiological correlates. Importantly, although previous studies

investigated the effect of either visuotactile incongruency or visuomotor incongruency on the sense of

embodiment (e.g. Tsakiris et al., 2010; Kalckert and Ehrsson, 2012, 2014), the systematic comparison of

these and their contribution to disembodiment remains scarce. Yet, differential roles of motor and somato-

sensory signals in the sense of body have been suggested (Asai, 2015; Tsakiris et al., 2006, 2010), and the

role of actively (moving) in comparison to passively perceiving bodily signals to the bodily self has been

extensively discussed (Grechuta et al., 2019; Pia et al., 2019). We thus compared the relative contribution

of breaking visuomotor versus breaking visuotactile signals to disembodiment.

In Experiment 1 (Figure 1A), we manipulated visuotactile coherence, which is classically used to induce altered

embodiment in rubber-hand-illusion-likeparadigms. For two stimulation durations (1 and3min) the participant’s

handwas strokedwith a paintbrush while the visual feedback, was either delayed (�disembodiment illusion con-

dition) or not (�control condition). Alterations in embodiment, ownership, sensations of deafferentation, and

related phenomenal sensations were measured using questionnaires adapted from Botvinick and Cohen

(1998), Kannape et al. (2019), Lenggenhager et al. (2007), and Longo et al. (2008). To further understand the

phenomenal qualities, we used a psychometric approach by performing a principal component analysis

(PCA) on the questionnaire data of a larger sample. Furthermore, previously suggested implicit correlates of

embodiment, namely skin temperature (see Moseley et al., 2008, but see also de Haan et al., 2017 for a critical

view) and skin conductance responses (SCR) to threat (seeArmel andRamachandran, 2003) were assessed.Heart

rate variability (HRV) measures were added, as homeostatic processes have suggested to be altered in condi-

tions of alteration in body ownership (Barnsley et al., 2011). A measure of interoceptive accuracy has been

included, as poor accuracy has previously shown to be related to higher susceptibility to illusory ownership

and thus a more plastic bodily self (Monti et al., 2019; Tsakiris et al., 2011; but for exceptions see Crucianelli

et al., 2018 and David et al., 2014). We hypothesized that the sensory conflict between tactile and delayed visual

feedback would result in a reduced sense of embodiment and enhanced sense of disembodiment, which would

be reflected in both explicit (subjective) and implicit (physiological) measures, especially in participants with a

weak interoceptive accuracy.

In Experiment 2 (Figure 1B), we investigated the temporal thresholds for detecting synchrony for visuomo-

tor as compared to visuotactile delays and how different delays relate to the feeling of disembodiment.
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Figure 1. Experimental Procedure

Experimental setup in (A) Experiment 1 and (B) Experiment 2. In both experiments participants were sitting down with

both hands placed on a table. In Experiment 1, the visuotactile stimulation was either synchronous (VT sync) or

asynchronous (VT async). Each stimulation was followed by a knife threat and in the 60 s blocks also by the embodiment

questionnaire (Q). The 60 s blocks were always presented first, followed by the 180 s blocks. The order of VT sync and VT

async was counterbalanced across participants. In Experiment 2 the visuotactile stimulation was similar to that of

Experiment 1. Here, visuomotor or visuotactile stimulation were presented for 7 s during which the participant’s hand was

stroked two times. After each 7 s trial two questions appeared on the HMD. This was repeated 40 times for each modality,

with four repetitions of 10 possible delay steps. Then, a long block followed with synchronous visuotactile (VT sync) and

visuomotor (VM sync) as well as asynchronous visuotactile (VT async) and visuomotor (VM async) stimulation presented in

counterbalanced order.
Participants were exposed to 40 trials in each condition with differing delays across a range of 139–733 ms,

and after each trial synchrony perception and the feeling of ownership were assessed. These were followed

by a block of longer stimulation of 90 s in both a visuomotor and visuotactile condition where the visual

feedback was either delayed (�disembodiment illusion condition) or not (�control condition). Systematic

empirical comparisons of these multimodal couplings remain rather scarce, with some studies suggesting

similarly strong bodily illusions for visuomotor and visuotactile synchrony (Kalckert and Ehrsson, 2012,

2014), others suggesting that visuomotor synchrony may be more important for illusory embodiment

than visuotactile synchrony (Kokkinara and Slater, 2014; Roel Lesur et al., 2018), and some suggesting

the relative importance of active movements versus passive touch for an integrated and global sense of

body (Burin et al., 2015; Tsakiris et al., 2010, 2006). Moreover, there is evidence suggesting that the
iScience 23, 100901, March 27, 2020 3



Varimax Rotated Factor Loadings Commonalities

Sometimes I Felt . Component 1

Disownership

Component 2

Deafference

Component 3

Embodiment

q4 Alienation from my body .81 .21 .05 .70

q6 As if my body does not

belong to me anymore

.78 .18 .29 .73

q9 The seen body as an

image rather than as

my actual body

.65 .24 -.04 .50

q10 As if my body was numb .12 .81 -.03 .68

q8 As though the experience

of my hand was less vivid

than normal

.23 .81 -.14 .73

q7 As though my body had

disappeared

.25 .78 .30 .75

q1 As if the body I saw was

my own

.02 .00 .89 .79

q11 As if I could move the

seen body

.10 .05 .81 .67

q5 As if I was looking at another

person’s body

.53 -.05 .57 .61

Eigenvalues 2.11 2.06 1.98

% Of variance 23 23 22

Table 1. Factor Loadings from the PCA on Nine Items of the Questionnaire in the Asynchronous Visuotactile

Condition

Note. Factor loadings >.50 are in boldface.
temporal window of multisensory integration of peripheral signals is narrowed when followed by efferent

signals as compared to only afferent signals (Zierul et al., 2019); however, these findings have not explicitly

been linked to the sense of body.

RESULTS

Results of Experiment 1

Principal Component Analysis Reveals Three Main Components of Disembodiment

A PCA was used to investigate the structure of participants’ experience and to quantify the complex expe-

rience during this illusion. The PCA was conducted on the questionnaire data after synchronous or asyn-

chronous visuotactile stimulation. Data from Experiment 1 (n = 30), Experiment 2 (n = 32), and additional

data from an unpublished experiment of 15 participants were used for the PCA. After running a primary

PCA to determine the number of components, a secondary PCA with three components was used for

the analysis. The three components together explained 68% of the variance in the questionnaire data

(see Table 1 for component loadings after varimax rotation and explained variance of each component).

The first component was termed disownership and comprised items that refer to the experience of not

belonging of the body, alienation, and perceiving the body as an image rather than an actual body (q4,

q6, and q9). The second component was termed deafference (Longo et al., 2008) and included items

related to the feeling of numbness, vividness, and disappearing of the body (q10, q8, and q7). The final

component, embodiment, consisted of items related to the experience of own body ownership, agency,

and looking at one’s own body (q1, q11, and q5).

Responses to questionnaire items are in line with our hypotheses (Figure 2, see Table S2 for descriptive

statistics and results of the comparisons for all individual items). Participants reported a relative increase
4 iScience 23, 100901, March 27, 2020
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The three components of the questionnaire differed significantly between the synchronous (sync) and asynchronous (async)

visuotactile (VT) stimulation in Experiment 1 (A). In Experiment 2 (B) there were significant differences between the synchronous

and asynchronous stimulation for both the visuotactile, and visuomotor (VM) stimulation, as well as between visuotactile and

visuomotor stimulation in the asynchronous, but not the synchronous, condition. *p < .05, ** p < 0.01, ***p < 0.001.
of disownership, deafference (though generally low [<0.5] in both conditions), and a relative reduction of

embodiment (though generally still high [>0.5] in both conditions) after asynchronous visuotactile

stimulation compared with synchronous stimulation. As expected, responses to the control item (q3)

did not differ between conditions, and the manipulation check item (q2) differed between the synchronous

and asynchronous condition, which confirmed that participants were able to perceive the manipulation.

