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A B S T R A C T

Functional magnetic resonance imaging provides rich spatio-temporal data of human brain activity during task
and rest. Many recent efforts have focussed on characterising dynamics of brain activity. One notable instance is
co-activation pattern (CAP) analysis, a frame-wise analytical approach that disentangles the different functional
brain networks interacting with a user-defined seed region. While promising applications in various clinical
settings have been demonstrated, there is not yet any centralised, publicly accessible resource to facilitate the
deployment of the technique.

Here, we release a working version of TbCAPs, a new toolbox for CAP analysis, which includes all steps of the
analytical pipeline, introduces new methodological developments that build on already existing concepts, and
enables a facilitated inspection of CAPs and resulting metrics of brain dynamics. The toolbox is available on a
public academic repository at https://c4science.ch/source/CAP_Toolbox.git.

In addition, to illustrate the feasibility and usefulness of our pipeline, we describe an application to the study of
human cognition. CAPs are constructed from resting-state fMRI using as seed the right dorsolateral prefrontal
cortex, and, in a separate sample, we successfully predict a behavioural measure of continuous attentional per-
formance from the metrics of CAP dynamics (R ¼ 0.59).
1. Introduction

Functional magnetic resonance imaging (fMRI) has enabled to track
temporal changes in activity levels at the whole-brain scale by means of
the blood oxygenation level-dependent (BOLD) contrast, a proxy for
neural activation (Logothetis et al., 2001). In addition to more traditional
task-based studies in which BOLD changes are mapped to a paradigm of
interest (Friston et al., 1994), the characterisation of statistical interde-
pendence between remote brain locations—termed functional connectivity
(Friston, 1994)—in the resting-state, and the concomitant definition of
large-scale resting-state networks (RSNs), has been a popular endeavour
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et al., 2011), with great benefits for the understanding of cognition and
disease (van den Heuvel and Hulshoff Pol, 2010; Greicius, 2008; Fox and
Greicius, 2010).

Over the past years, it has become increasingly appreciated that cross-
regional relationships do not remain static over the course of a full
scanning session (Chang and Glover, 2010): instead, a given region
rearranges its interactions along time, in ways that have been addressed
with very diverse analytical tools (see Hutchison et al. (2013); Preti et al.
(2017) for exhaustive reviews of the dynamic functional connectivity field).

In one family of approaches that has been developed, it is assumed
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that only few salient time points contain the information of interest that
shapes whole-brain correlational relationships; selecting only these
frames, by means of a seed-based thresholding process, already enables
to derive accurate RSN maps, even if as little as 10% of data points are
retained (Tagliazucchi et al., 2012). The analysis then moves from a
second-order correlation-based characterisation to a first-order activa-
tion viewpoint, and reduces computational load, a desirable feat in light
of the numerous large-scale acquisition initiatives embraced by the fMRI
community (Van Essen et al., 2013; Nooner et al., 2012; Holmes et al.,
2015).

Building on this point process analysis concept, and inspired by the
dynamic viewpoint on resting-state brain function, Liu and Duyn (2013)
hypothesised that at different moments in time, the seed region of in-
terest would display distinct interactions with the rest of the brain. A
k-means clustering step was thus appended to frame selection, so that
fMRI volumes with a large enough seed activity would be partitioned into
a limited set of co-activation patterns (CAPs).

Since then, co-activation pattern analysis has started to gain mo-
mentum as a potent tool to reveal functional brain dynamics subtleties:
analyses taking the posterior cingulate cortex (PCC) as a seed revealed
alterations of spatial intensity level and occurrence in specific CAPs
(Amico et al., 2014; Di Perri et al., 2018), while in adolescent depression,
Kaiser et al. (2019) showed that the time spent in a specific
frontoinsular-default network CAP positively correlated with symptoms
severity. In other work, the renormalisation of CAP occurrences in pa-
tients with essential tremor following surgical intervention could be
tracked (Tuleasca et al., 2019).

In parallel to clinical applications, the technical details of the
approach have also been addressed, in terms of retaining activation versus
deactivation time points (Di and Biswal, 2015), extending it to the whole
brain (Liu et al., 2013), designing novel metrics of interest (Chen et al.,
2015), or constraining the extent of spatial overlap across CAPs (Zhuang
et al., 2018). For more details, the reader is pointed at the recent review
of Liu et al. (2018).