Skin Conductance Response to Threat Is Not Altered

Previous studies demonstrated that SCRs to threats increased after synchronous stroking in rubber-hand–

illusion-like paradigms (e.g. Armel and Ramachandran, 2003; Petkova and Ehrsson, 2008): a study showed

reduced SCR to a threat after multisensory mismatching stimulation (Gentile et al., 2013), another a reduc-

tion of SCR after stimulating illusory dissapearance of the hand (Newport and Gilpin, 2011), and a similar

pattern after asynchronous multimodal stimulation (Newport and Preston, 2010, 2011). As disownership

was higher in the asynchronous condition, we hypothesized that SCRs would be reduced as compared

to the synchronous condition. Even though we found an increase in skin conductance after threat, we

did not observe significant differences between the synchronous and asynchronous condition in neither

the short, (synchronous: Mdn = 1.13, IQR = 0.90–1.38; asynchronous: Mdn = 0.94, IQR = 0.71–1.16; Z =

�1.42, p = .16) nor the long block (synchronous: Mdn = 1.01, IQR = 0.60–1.19; asynchronous Mdn =

0.94, IQR = 0.58–1.10; Z = �0.48, p = .63). This indicates that there was no evidence for a difference in

the sympathetic activation in response to a threatening stimulus to the hand after asynchronous as

compared to synchronous stimulation, even though participants subjectively experienced less embodi-

ment and increased disownership over their own hand according to the questionnaire.

Skin Temperature Is Not Altered

Comparisons between synchronous and asynchronous conditions in the short block did not reveal any signif-

icant differences between conditions in temperature change for the neck (p = .76), right hand (p = .38), or left

hand (p = .27). However, in the long block, there was a significantly smaller increase in skin temperature of the

left hand across the trial in the asynchronous (Mdn = 0.038, IQR = �0.009–0.143) than synchronous condition

(Mdn = 0.078, IQR = 0.012–0.158; Z = �2.09, p = .04, r = �.30). We further aimed to disentangle this small

but significant effect for the left hand, by assessing differences between the conditions in each of the three mi-

nutes separately, but these analyses did not show any significant differences for any of these time periods (all

ps> .48). There were no significant differences for the neck (p = .37) or the right hand (p = .72).

Heartrate Variability Is Not Altered

HRV, as quantified by the RMSSD, did not differ between the synchronous (Mdn = 30.62, IQR = 21.22–54.37)

and the asynchronous condition (Mdn = 32.84, IQR = 24.61–45.30; Z = �0.25).
iScience 23, 100901, March 27, 2020 5
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Figure 3. Predicted Ownership by Delay and Sensitivity to Delay

The three-way interaction of delay, modality (visuotactile [VT] and visuomotor [VM]), and sensitivity is displayed. Lines

show predicted values from the model, where sensitivity was set to M � 1 SD for high sensitivity and M + 1 SD for low

sensitivity for visualization purposes.
No Relation of Illusion Strength and Interoceptive Accuracy

Overall mean interoceptive accuracy was 0.62 G 0.17, which is comparable to other studies (e.g. Garfinkel

et al., 2015). We performed a median split on interoceptive accuracy scores to assess the differences in pre-

viously reported significant effects of synchrony between participants with high (Mdn = 0.77, IQR = 0.67–

0.85) and low (Mdn = 0.46, IQR = 0.43–0.52) interoceptive accuracy. There was no significant difference be-

tween participants with high and low accuracy in the subjective strength of the illusion (difference between

category average in synchronous and asynchronous) for the disownership (Z = �0.48, p = .63), deafference

(Z = �0.33, p = .74), and embodiment (Z = �0.63, p = .53) category.

Summarized Results of Experiment 1

In this first experiment we showed that asynchronously shown stroking of one’s own real hand using a

video-based virtual reality setup leads, as predicted, to consistent and significant changes in the subjective

sense of the bodily self as indicated by the responses to the questionnaire. According to the principal

component analysis the response to this questionnaire can be clustered in three main components, namely

disownership, deafference, and embodiment. During asynchronous as compared with synchronous strok-

ing embodiment for one’s own body is reduced, whereas the sense of disowernship and deafference is

enhanced. In contrast to our prediction based on rubber-hand-illusion-like setups, despite these manipu-

lations we did not evidence any physiological changes. There was no evidence for changes in the electro-

dermal response to threat, and the temperature measure only showed amild trend toward a lesser increase

in hand temperature in the asynchronous condition. Furthermore, we did not find the predicted relation

between the individual strength of interoception and the subjective measures of the illusion.
Results of Experiment 2

Questionnaire Ratings Reveal Subjective Changes after Asynchronous Stimulation with a Stronger
Effect of Visuomotor Than Visuotactile Signals

To assess the subjective experience of participants after 90 s of visuotactile or visuomotor stimulation, differ-

ences between responses to questionnaire items in the asynchronous and synchronous conditions were

assessed (see Figure 3; and Tables S4 and S5 for descriptive statistics and results for each individual item).

The results confirmed our hypothesis that asynchronous visuotactile and visuomotor stimulation induced a

feeling of disownership for the seen body and followed a same pattern as in Experiment 1. There was a signif-

icant main effect of condition for the three illusion-related factors that were determined in the PCA (see section

Principal Component Analysis Reveals ThreeMainComponents ofDisembodiment). Interestingly, the reduction

of embodiment and increase in deafference and disownership were stronger in the asynchronous visuomotor

than visuotactile condition. There were no significant differences between conditions for the control item (q3),

and the differences in q2 confirmed that participants were able to perceive the manipulation.
6 iScience 23, 100901, March 27, 2020



Synchrony Judgements Did Not Differ between Modalities

To assess whether sensitivity to delay was affected by modality of stimulation, we compared the PSE in the

visuomotor (M = 0.338, SE = 0.015) and visuotactile condition (M = 0.327, SE = 0.014). There was no signif-

icant difference between the two conditions (Z =�.55, p = .58). Sensitivity was also not correlated with

relative changes in any of the questionnaire components between the synchronous and asynchronous stim-

ulation in both the visuotactile (all ps> .59) and visuomotor (all ps> .44) conditions. Crucially, responses to

only 2.3% of all trials in the visuotactile and 0.8% in the visuomotor condition stated that the 0 ms delay was

asynchronous, thus indicating that stimulation with the intrinsic delay was generally perceived as

synchronous.

VAS Body Ownership Ratings Drop with Increasing Delay

To assess the influence of delay, modality, and delay perception on ownership, we fitted mixed models in a

stepwise procedure. First, we fitted a model that included fixed effects for delay and condition and their

interaction (see Table S6 for model coefficients). To explore whether sensitivity to delay for the different

modalities, as quantified by the PSE, explained additional variance, we added the main effect and the

two- and three-way interactions with delay and condition in a second model. The model fit of the PSE-

model was better than that of the initial model (BIC model 1 = �1676.7, BIC PSE-model = �1709.5), and

the PSE-model explained 32% of the variance in VAS ownership ratings (pseudo R2 = .32). Adding age

as a predictor did not improve the model fit (BIC age-model: �1705.2) and was thus removed from the

model. There was a significant three-way interaction of all predictors (delay 3 modality 3 PSE; b = 2.19,

95% CI: 1.15, 3.23, t(2213.7) = 4.13, p < .001; see Table S7 for all model coefficients). Overall, VAS ratings

of ownership decreased with increasing delay. A stronger decrease in ownership was present especially in

the visuomotor condition for participants with high sensitivity for delay. For lower sensitivity to delay there

was no strong difference in the decrease of ownership between the visuotactile and visuomotor conditions

(see Figure 3).

Summarized Results of Experiment 2

The results from the long stimulation in Experiment 2 show that visuomotor asynchrony when actively mov-

ing the hand in the same setup as in Experiment 1 also induces a decrease in embodiment coupled with an

increase in disownership and sense of deafference. These changes were significantly stronger during visuo-

motor than during visuotactile mismatch. In line with this, the results from the short time exposure to

various delays show that although increasing delay attenuates embodiment in both modalities, in partici-

pants with high delay sensitivity visuomotor delays affected embodiment already at smaller delays.

Together these results might suggest a stronger contribution of visuomotor as compared to visuotactile

synchrony in maintaining embodiment of the own hand or/and a heightened sensitivity to mismatch during

active body movements as compared with passive touch. It should be noted, however, that the visuomotor

task included a tactile component when participants put their hand on the table after each movement tra-

jectory, in which case it may be the trimodal interaction that affects disembodiment more strongly.
DISCUSSION

In two separate experiments and a PCA for a larger sample, we set out to assess how mismatching multi-

modal signals about one’s own body alter the sense of embodiment in healthy participants. For this, the

participant’s hand was passively stroked or actively moved while their own body was seen from a first-per-

son perspective on an HMD in a realistic video-based environment. The visual signals were either delayed

(asynchronous; experimental condition) or presented simultaneously (synchronous; control condition;

although including the system delay of �139 ms) compared to the bodily signals (i.e. tactile or motor

related). We used a (dis)embodiment questionnaire as well as physiological measures that have previously

reported to correlate with body ownership (Experiment 1) and a series of synchrony and embodiment

judgements across different visuotactile and visuomotor delays (Experiment 2). The two studies revealed

three main findings. First, both visuotactile and visuomotor mismatches led to increased disembodiment,

which predominantly involved the feelings of disownership, deafference, and embodiment (PCA results

Experiment 1 and Experiment 2). Second, visuomotor delay when actively moving the hand led to a stron-

ger feeling of disembodiment than visuotactile delay during passive touch. In participants with high delay

sensitivity this was also evidenced by a steeper decay of body ownership with increased delay for visuomo-

tor signals (Exp 2). Third, implicit measures of body ownership such as SCR and skin temperature showed

overall no evidence of being modulated by the illusion, except for a small difference in the hand
iScience 23, 100901, March 27, 2020 7



temperature that should be taken with caution because it was only significant for the whole duration of the

long-stimulation block and not for shorter periods within that block (Experiment 1).

Multimodal Temporal Mismatches from the Own Hand Alter the Bodily Self

Subjective changes in embodiment were measured with a questionnaire given to the participants after a

stroking period. In line with previous studies (e.g. Gentile et al., 2013; Kannape et al., 2019) asynchronous

stimulation generally reduced the feeling of embodiment, suggesting that synchronous multisensory in-

puts are crucial not only to induce embodiment over a fake body (e.g. Botvinick and Cohen, 1998) but

also to maintain the sense of embodying one’s own body. In a PCA based on the asynchronous visuotactile

stroking, we identified three main factors of the subjective disembodiment experience. These are disow-

nership corresponding to the experience of not belonging of the body, alienation, and perceiving the body

as an image rather than as an actual body; deafference, which, in accordance to Longo et al. (2008) includes

numbness and vividness, plus in our case disappearance of the own body; and embodiment, consisting of

the experience of body ownership, agency, and the feeling of looking at one’s own body. Our results show

that both visuotactile and visuomotor mismatches lead to increased disownership, deafference, and

decreased embodiment respectively, when compared to synchronous stimulation.

In the case of synchronous stimulation, only two main factors were identified in the PCA, namely embodi-

ment and disownership, together accounting for 71% of the variance (see Table S3). These results exclude

the deafference component found for asynchronous stimulation. Although this might be expected because

our bodily experience is not generally accompanied by a sense of deafference, it should be noted that

asynchronous signals led not only to a disruption of the components found for synchronous signals but

also to a new phenomenal component (see Longo et al., 2008 for similar results using a rubber hand illu-

sion). This suggests that disembodiment does not only vary along the dimensions of embodiment and dis-

ownership, but also includes a sense of deafference.

As mentioned in the Introduction, the direct study of disembodiment in contrast to embodiment of a fake

limb is not trivial, as important conceptual (e.g. de Vignemont, 2011; Folegatti et al., 2009) and neuroana-

tomical (Martinaud et al., 2017; Zeller et al., 2011) differences between these two mechanisms have been

suggested. Furthermore, there is only indirect, sparse, and non-conclusive evidence of embodiment of a

fake limb altering disembodiment (de Vignemont, 2011; Folegatti et al., 2009). Thus the currently most

common way to study disembodiment, namely in RHI-like paradigms (Barnsley et al., 2011; Longo et al.,

2008; Moseley et al., 2008), is problematic, as it (1) does not necessarily apply to some disturbances in

body ownership and (2) may not actually induce the phenomena of interest. In this sense, the direct stim-

ulation of disembodiment by altering own-body related signals may be important and more ecologically

valid than using fake limbs. Several experimental setups for stimulating disembodiment on the own

body exist, using mirror-based (e.g. McCabe et al., 2005), MIRAGE (e.g. Newport et al., 2010; Newport

and Gilpin, 2011; Newport and Preston, 2011), infrared camera feed (Kannape et al., 2019), or pre-recorded

setups (Gentile et al., 2013), yet we add to this palette the capacity to show the full body and the natural

environment from a first-person perspective and alter it in real time (see Stanton et al., 2018 for a similar

setup for manipulating non-temporal aspects of the body).

The Effect of Visuomotor as Compared with Visuotactile Mismatch on the Phenomenology of

Disembodiment

Our questionnaire data from Experiment 2 replicated and extended the findings of Experiment 1 by

showing that both asynchronous visuotactile signals as well as asynchronous visuomotor signals lead to

increased disembodiment. Moreover, prolonged asynchronous visuomotor signals had a stronger effect

on disembodiment compared with that of visuotactile signals. Although previous studies using foreign

bodies or body parts have suggested that the tolerance for asynchronous visuotactile versus visuomotor

stimulation during embodiment might differ (Kalckert and Ehrsson, 2012; Kokkinara and Slater, 2014; Roel

Lesur et al., 2018; Tsakiris et al., 2006) and the specific contribution of actively moving on the bodily self

has been intensively discussed (Grechuta et al., 2019; Pia et al., 2019), we here compared the relative

contribution of these couplings by directly manipulating signals explicitly related to the own body.

Although it is known that in the clinical population both alterations in the sensory and motor systems

might correlate with feelings of disembodiment, our results suggest that there may be a stronger contri-

bution of the latter to disembodiment. On these lines, for example the rubber hand illusion has been

related to activity in the premotor cortex (Ehrsson et al., 2005; Ehrsson et al., 2004); and in clinical cases
8 iScience 23, 100901, March 27, 2020



Burin et al. (2015) found that participants with left upper-limb hemiplegia experienced a greater rubber

hand illusion in their affected hand when compared with both their unaffected hand and a control group,

arguing that the reduction of efferent signals in these participants contributed to weakening their own

body ownership, resulting in a more plastic sense of body. Our results further extend these findings

showing that in healthy participants, breaking visuomotor synchrony facilitates the sense of

disembodiment.

The data from the short trials of different delay stepsmight provide amore sensitive measure of the relation

between small multimodal mismatches and its subjective interpretation and disembodiment. As hypothe-

sized, the results generally showed better asynchrony detection and a decreased sense of ownership over

one’s own body with increased delay. This finding was true for both the tactile and the motor modality, and

there were no significant differences in terms of perceived delay betweenmultimodal couplings. This is sur-

prising as previous literature suggested a greater delay sensitivity depending on the strength of efferent

signals (Hoover and Harris, 2012; Lau et al., 2004; Winter et al., 2008; the latter however without a statisti-

cally significant difference). A possible reason for this difference to previous literature is that our protocol

might not have had a high enough temporal resolution to assess small differences in synchrony judgments,

as previous literature has found it varying between 22 ms (Hoover and Harris, 2012) and 29 ms (Winter et al.,

2008). Moreover, theoretical models would suggest that with the presence of efferent signals, there would

be a stronger expectation of afferent signals (Wolpert, 1997), thus affecting the perception of the afferent

stimuli.

High sensitivity to delay, however, predicted overall lower ownership ratings and especially in the visuo-

motor condition a faster decay. Although previous studies have shown that greater temporal binding win-

dows (TBW) of multisensory integration increase susceptibility to illusory embodiment of a rubber hand

(Costantini et al., 2016), our results show that participants with high delay sensitivity have an overall stron-

ger tendency to lose body ownership with increased delay between visuotactile or visuomotor signals

than participants with lower sensitivity. A recent study found that the binding of incongruent multisensory

signals in the ventriloquist effect (an effect where the location of an auditory stimulus is mapped to that of

a visual stimulus: Pick et al., 1969; Talsma et al., 2010) drops after active movements (Zierul et al., 2019),

i.e., incongruent signals are more easily bound when no efferent signals are involved. Zierul et al. (2019)

expected, following a predictive coding account, that action would modulate the predictions and there-

fore bind incongruent stimuli more with action than without; however, their results showed the contrary.

The authors thus hypothesize that action did form a stronger prediction, yet resulting mismatches were

more salient and therefore multisensory incongruences were more evident. In our results, a similar expla-

nation could be applied, i.e. expectations based on the motor-prediction were broken, whereas for the

only visuotactile signals these expectations were not present. Moreover, in the visuomotor task, there

is, next to matching between the motor command and the seen visual consequence, an additional

mismatch of proprioceptive and visual signals that is not present during purely visuotactile tasks. This

might explain the steeper decay of body ownership with increased delay. In this sense, the matching

of motor predictions with their sensory consequences is important not only for the sense of agency but

also for the maintenance of a healthy sense of ownership (perhaps even more than the temporal coher-

ence of somatosensory signals).