Here, we wish to further foster the development of CAP analysis by
releasing a dedicated toolbox, which enables to easily navigate through
the steps of the analytical pipeline through a graphical user interface, and
also offers additional technical developments regarding frame selection
and metrics computation. While the mathematical underpinnings of CAP
analysis are relatively straightforward, we hope that providing such a
resource will encourage practitioners to embrace the method, and that it
will become easier to compare CAP analyses based on subtle, but
sometimes important, differences in the processing pipeline. Through
this resource, we also aim at preventing the variability in analytical re-
sults that may otherwise arise due to implementation differences alone
(Bowring et al., 2019).

In addition, to exemplify the use of our toolbox, we describe an
application of CAP analysis in the yet unaddressed setting of predicting
cognitive skills: in a battery of healthy individuals, we show that
continuous performance in a visual attention and vigilance task corre-
lates with the expression profile of task-positive network (TPN) CAPs.

2. Materials and methods

2.1. Co-activation pattern analysis theory

Let us consider the data matrix Xs 2 RV�T for subject s, where V is the
number of voxels to consider in the analysis and T the number of time
points. Each voxel-wise time course is temporally z-scored, so that μi ¼PT

t¼1
Xsði;tÞ
T ¼ 0 and σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1
ðXsði;tÞ�μiÞ2
T�1

r
¼ 1, for all i ¼ 1; 2;⋯;V .

Co-activation pattern analysis requires the definition of a seed region,
whose interactions with the rest of the brain will be probed. Formally, a
set of voxels S that one wishes to consider is specified, and a time point t
of the seed activation time course is then given by:
2

SseedðtÞ¼ i2S Xsði; tÞ
jS j ; for all t 2 1; 2;⋯;T : (1)
P

Only time points when the seed time course takes sufficiently extreme
values (denoting significant seed (de)activation) are considered. Let the
activation threshold be T, we then construct the subject-specific set of
time points T s that satisfies SseedðtÞ > T (if we wish to consider solely
activation moments) or SseedðtÞ < �T (if we are interested in seed deac-
tivation time points).

In this work, in addition to the above standard CAP methodology, we
propose an extension in which more than one seed region can be
considered: for each seed j and subject s, a set of time points T s;j is
derived. Assuming J separate seeds, one can then consider the time points
when all seed time courses jointly take extreme values:

T s;Intersection ¼ \J
j¼1

T s;j: (2)

Alternatively, one may instead be interested in the moments when at
least one of the seed regions becomes strongly (de)active:

T s;Union ¼ [J
j¼1

T s;j: (3)

Finally, other additional criteria can be incorporated at the time point
selection step: for instance, given the deleterious impact that head mo-
tion exerts on BOLD signals even following standard preprocessing
(Power et al., 2012; Van Dijk et al., 2012; Satterthwaite et al., 2012), it
may be desirable to only retain the frames for which framewise
displacement does not exceed a threshold M.

After having selected the frames to keep for each subject, the next step
is the population-level clustering of data points into CAPs. K-means
clustering is used for this purpose, to optimise:

argmin
C

XK
k¼1

XS

s¼1

X
t2T s\C k

distðXsð � ; tÞ; ckÞ; (4)

where K is the number of co-activation patterns to derive, C ¼ fC 1;⋯;

C Kg summarises the hard assignment of the frames to each CAP, and ck is
the spatial map for co-activation pattern k. The dist function depends on
the type of distance to use in the algorithm. In addition, since k-means
clustering is an iterative process with no guaranteed convergence to-
wards the global optimum, the algorithm is run nrep times.

In several previous works using CAPs, it was also suggested to solve
Equation (4) after setting to 0 the voxel intensity values that, for each
frame of interest, would not be part of the largest PP or PN percents—for
positive-valued and negative-valued voxels, respectively (Liu and Duyn,
2013; Liu et al., 2013).

Table 1 summarises the different parameters that are defined for CAP
analysis, and also highlights the default values that we used in this work.