Importantly, low sensitivity to delay did not differently influence ownership sensation in the visuomotor and

visuotactile tasks but rather generally predicted higher ownership. This could suggest that the effect might

bemediated by stronger visual dependence: participants with stronger visual dependence would not be so

sensitive to incongruencies to other senses because they rely stronger on vision as compared to other

senses (Witkin and Asch, 1948). Indeed visual dependence has shown to be correlated with susceptibility

to variousmultisensory illusions (David et al., 2014; Rothacher et al., 2018). A stronger dependence on visual

signals could thus explain why there was no difference in the decay of ownership for visuomotor and visuo-

tactile tasks for participants with low delay sensitivity; however, we did not objectively assess such

dependence.
No Evidence for Physiological Changes

The generally strong effect in the subjective measures of the illusion was not mirrored in the chosen implicit

measures (skin temperature, SCR, HRV), where no evidence for, or only weak effects, were found. Only the

temperature measure tentatively suggests a condition-specific effect by revealing a significantly smaller
iScience 23, 100901, March 27, 2020 9



increase of temperature for asynchronous compared with synchronous stroking. This is in line with literature

suggesting that a decrease in body temperature links to own-body disembodiment during illusory embodi-

ment of a fake body (Moseley et al., 2008; Salomon et al., 2013; but see also de Haan et al., 2017) or in neuro-

logical damage (Moseley et al., 2008; but see also Lenggenhager et al., 2015). As in previous literature, such

relatively lower temperature was in our data specifically found for the stimulated hand (Macauda et al.,

2015) and only after longer stimulation (cp. Macauda et al., 2015; Moseley et al., 2008, both reporting a

drop in temperature only after more than aminute of stimulation), which might be related to the adaptation

time homeostatic processesmight need. However, when comparing temperature for different time periods

of the long stimulation block, we found no significant differences between time periods. Thus, these results

should be taken with caution. Moreover, an increasing amount of literature doubts a meaningful relation-

ship between body ownership and body temperature (de Haan et al., 2017).

SCR is an indicator of physiological reactions to threat (Armel and Ramachandran, 2003; Ehrsson, 2007).

Previous studies have linked embodiment of an external body part to an SCR when such body part is threat-

ened (Armel and Ramachandran, 2003; Ehrsson, 2007), a study has found a weaker SCR with decreased

embodiment of the own body in a setup similar to ours (Gentile et al., 2013), and other studies using the

MIRAGE illusion box for stimulating the hand found a significantly weaker SCR after illusory disappearance

of the hand (Newport and Gilpin, 2011) and asynchronous multimodal stimulation (Newport and Preston,

2010, 2011). Following this, we hypothesized to find a weaker response in the asynchronous compared with

the synchronous stimulation condition. However, such an effect was not evident in our data, with both con-

ditions showing a response to threat. On the other hand, given that HRV has been suggested to be a mea-

sure of homeostatic processes (Berntson et al., 1997), we expected to find lower HRV during asynchronous

stimulation due to a homeostatic disturbance, which was however not evidenced in our analysis.

So far, we can only speculate on the reasons for this lack of significant results in the chosen threat-related

implicit measures. Although generally the relationship between explicit and implicit measures of embodi-

ment manipulations has been questioned (de Haan et al., 2017; Rohde et al., 2011; Rohde et al., 2013), and

in the case of HRV a recent study found no differences after altering embodiment in a full-body illusion (Park

et al., 2016), it may be that the ecological congruency of the seen environment and body might have

impeded an effect on our implicit measures. That is, in our setup participants are actually seeing their

own hand and surroundings, with a higher degree of ecological plausibility compared with previous setups

(e.g. Gentile et al., 2013). From an ecological point of view, it makes sense that participants would more

readily extend the physiological reaction (protective space) to an external object than diminishing it. Addi-

tionally, although there is a significant increase of subjective disembodiment following the asynchronous

stimulation, the degree of the embodiment component is still relatively high (>0.5 on the scale), which

may account for the sustained physiological response. Alternatively, it may be that even if there is an in-

crease of disembodiment of one’s own body during asynchronous stimulation, it might be too fragile

and that body perception may be immediately restored when attention is shifted away from the asynchro-

nous stroking, regardless of limb-related multisensory synchrony. Along these lines it has been proposed a

low degree of ownership does not necessarily result in disownership but that attention to the lack of owner-

ship may (de Vignemont, 2011).

Lastly, although not directly linked to physiological changes but to conscious monitoring of physiological

changes, high interoceptive accuracy has previously been related to lower malleability of the bodily self in

the context of the rubber hand illusion paradigm (Monti et al., 2019; Tsakiris et al., 2011). We thus expected

interoceptive accuracy as measured by a heartbeat counting task to predict the degree of disembodiment

after asynchronous stimulation. Yet, interoceptive accuracy did not predict the strength of disembodiment

in the current study. Our findings are in line with recent studies showing no relation between interoception

and suggestibility to bodily illusions (Crucianelli et al., 2018; David et al., 2014).
General Considerations, Challenges, and Outlook

Setups involving the own body to manipulate embodiment in contrast to requiring supernumerary body

parts (such as the rubber hand illusion) may be more directly related to the loss of ownership described

in certain psychiatric and neurological conditions and may thus be important for understanding such dis-

orders. The use of an HMD for showing and manipulating the full body viewed from a first-person perspec-

tive, and not exclusively a limb, may offer additional advantages. The protocol used in Experiment 2 allows

for a sensitive assessment of the contribution of various multimodal mismatches to the loss of body
10 iScience 23, 100901, March 27, 2020



ownership and can be expanded to measure the temporal thresholds in relation to body ownership for

other multimodal couplings. In contrast to illusory supernumerary ownership, which has described to occur

after 11 s in visuotactile rubber hand setups (Ehrsson et al., 2004), 22.8 s in active visuomotor (Kalckert and

Ehrsson, 2017), 36 s in a visuotactile virtual hand setups (Perez-Marcos et al., 2012), and 20 s in MIRAGE

mixed reality setups (e.g. Newport et al., 2010; Newport and Preston, 2011; Preston and Newport, 2011),

our Experiment 2 shows that even after short periods of stimulation (7 s), it is possible to manipulate the

sense of one’s own body consistently and reliably cp. also (Kannape et al., 2019). Such a procedure can

be sensitive for comparing individual differences as well as between different populations. Future studies

comparing populations and multisensory mismatches are encouraged to shed light on the concept of

bodily self plasticity. On these lines, a direct comparison between the rubber hand or a virtual hand illusion

and our setup would offer important insights.

Although the plasticity of the bodily self has traditionally been measured as the susceptibility to illusory

supernumerary embodiment, there is currently no consensus on whether higher delay sensitivity in terms

of own-body embodiment is a result of a more or less plastic bodily self or vice-versa. Motivating the

question of whether there is a ‘‘general body plasticity’’ or promptness to own-body disembodiment

and to supernumerary embodiment may be separate components of such plasticity. Costantini et al.

(2016) found that a small TBW leads to lower susceptibility to illusory embodiment of a rubber hand,

whereas we found that small TBWs lead to higher susceptibility to own-body disembodiment. This

may seem paradoxical, because the same condition (small TBW) leads to both lower susceptibility to su-

pernumerary embodiment and higher to own-body disembodiment. Such a contrast may suggest the

need of separate components of bodily self plasticity, say one for supernumerary embodiment and

one for own-body disembodiment. This would follow neuroanatomical findings in patients with disorders

of embodiment (Martinaud et al., 2017; Zeller et al., 2011). This differentiation could help to explain the

different results in implicit measures between previous literature and our study. However, it could also be

that more proneness to a disembodiment illusion is actually a result of a less plastic bodily self, thus a

weaker susceptibility to supernumerary embodiment. In this scenario, participants with a highly plastic

sense of body would still maintain embodiment even during stronger multimodal mismatches, adapting

their bodily sense to the ongoing mismatching signals. Although our data are inconclusive regarding this

point, we propose that this is an important debate in the field of bodily self consciousness, which in our

view has not received enough attention. We hope to encourage future experimental inquiries that disen-

tangle these questions; studies directly comparing our protocol with the rubber hand illusion may offer

additional insights.

With the increasing availability of mixed reality technologies, and in particular with the growing availability

of augmented reality, understanding how our sense of body may change through our interactions with a

mediated view of reality and the temporal mismatches that this may entail is of great importance. Again,

the study of bodily self consciousness would benefit of studying more on how seeing one’s own body,

instead of fake or virtual bodies, through digital visual manipulations affects embodiment. This is thus

not only important at a theoretical and clinical level but may imply relevant practical knowledge for a

near future where mixed reality technologies may be ubiquitous and thus constantly manipulate our sense

of body. The study of disembodiment is relevant for various clinical conditions and has been studied rather

indirectly in the general population. Our disembodiment protocol may be important for the scientific study

of bodily self consciousness, both to induce a sense of disembodiment and as an assessment tool. In partic-

ular, it may be a useful method to measure the degree and sensory weighting of bodily self plasticity in the

general as well as clinical populations. The results of the two experiments presented here extend the pre-

vious literature showing that mismatching multisensory signals contribute to increased disembodiment of

one’s own body as expressed by the phenomenal dimensions of disownership, deafference, and embodi-

ment. Moreover, they provide evidence for the differential contribution of sensorimotor signals compared

to somatosensory in maintaining our sense of body. Lastly, we promote a debate regarding the concept of

bodily self plasticity, proposing either that it has two independent dimensions for supernumerary embodi-

ment and for disembodiment respectively or that strong susceptibility to disembodiment is a reflection of

low bodily self plasticity.
Limitations of the Study

Readers should note that in our visuomotor task, participants were instructed to start and end every move-

ment trajectory with their hand on the table during the visuomotor task; therefore the procedure also
iScience 23, 100901, March 27, 2020 11



involved touch. Along these lines, the presence of an acoustic metronome may be an additional source of

multisensory binding. Future studies should aim at constraining to the modalities in question. The exper-

imenter was not blinded to the condition when performing the threats in Experiment 1, and neither speed

nor kinematics were controlled for. Lastly, our short trials of Experiment 2 do not allow us to disentangle

whether the explicit judgment of synchrony may affect the participants’ subsequent response regarding

body ownership. Future studies should address this point.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100901.
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Supplementary figures and tables 

 
Table S1 related to Table 1 

Descriptive statistics and pairwise comparisons of additional questionnaire data used in the PCA, 

N = 15. 

 Visuotactile Synchronous 
Visuotactile 

Asynchronous 
   

 Median IQR Median IQR Z p r 

Disownership 0.13 0.04 - 0.27 0.55 0.46 - 0.63 -3.74 <.001 -.68 

q4 0.07 0.03 -0.16 0.67 0.38 - 0.76 -4.01 <.001 -.73 

q6 0.10 0.03 -0.26 0.60 0.33 - 0.70 -3.01 .003 -.55 

q9 0.17 0.03 - 0.39 0.58 0.37 - 0.70 -2.71 .007 -.49 

Deafference 0.04 0.03 - 0.11 0.58 0.27 - 0.63 -3.52 <.001 -.64 

q10 0.06 0.02 - 0.13 0.72 0.36 - 0.77 -3.33 <.001 -.61 

q8 0.06 0.03 - 0.10 0.53 0.09 - 0.67 -2.64 .008 -.48 

q7 0.04 0.02 - 0.09 0.34 0.06 - 0.65 -3.74 <.001 -.68 

Embodiment 0.90 0.85 - 0.96 0.58 0.41 - 0.73 -4.01 <.001 -.73 

q1 0.95 0.90 - 0.98 0.70 0.28 - 0.81 -4.01 <.001 -.73 

q11 0.94 0.83 - 0.97 0.63 0.52 - 0.78 -3.42 <.001 -.63 

q5 0.92 0.71 - 0.96 0.39 0.17 - 0.69 -3.33 <.001 -.61 

Control item and manipulation check      

q3 0.96 0.94 - 0.99 0.93 0.85 - 0.97 -2.23 .026 -.41 

q2 0.96 0.84 - 0.98 0.68 0.24 - 0.72 -2.57 .010 -.47 

Components based on the PCA in the synchronous condition  

Component 1 0.21 0.17 - 0.31 0.50 0.39 - 0.56 -4.01 <.001 -.73 

Component 2 0.94 0.87 - 0.97  0.70 0.44 - 0.79 -4.01 <.001 -.73 

Note: VAS ratings on q5 were inversed, so that higher scored indicate higher embodiment. 

 

 

 

 

 

 

 

 

 



TEMPORAL MISMATCHES MODULATE EMBODIMENT 
 

2

 

Table S2 Related to Table 1 

Descriptive statistics and pairwise comparisons of questionnaire data in Experiment 1, N = 30. 

 Visuotactile Synchronous Visuotactile Asynchronous    

 Median IQR Median IQR Z p r 

Disownership 0.14 0.05 - 0.41 0.61 0.40 - 0.72 -5.08 <.001 -0.66 

q4 0.11 0.03 – 0.30 0.59 0.25 – 0.78 -4.59 .005 -0.59 

q6 0.07 0.03 – 0.23 0.54 0.18 – 0.70 -4.96 <.001 -0.64 

q9 0.20 0.05 – 0.53 0.61 0.31 – 0.78 -4.34 <.001 -0.56 

Deafference 0.14 0.04 - 0.41 0.30 0.22 - 0.52 -5.83 <.001 -0.75 

q10 0.11 0.03 – 0.43 0.29 0.12 – 0.69 -4.17 <.001 -0.53 

q8 0.26 0.04 – 0.40 0.52 0.21 – 0.70 -4.20 <.001 -0.54 

q7 0.07 0.03 – 0.17 0.18 0.07 – 0.46 -4.34 <.001 -0.56 

Embodiment 0.89 0.75 - 0.95 0.72 0.62 - 0.82 -3.81 <.001 -0.49 

q1 0.91 0.88 – 0.98 0.78 0.67 – 0.86 -4.17 <.001 -0.54 

q11 0.94 0.79 – 0.96 0.76 0.67 – 0.84 -3.58 <.001 -0.46 

q5 0.90 0.72 - 0.96 0.73 0.38 - 0.87 -2.78 <.001 -0.36 

Control item and manipulation 

check 

      

q3 0.93 0.84 – 0.97 0.91 0.81 – 0.97 -1.31 .191 -0.16 

q2 0.85 0.57 – 0.97 0.51 0.28 – 0.75 -3.28 .001 -0.42 

Components based on the PCA 

in the synchronous condition  

      

Component 1 0.25 0.18 - 0.45 0.48 0.39 - 0.57 -5.57 <.001 -.72 

Component 2 0.93 0.84 - 0.96  0.78  0.67 - 0.82 -3.84 <.001 -.50 

Note: VAS ratings on q5 were inversed, so that higher scored indicate higher embodiment. 
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Table S3 Related to Table 1 

Results of the PCA on questionnaire responses in the synchronous condition 

 Varimax rotated factor loadings 

 Component 1 Component 2 commonalities 

q4 0.87 0.27 0.83 

q10 0.87 0.06 0.76 

q7 0.81 0.27 0.73 

q6 0.79 0.44 0.82 

q8 0.72 0.38 0.66 

q9 0.71 0.41 0.67 

q5 0.67 0.12 0.46 

q11 0.10 0.87 0.77 

q1 0.34 0.72 0.64 

Eigenvalues 4.39 1.95  

% of variance  49 22  

 

 

 

Figure S1 Related to Table 1: The scree plot of the PCA in the asynchronous condition justifies 

retaining three components for the secondary PCA.   
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Table S4 Related to Figure 2 

Descriptive statistics of questionnaire data in Experiment 2,  N = 32 

 Visuotactile Synchronous Visuotactile Asynchronous Visuomotor Synchronous Visuomotor Asynchronous 
 