2.2. Metrics characterising CAP dynamics

Once all retained frames have been assigned to CAP representatives, it
becomes possible to construct, for each subject, an empirical transition
probability matrix As that summarises the likelihood to transit from a
given CAP at time t to another at time tþ 1. Another available piece of
information regards the likelihood to transit from and back to the base-
line state (when the seed was not significantly (de)active). Further, if
separate subject populations are used in computing CAPs and deriving
associated metrics (as in our example application below), there are also
occurrences of entries into an extra state associated to frames that could
not be matched to any CAP with sufficient certainty.

An indicative example of averaged transition probability matrix
across subjects is displayed in Fig. 1A (left column). Individual elements
of the transition probability matrix may be considered as such (Chen
et al., 2015), which would amount to a total of K2 values per subject. To
meaningfully lower the amount of features of interest, we propose to



Table 1
Parameters to define for co-activation pattern analysis. The seed region was
extracted from a TPN independent component map derived in Shirer et al.
(2012). Investigated cluster number values fKg were determined through
consensus clustering, a subsampling-based assessment of clustering robustness
(Monti et al., 2003), and the final choice for the analyses was defined based on an
exploratory assessment of the brain/behaviour correlation significance.

Parameter Description Default value

J Number of seeds to use 1
S Voxel set to use as seed Right dorsolateral

prefrontal cortex
Polarity Sign of the seed excursions to consider Activation
Seed
combination

Whether all or at least one seed should
be (de)active to retain a time point

n.a.

T Threshold for frame selection 1.5
M Threshold of framewise displacement

above which to scrub
0.3 mm

K Number of clusters to use 16
nrep Number of replicates of k-means 50
PP Percentage of positive-valued voxels to

keep in each frame for clustering
100

PN Percentage of negative-valued voxels to
keep in each frame for clustering

100

dist Distance measure used for clustering corr
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rather view the available information as a directional graph representa-
tion, fromwhich a series of summarisingmetrics can be derived (Rubinov
and Sporns, 2010). First, by sampling the diagonal elements of the ma-
trix, we obtain a measure of resilience for each CAP: that is, the likelihood
to remain in the same configuration from time t to tþ 1. Second, after
having set the diagonal elements of the matrix to 0, we can define the
in-degree kin (how likely a CAP is visited from any other), the out-degree
kout (how likely a CAP is exited towards any other), and the betweenness
centrality—how important a CAP is regarding the shortest paths between
other pairs (Freeman, 1979). In total, the feature space has thus been
reduced from K2 to 4 �K. This alternative viewpoint is exemplified in
Fig. 1A (right column).

In several works, counts or occurrences (that is, how many times a
given CAP is expressed) were used as metrics of interest (Di Perri et al.,
2018; Kaiser et al., 2019; Tuleasca et al., 2019). We verified that our
suggested metrics also include the information rendered by the counts: as
seen in Fig. 1B, the average correlation across CAPs between counts and
in-degree, out-degree or resilience exceeded 0.8 (respectively ρ ¼ 0:83�
0:11, ρ ¼ 0:85� 0:08 and ρ ¼ 0:81� 0:07). From pair-wise comparisons
between our four metrics, it can also be seen that in-degree and
out-degree are strongly correlated (ρ ¼ 0:87� 0:1), while resilience and
betweenness centrality capture separate information given their more
moderate correlations (for resilience: ρ ¼ 0:45� 0:11, ρ ¼ 0:5� 0:11
and ρ ¼ 0:3� 0:19 with in-degree, out-degree and betweenness cen-
trality, respectively; for betweenness centrality: ρ ¼ 0:59� 0:13 and ρ ¼
0:59� 0:13 with in-degree and out-degree, respectively). Despite their
overall similarity, we decided to retain both in-degree and out-degree as
they still yielded different values in specific CAP cases.

In addition to the above metrics that summarise the transitory
behaviour across different CAPs, an interesting complement is the
assessment of which CAPs are entered from the baseline state of seed
activity, as well as of which CAPs are the ones expressed just before a
return to baseline activity. With this additional information, a total of 6 �
K features of interest are available per subject (as 6 metrics are computed
for each of K different CAPs). These are the summarising measures that
we use in our example application.
2.3. TbCAPs: implementation

We implemented the CAPs processing pipeline as a toolbox in Matlab
version 2017a (The MathWorks, Natick, USA). This software is freely
accessible at https://c4science.ch/source/CAP_Toolbox.git. It contains a
3

graphical user interface to facilitate the different steps of the pipeline. In
addition, we also provide a scripted version of a typical analysis pipeline
for power-users. An illustrative display of the graphical user interface at
the end of a typical analysis is provided in Fig. 2. Next, we concisely
describe the steps to be performed by the user, and the available options
at each stage of the analysis. For more details on all existing function-
alities, alternative example applications of the toolbox in clinical settings,
and more specific suggestions regarding data preparation and quality
control based on our past experience, the reader is pointed at the TbCAPs
User Manual that accompanies this work as Supplementary Material.