Median IQR Median IQR Median IQR Median IQR 

Disownership 0.28 0.16 - 0.43 0.57 0.43 – 0.70 0.32 0.17 – 0.46 0.66 0.49 – 0.77 

q4 0.17 0.09 - 0.36 0.60 0.34 - 0.69 0.20 0.10 - 0.30 0.72 0.56 - 0.82 

q6 0.21 0.09 - 0.29 0.62 0.32 - 0.73 0.18 0.07 - 0.33 0.69 0.57 - 0.85 

q9 0.50 0.24 - 0.68 0.67 0.40 - 0.76 0.58 0.26 - 0.74 0.62 0.33 - 0.80 

Deafference 0.19 0.08 – 0.45 0.34 0.15 – 0.48 0.20 0.10 – 0.38 0.42 0.22 – 0.56 

q10 0.16 0.06 - 0.30 0.25 0.17 - 0.43 0.17 0.08 - 0.41 0.38 0.22 - 0.64 

q8 0.19 0.10 - 0.59 0.4 0.14 - 0.69 0.24 0.08 - 0.61 0.37 0.19 - 0.66 

q7 0.12 0.06 - 0.28 0.23 0.06 - 0.40 0.10 0.05 - 0.28 0.31 0.15 - 0.48 

Embodiment 0.81 0.70 - 0.93 0.58 0.44 – 0.71 0.86 0.71 - 0.91 0.43 0.34 - 0.54 

q1 0.90 0.81 - 0.97 0.65 0.41 - 0.78 0.91 0.81 - 0.95 0.42 0.28 - 0.68 

q11 0.85 0.78 - 0.93 0.7 0.37 - 0.82 0.89 0.80 - 0.96 0.54 0.29 - 0.69 

q5 0.81 0.59 - 0.91 0.43 0.26 - 0.66 0.81 0.61 - 0.92 0.31 0.15 - 0.54 

Control item and manipulation check        

q3 0.91 0.84 - 0.97 0.86 0.80 - 0.94 0.89 0.78 - 0.97 0.86 0.68 - 0.96 

q2 0.85 0.57 - 0.95 0.53 0.18 - 0.69 0.89 0.77 - 0.95 0.66 0.56 - 0.81 

Components based on the PCA in the synchronous condition (see Table S3)  

Component 1 0.30 0.22 - 0.47 0.48 0.36 - 0.56 0.34 0.24 - 0.44 0.49 0.42 - 0.61 

Component 2 0.87 0.80 - 0.93 0.64 0.47 - 0.75 0.89  0.82 - 0.93 0.47 0.34 - 0.60 

Note: VAS ratings on q5 were inversed, so that higher scored indicate higher embodiment. 
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Table S5 Related to Figure 2 

Results of Friedman tests and post-hoc comparisons of questionnaire in Experiment 2, using Wilcoxon Signed-Rank tests, FDR corrected p-values   

 
Friedman test VTsyn - VTasyn VMsyn - VMasyn VTsyn - VMsyn VTasyn - VMasyn 

 
χଶ df p Z pcorrected r Z pcorrected r Z pcorrected r Z pcorrected r 

Disownership 35.51 3 <.001 -4.42 <.001 -0.55 -5.12 <.001 -0.64 -0.05 .963 -0.01 -2.31 .021 -0.29 

q4 39.38 3 <.001 -4.19 <.001 -0.52 -5.09 <.001 -0.63 -0.06 .949 -0.01 -2.52 .016 -0.31 

q6 43.46 3 <.001 -4.72 <.001 -0.59 -5.30 <.001 -0.66 -0.25 .803 -0.03 -3.04 .003 -0.38 

q9 7.76 3 .051             

Deafference 26.78 3 <.001 -3.36 <.001 -0.42 -3.77 <.001 -0.47 -0.69 .488 -0.09 -1.98 .048 -0.25 

q10 28.56 3 <.001 -3.63 .001 -.045 -3.41 .001 -0.43 -1.71 .087 -0.21 -3.50 .001 -0.44 

q8 5.66 3 .129             

q7 19.95 3 <.001 -2.16 .062 -0.27 -4.72 <.001 -0.59 -0.10 .919 -0.01 -1.94 .069 -0.24 

Embodiment 59.36 3 <.001 -4.58 <.001 -0.57 -5.92 <.001 -0.74 -0.97 .331 -0.12 -2.85 .005 -0.36 

q1 55.65 3 <.001 -4.19 <.001 -0.52 -5.86 <.001 -0.73 -0.05 .963 -0.01 -2.54 .015 -0.05 

q11 52.46 3 <.001 -4.24 <.001 -0.53 -6.23 <.001 -0.78 -1.54 .139 -0.19 -1.48 .139 -0.19 

q5 49.24 3 <.001 -3.63 .001 -0.45 -4.90 <.001 -0.61 -0.18 .861 -0.02 -2.76 .008 -0.34 

Control item and manipulation check             

q2    -3.61 <.001 -0.45 -3.68 <.001 -0.46       

q3 9.19 3 .027 -1.96 .100 -0.24 -2.46 .056 -0.31 -0.05 .963 -0.01 -1.69 .121 -0.21 

Components based on the PCA in the synchronous condition (see Table S3)  

Component 1 30.41 3 <.001 -3.87 <.001 -.48 -4.31 <.001 -.54 -.92 .36 -.11 -2.22 .04 -.28 

Component 2 60.86 3 <.001 -4.81 <.001 -.60 -6.23 <.001 -.78 -1.37 .17 -.17 -2.48 .02 -.31 
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Table S6 Related to Figure 3 

Summary of the initial mixed model, including the fixed effects for delay and modality, and their 

two-way interaction 

  Confidence interval     

fixed effects b  lower upper SE df t p 

intercept 0.923 0.866 0.981 0.029 46.29 31.49 <.001 

Delay -0.718 -0.772 -0.665 0.027 2525 -8.84 <.001 

Modality 0.038 0.002 0.074 0.018 2525 2.29 .04 

Delay x Modality -0.154 -0.230 -0.079 0.039 2525 -4.47 <.001 

Notes: Modality (0 = Visuotactile, 1 = Visuomotor)  

 
 
 
 
Table S7 Related to Figure 3 

Summary of the final mixed model, including the predictors delay, modality, and PSE, and the two-

way and three-way interactions. 

  Confidence interval     

fixed effects b  lower upper SE df t p 

intercept 0.830 0.788 0.871 0.027 37.23 34.32 <.001 

Delay -0.717 -0.880 -0.553 0.082 33.82 -8.69 <.001 

Modality 0.007 -0.017 0.031 0.017 2473.88 1.84 .066 

PSE 0.790 0.485 1.099 0.210 1393.73 4.24 <.001 

Delay x Modality -0.164 -0.232 -0.096 0.035 2471.39 -4.73 <.001 

Delay x PSE -0.724 -1.609 0.149 0.446 1633.18 -1.62 .105 

Modality x PSE -0.511 -0.878 -0.148 0.251 2086.97 -3.26 .001 

Delay x Modality x PSE  2.188 1.153 3.233 0.530 2213.69 4.13 <.001 

Notes: Modality (0 = Visuotactile, 1 = Visuomotor), PSE was mean-centered around 0, lower 

values correspond to high sensitivity, and higher values to low sensitivity.  
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Transparent Methods 

Experiment 1 

 

Participants. Thirty healthy volunteers participated in Experiment 1 (10 males; M = 25, SD 

= 3.8 years). Participants provided informed consent and received either course credit or 

financial compensation.  

 For the PCA of the questionnaire responses after synchronous versus asynchronous 

stroking, we additionally included the participants of Experiment 2 (see section Participants 

for Experiment 2), as well as 15 participants (3 males; M = 22.2, SD = 2.4 years) from a 

previously unpublished experiment resulting in a total of 77 participants (27 males; M = 22.9, 

SD = 4.0 years).  These were recorded in the same setting and using the same experimental 

materials as the other studies, with the only difference being that for 5 individuals the 

stroking lasted 60 s and for ten individuals 90 s. The participants were not included in the 

general analysis as we did not record the physiological measures in that sample.  

All protocols were approved by the Ethics Committee of the Faculty of Arts and 

Social Sciences at the University of Zurich (Approval Number 17.12.15). The studies were 

performed in accordance with the ethical standards of the Declaration of Helsinki.  

Apparatus for stimulation.  An Oculus CV1 HMD (Oculus VR, Irvine, CA, USA) was used 

for the visual stimulation. An ELP 180˚ webcam (Ailipu Technology Co., Ltd, Guangdong, 

China) was positioned on the front of the HMD, set to 30 frames per second and resolution of 

1024 x 768 pixels. The camera was positioned with the wide side of view (1024 pixels) on 

the vertical axis in order to more clearly show the full-body. The control system was 

designed using Unity 2017 for delaying the camera feed, rotating the image, mapping it to a 

3D model approximately matching the distortion of the camera-lens, and projecting the image 

on the HMD. A qualitative calibration was done before the experiment to approximately 

match the visual field of view in the HMD to that without the HMD as well as to the seen and 
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felt (proprioceptive) position of the body. The questionnaires and randomization were also 

built within Unity 2017. The system was run on an Alienware 15 R3 computer (Nvidia 

Geforce GTX 1080 8GB; 16GB RAM; Intel Core i7; Windows 10). The mean intrinsic delay 

of the camera feed added by the system was of 139.1ms (SD = 18.3 ms).  

Procedure. 
 

Heartbeat counting task. At the beginning of the experiment, participants performed 

a heartbeat counting task (Schandry, 1981), see Figure 1a (in the main text) for general 

procedure and order of the experiment. Participants were instructed to count their heartbeats, 

without taking their pulse. They were informed that the time of the intervals would vary, to 

prevent them relying on time estimation instead of actual counting of the heartbeats. Three 

intervals of 25, 35, and 45 s were presented in randomized order, and the start and end of 

each interval was indicated by a tone. During the task, electrocardiograms (ECG) were 

recorded with a Biopac MP150 system and ECG100C amplifier (Goleta, USA) at 1000 Hz 

sampling rate. Three ECG electrodes (Red Dot, 3M, Neuss, Germany) were placed on the left 

and right clavicle and on the lowest left rib. The electrodes were left to measure ECG 

throughout the experimental procedure.   

The heartbeat perception score, which reflects the normalized difference between 

recorded and perceived heartbeats in a way that higher scores indicate higher accuracy, was 

calculated using the following equation:  

heartbeat perception score=1/3෍ 1- 
|recorded heartbeats-perceived heartbeats|

recorded heartbeats
 

Data from 10 participants were excluded due to technical difficulties with the ECG recording 

equipment, missing markers, or because they did not understand the task.   

Visuotactile stimulation. After performing the heartbeat counting task, the 

thermocouples and additional electrodes for measuring electrodermal activity were put on. 

Participants received verbal instructions about the visuotactile stimulation procedure and 
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were helped to put on the HMD. After reading instructions on the HMD, they performed a 

test trial where they selected “strongly agree” on a visual analogue scale (VAS) from 

“strongly disagree” to “strongly agree” to indicate that they were ready. A few seconds of 

exposure to a synchronous video feed of their own bodies on the table followed to acquaint 

participants with the task and the virtual environment. For the experiment participants were 

instructed to not move and keep especially the head in a fixed position.  

 First a block with synchronous and asynchronous visuotactile stimulation of 60 s each 

was presented. Asynchrony was achieved by adding a 594 ms delay to the ~139 ms intrinsic 

delay, we refer to the synchronous condition as such despite the fact that it included the 

system delay of ~139 ms. The stroking in both conditions was performed by the experimenter 

following the same strategy with a stroking rate of approximately 1 Hz in randomized 

directions for all fingers while monitoring the participant's perspective on a computer screen. 

The order of synchrony was counterbalanced across participants. After the 60 s of 

stimulation, the experimenter threatened the participant’s left hand with a plastic knife in a 

stabbing motion, which was followed by a 30 s rest period where the video feedback was 

displayed without any tactile stimulation, to assess change in heartrate. Participants were 

informed about the knife threat before starting the experiment, but did not know when it 

would occur. Both the synchronous and asynchronous condition were followed by the 

(dis)embodiment questionnaire. A block of 180 s of synchronous and asynchronous 

visuotactile stimulation followed. After 180 s of visuotactile stimulation, the experimenter 

threatened the participant’s left hand with the plastic knife in a sliding motion. The 30 s rest 

period followed again. The 180 s blocks were aimed at assessing HRV during the 

manipulation of embodiment, and were not followed by the embodiment questionnaire. 

Again, the order of synchrony was counterbalanced across participants.  
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The experiment was concluded with a brief semi-structured interview on the 

experiences of the participant and a short debriefing. The full procedure took about 45 

minutes. 

Measures of illusion strength. 

(Dis)embodiment questionnaire. The subjective experience of the illusion was 

assessed with a questionnaire (see Table 1 for illusion related questions, and additional 

control questions). Two questions were used as control items, respectively q2 (It felt as if the 

stroking I felt on my hand was due to the seen stroking) and q3 (It seemed as if the seen hand 

resembled my own hand in terms of its shape and structure). For the former we expected 

changes between conditions given that it was foreseen to change with the manipulation, but 

not in respect of body perception; while for the latter we expected no changes between 

conditions. The questionnaire was based on other studies, including the original rubber hand 

illusion (Botvinick & Cohen, 1998), a full-body illusion (Lenggenhager, Tadi, Metzinger, & 

Blanke, 2007), the psychometric approach developed by Longo and colleagues ((Longo, 

Schüür, Kammers, Tsakiris, & Haggard, 2008), other psychometric approaches (Dobricki & 

Rosa, 2013) and additional new items to specifically assess disembodiment. Participants 

indicated on a VAS scale ranging from “completely disagree” to “completely agree” 

(respectively mapped to values ranging between 0 and 1) how much they agreed with each of 

the 11 statements. Based on the PCA (see section The effect of visuomotor as compared to 

visuotactile mismatch on the phenomenology of disembodiment in the main text), three 

subscales of disownership, deafference, and embodiment were identified. The questionnaire 

was displayed in the HMD and participants responded by means of head movements: they 

would select the corresponding position on the scale by looking at it for 1 s, after which they 

had to look at another button for 1 s to proceed to the next item.    
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Skin temperature. Skin temperature was measured with an HH309A Data Logger 

thermometer (Omega, Stanford, CT, USA) at a 0.5 Hz sampling rate with a resolution of 0.1° 

C per thermocouple. Such device has been previously used to assess changes in skin 

temperature in embodiment-related experimental paradigms (Macauda et al., 2015; Salomon, 

Lim, Pfeiffer, Gassert, & Blanke, 2013). Two thermocouples were placed on the left and right 

ventral side of the wrist, and a third on the back of the neck. A fourth thermocouple was used 

to monitor room temperature. While not systematically measured, the time since entering the 

room, setting up the equipment and doing the tasks previous to the temperature recording, 

served for the participant’s adaptation to the room temperature. Temperature was measured 

for the full length of the visuotactile stimulation in each condition. For each thermocouple, a 

baseline was calculated as the average temperature of the first 6 s of recording. This average 

value was subtracted from the subsequent recordings to represent the relative change in skin 

temperature across the stimulation period. In the short conditions, average temperature 

change was computed over 54 s (60 – 6 s baseline). In the long conditions, the average 

temperature change was computed over 174 s. One participant had to be excluded from the 

analyses due to technical problems. Two additional participants in the 60 s-blocks, and four 

in the 180 s-blocks were excluded due to missing data. We controlled for changes in room 

temperature by assessing differences in room temperature change between the asynchronous 

and synchronous condition, which were not significant in both the short block (p = .54) and 

the long block (p = .33).  

 Skin conductance responses. Threat evoked SCRs were recorded with a Biopac 

MP150 system and EDA100C amplifier (Goleta, USA) at a 1000 Hz sampling rate. Two 

electrodes with electrode paste were placed on the participant’s index and middle finger of 

the non-stimulated right hand. The experimenters threatened the left hand of the participant, 

by making a stabbing motion in the short block, and a sliding motion in the long block, 
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without touching the hand. A sound signal on the experimenter’s headphones indicated the 

onset of the threat at the corresponding time depending on the condition, and a manual 

marker was placed in the raw data file immediately after presenting the threat. The data was 

processed in Acqknowledge software (Version 4.1, Biopac, Goleta, USA). The SCR was 

identified as the maximum peak-to-peak value in electrodermal activity between 2 s before, 

to 6 s after the marker. The 2 s before were taken into account, as it reflects the time from the 

threat to the actual manual pressing of the marker. The SCR response was then computed as a 

relative value, taking into account the average raw SCR of all four threat responses. It was 

computed by dividing the SCR in each condition, by the average SCR of all four conditions 

in order to standardize the values. The data was gathered separately by two experimenters, 

blindly analyzed and compared. Absent responses were registered as missing values. Data 

from five participants were excluded from the analysis due to missing responses or technical 

difficulties.   

Heart Rate Variability. A synchronous and asynchronous block of three-minute-long 

visuotactile stimulation was added to the procedure to assess HRV. ECG was recorded with 

the Biopac MP150 system as described previously. 160 seconds of recording were used, with 

an onset 10 s after the stimulation onset up to 10 s before the threat marker. The R-package 

RHRV (Rodriguez-Linares et al., 2017) was used to detect R-peaks and extract the Root 

Mean Square of the Successive Differences (RMSSD) as a measure of HRV. Data from four 

participants were excluded from the analysis due to technical difficulties.  