2.3.1. Data loading
Prior to CAP analysis, the data at hand should have already under-

went standard resting-state fMRI preprocessing steps, such as realign-
ment, co-registration, regression of covariates of no interest, and filtering
(we advise to only high-pass filter the data). All the volumes to analyse
should have been warped to MNI space (as co-activation patterns will be
derived from the whole population data). Particular care should be taken,
during preprocessing, to attenuate physiology-related artefacts as much
as possible, as they may otherwise exert pervasive effects on the BOLD
signal (see Caballero-Gaudes and Reynolds (2017) for a recent review).
Selected example strategies include the application of independent
component analysis-based denoising approaches (Griffanti et al., 2014;
Pruim et al., 2015), or the use of a set of regressors reflecting physio-
logical variables (Glover et al., 2000).

Before loading the data to analyse in the toolbox, the user should first
define how to mask it (that is, which voxels should be part of the analysis,
excluding for instance out-of-brain ones); to do so, a popup window
enables to choose between several mask options, after which the A1. Set
mask button should be pressed. The user is then prompted to select any
directory containing part of the functional data to analyse: this will
enable to convert the chosen mask into the resolution of the functional
data. The prefix specifying the data of interest (e.g., “sw” for an SPM
preprocessing with warping and smoothing) should be provided through
a dedicated text box.

In a second step, clicking the A2. Load data button prompts the user
to select all the directories containing the functional data to analyse as
part of a given group. We assume here that the data is arranged in a BIDS
format (Gorgolewski et al., 2016), which implies in particular that
different series of functional volumes to analyse should be located in
different directories. Following loading, the data is z-scored by the
toolbox, making it fully ready for CAP analysis. In addition, a text file
summarising the results from the realignment step (that is, containing the
6 motion time courses) should be present in each directory, so that a
framewise displacement time course can be constructed and enable
subsequent scrubbing of corrupted frames; if such a file is not available,
null motion is assumed and the analysis continues nonetheless.

2.3.2. Spatio-temporal selection
Following data loading, the user is prompted to select one or more

seeds to use in the analysis (B. Select seed file(s) button): all seed files
should be entered at once, each as an MNI space NIFTI volume, which
does not need to be at the same spatial resolution as the functional data
(this is automatically handled by the toolbox). The brain areas covered by
the seed(s) can be inspected in brain slice representations, which can be
navigated through bymeans of dedicated sliders. For now, we allow up to
three separate seeds to be entered for the analyses. In addition, the
interested user can also plot the average seed-based correlation map
across subjects associated to the first selected seed.

The next step is to select which types of events should be retained
(activation versus deactivation), and if more than one seed was selected,
whether all seeds should show an extreme event at once to select a time
point (Intersection option), or if a frame should be kept as long as at
least one does so (Union option). The user is also prompted to determine
the threshold T to use in selecting frames (or alternatively, a percentage P
of most (de)active frames to retain), and the threshold M above which

https://c4science.ch/source/CAP_Toolbox.git


Fig. 1. Generation of CAP metrics. (A) Transitions across CAPs can be viewed in terms of individual transition probabilities for a total of K2 features (left), or
alternatively, a directional graph representation can be constructed (right) to extract in-degree (red bars), out-degree (blue bars), betweenness centrality (green colour
coding of the nodes in the bottom plot) and resilience (size of the nodes) information, for a reduced total of 4 �K features. In this example, which considers K ¼ 16
CAPs, the feature space would thus be lowered from 256 to 64 (four-fold reduction). Error bars denote standard error of the mean, and the displayed transition
probabilities, betweenness centrality values and resilience values are averages across subjects. (B) The extracted metrics contain equivalent information compared to
the more traditional occurrences, and each such metric characterises partly different aspects of CAP dynamics, as seen by moderate correlations. Each box plot/violin
plot representation depicts correlation values across K ¼ 16 CAPs. Illustrations from this figure are generated from the data presented in our example application, with
AP ¼ 0% (i.e., very lenient frame assignment), and without assigning scrubbed volumes.
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frames will be deemed excessively corrupted by head motion, and
scrubbed out.