Data analysis. Data were analyzed with R (R Core Team, 2018) version 3.5.1. Alpha 

level was set at 0.05, or 95% confidence intervals, excluding 0, and p-values were adjusted 

for multiple comparisons using false discovery rate (FDR) corrections (Benjamini & 

Hochberg, 1995). Data were tested for normality, and appropriate tests were used 

accordingly. Details of preprocessing of the physiological data are described above.  
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Principal Component Analysis. A PCA was used to investigate the structure of 

participants’ experience, and to quantify the complex experience during this illusion. The 

PCA was conducted on the questionnaire data after synchronous or asynchronous visuotactile 

stimulation. In order to maximize the number of participants we took the questionnaire data 

from Experiment 1 and questionnaire data from the long visuotactile stroking of Experiment 

2 (see below) as well as additional data of 15 participants in an unpublished experiment (see 

Table S1, for descriptive statistics and item comparisons of these additional participants). 

Exposure time was 60 s in experiment 1 (n = 30), 90 s in experiment 2 (n = 32), and differed 

for the additional data between 60 s (n = 6) and 90 s (n = 9).  

 Before running the PCA, the ratings of q1 and q11 were inversed, so that all items 

were coded in the same direction, with higher ratings indicating decreased embodiment. Two 

PCAs were separately run for the asynchronous and synchronous conditions. Adequacy of 

using PCA was assessed by Bartlett’s test of sphericity, which was highly significant for both 

the asynchronous (2(55) = 238.6, p < .0001), and synchronous condition (2(55) = 506.9, p 

< .0001), indicating that correlations between individual items were sufficiently large for 

PCA. The overall Kayser-Meyer-Olkin (KMO) measure verified that the sample size was 

adequate, both for the asynchronous (KMO =  0.71), and synchronous (KMO = 0.85) 

condition. The two control items (q2 and q3) were excluded from the PCA, based on the low 

expected correlation with any of the other questionnaire items in the asynchronous 

conditions, as well as their poor individual KMO (both < 0.55) (Kaiser, 1974). An initial 

PCA was computed with 9 components. Inspection of the eigenvalues of each component and 

the scree plot (Figure S1) justified retaining three components for the secondary PCA. For 

subsequent comparisons between conditions component scores were calculated as the mean 

of q4, q6, and q9 for Component 1; q7, q8, and q10 for Component 2; and q1, q11, and (1 - 
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q5) for Component 3.  For the component scores, q5 was inversed to ensure that higher 

ratings correspond to increased embodiment for all items within Component 3.   

Experiment 2 

Participants. Thirty-two healthy volunteers participated in Experiment 2 (7 males; M = 21.2, 

SD = 3.9 years old). None of the participants took part in Experiment 1, and all gave 

informed consent and received either course credits or a financial compensation. The protocol 

was approved by the Ethics Committee of the Faculty of Arts and Social Sciences at the 

University of Zurich (Approval Number 17.12.15). The study was performed in accordance 

with the ethical standards of the Declaration of Helsinki.  

Apparatus for stimulation. The apparatus to present visual stimulation was identical to 

Experiment 1 (Apparatus for stimulation for Experiment 1). An additional laptop was used to 

play a metronome sound with its built-in speakers. 

Procedure. The experiment consisted of two different parts: first, two blocks with multiple 

trials of short stimulation, either visuotactile or visuomotor were presented, then four 

conditions of longer stimulations, either visuomotor or visuotactile both either synchronous 

or delayed were presented (see Figure 1b in the main text for an overview of the procedure). 

When participants were ready, they were helped to put on the HMD and read instructions on 

the screen. Similar to Experiment 1, the testing procedure was preceded by a test trial to 

practice giving responses on the VAS scale, and exposure to a synchronous image of the 

participant’s body with their hands on the table for a few seconds. 

For the visuotactile block, participants were asked to fix their left hand between the 

two markers on the table while they were stroked with a small paintbrush outwards from their 

arm on their index and middle fingers at a rate of approximately 0.5 Hz with the aid of a 

metronome set to 1 Hz. The first click of the metronome would be to stroke down the finger 

and release, and the second click to go back without touching to start the next stroke. This 

would be repeated across the whole trial. For the visuomotor block they were asked to move 
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their left hand horizontally from the left to the right marker (set at a distance of 

approximately 60 cm from each other) and back repeatedly, following the rhythm of a 

metronome (set to 1 Hz), each back-and-forth movement would last 0.5 Hz. Participants 

started and ended each trajectory with their hand touching the table. Each trial lasted 7 s and 

was followed by the question “Was the touch/movement you saw and felt synchronous?”, 

which could be answered by either selecting yes or no. This question was followed by the 

statement “It felt as if the hand that I saw was my own”, which could be answered on a VAS 

scale ranging from strongly disagree to strongly agree. The first two blocks consisted of 40 

trials with four repetitions of 10 possible delay steps of 66 ms each, resulting in a range from 

139 to 733 ms (including the intrinsic delay). The order of the visuomotor and visuotactile 

blocks were counterbalanced across participants.  

Finally, a block of longer stimulation followed, where we presented four conditions 

(synchronous visuotactile, synchronous visuomotor, asynchronous visuotactile and 

asynchronous visuomotor) in counterbalanced order. The asynchronous conditions had a 

delay of 594 ms (plus the intrinsic 139.1 ms delay). During the visuomotor conditions, 

participants moved their hands as in the previous block but for a longer period; similarly, for 

the visuotactile condition, participants were stroked on their hand with a paintbrush randomly 

over the full hand at a rate of approximately 1 stroke per second for a period of 90 s, the 

stroking was monitored on the computer screen by the experimenter to prevent the overlap of 

the previous seen stroke with the ongoing tactile stroke in the asynchronous condition. After 

each condition, they were asked to answer the (dis)embodiment questionnaire (see section 

(Dis)embodiment questionnaire).  

Participants could take breaks and remove the HMD in between blocks. The 

experiment was concluded with a brief semi-structured interview on the experiences of the 

participant and a short debriefing. The overall procedure took about 50 minutes.  
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Measures of illusion strength. The assessment for the short stimulation was based on 

simultaneity judgment methods used to measure temporal windows of multisensory 

integration (Engel & Dougherty, 1971; Hirsh & Fraisse, 1964; Hoover & Harris, 2012, 2016), 

and an embodiment question derived from several studies (Botvinick & Cohen, 1998; 

Dobricki & Rosa, 2013; Lenggenhager et al., 2007). After each block of 90 s, participants 

completed an identical questionnaire as in Experiment 1. Item 3 corresponded to a control 

item and differed between conditions, and was “It felt as if the movement I felt was due to the 

seen movement” in the visuomotor condition, and “It felt as if the stroking I felt on my hand 

was due to the seen stroking” in the visuotactile condition.  

Data analysis. The same software and parameters for significance were used as in 

Experiment 1. The questionnaire was analyzed using Wilcoxon signed-rank tests to assess the 

effect of synchrony (visuotactile synchronous vs. visuotactile asynchronous and visuomotor 

synchronous vs. visuomotor asynchronous) and the effect of modality (visuotactile 

synchronous vs. visuomotor synchronous and visuotactile asynchronous vs. visuomotor 

asynchronous).  

 Sensitivity to delay was assessed by determining the Point of Subjective Equality 

(PSE) for each participant in the visuomotor and visuotactile condition separately. To this 

end, logistic psychometric functions were fitted to the forced choice synchrony judgements of 

each participant, using a binomial Generalized Linear Model (glm) with delay as a predictor. 

The estimated coefficients of the glm were used to calculate the PSE: −β0 / β1, where β0 

corresponds to the intercept and β1 to the slope. Goodness of fit was assessed with the 

Hosmer-Lemeshow test, and data of one participant in the visuotactile condition was 

excluded due to bad fit of the glm. All other psychometric curves did not yield a significant 

test result, and corresponding PSEs were thus used for further analyses.   
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 Generalized linear mixed models were fitted with the lme4 package in R (Bates, 

Mächler, Bolker, & Walker, 2015). A generalized linear mixed model was fitted to the VAS 

ownership ratings in the short block, across different delays, which ensured for adequate 

power while considering the repeated measures within individuals. The intraclass correlation 

demonstrated that observations within individuals were non-independent (ICC(1) = .27, F(31, 

2528) = 31, p < .001), thus justifying the use of a mixed model. Visual inspection of 

diagnostic plots of the residuals showed that these were normally distributed. The model that 

included both a random intercept and slope for individuals, where VAS ratings were 

explained as a function of delay, fitted the data better than the model that included only the 

random intercept and no random slope (2(2) = 470, p < .001). Therefore, we used the 

random intercept and slope model for further hypothesis testing. 
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