At the end of this process, clicking on the Select time points button
performs the frame selection process, and summarises the percentage of
kept volumes across subjects in a violin plot representation. Note that in
lieu of a seed-based analysis, we also implemented an alternative seed-
free option, following Liu et al. (2013), where frames are retained
regardless of any seed. To run this option, the Seed-free analysis button
should be clicked instead of seed loading.

2.3.3. Generation of co-activation patterns
Regarding the subsequent generation of CAPs, if the optimal number

of clusters K to select is not known a priori, we offer the possibility to run
4

consensus clustering (Monti et al., 2003), where clustering is run many
times from K ¼ 2 to a user-specified Kmax using a subsample of the data
(the percentage of data points to use is specified by PCC, and the number
of iterations by N). A good clustering solution is one for which across
folds, two frames are either always clustered together, or never clustered
together (but not an intermediate case). We quantify this by the Per-
centage of Ambiguously Clustered pairs, or PAC (Senbabaoglu et al.,
2014), and display the stability measure 1� PAC. Extended details on
consensus clustering can be found in the TbCAPs User Manual.

Following the definition of how many CAPs should be extracted
(parameter K in the interface), k-means clustering can be run by clicking
the Cluster button. The first 5 CAPs with most occurrences across the
subject population are displayed, and can be visually inspected and



Fig. 2. Illustration of the TbCAPs graphical user interface. The typical output of a CAP analysis is displayed for a set of healthy volunteers, with three seeds chosen
within a functional circuitry associated to essential tremor. This data was explicitly analysed in Tuleasca et al. (2019).
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navigated through by dedicated sliders. As a complement, the matrix of
spatial similarity between CAPs is also provided, and if using the Union
option in a multi-seed analysis, the user is shown pie charts summarising,
for each CAP, what fraction of frames was selected in a given seed
combination configuration.

2.3.4. Computation of metrics
Finally, upon clicking the Compute metrics button, displays of CAP

expression time courses and cumulative CAP expression along time
appear on screen. The latter can be adjusted to selectively view the cu-
mulative counts of a given CAP, across subjects and as a population
average. Transition probability matrices can also be inspected in terms of
average entries at the population level, or for each subject, with the
option to select the one to display the data for.

In addition, 6 violin plot representations summarising the distribu-
tion of computed metrics across subjects for each CAP are also provided:
they reflect (1) raw counts, (2) number of entries in a given CAP, (3)
resilience, (4) betweenness centrality, (5) in-degree and (6) out-degree.

2.3.5. Analysis of multiple subject populations
In some settings, the user may wish to compare different subject

populations (for instance, healthy controls and a clinical group): this can
be done by sequentially loading up to 4 different populations at the start
of the analysis. CAPs will be derived from the first population, and there
is then the need to assign the frames from the other populations to the
CAPs by a matching process. In doing so, the spatial correlation between
a frame to assign and the CAP to which it is most similar is compared to
the distribution of spatial correlations of the frames from population 1
that belong to the CAP in question: if the AP

th percentile of this distri-
bution is exceeded, assignment is performed; else, the frame is left
unassigned and belongs to an extra ðKþ1Þth cluster. Additional details
regarding multi-population analyses are provided in the TbCAPs User
Manual.
5

2.4. Application to experimental fMRI data

2.4.1. Functional data preprocessing
As a proof of feasibility and application of TbCAPs, we considered a

sample of 181 subjects from the Human Connectome Project (Van Essen
et al., 2013), aged between 26 and 35 years old. This sample originated
from a slightly larger, randomly selected set of subjects that had at least
one fully exploitable resting-state scanning session on which to apply the
method, and less than 5% of recorded behavioural entries that were
missing; a few subjects from this original set were discarded due to errors
in preprocessing. Details regarding acquisition parameters can be found
elsewhere (Smith et al., 2013), but briefly, the data was acquired at a TR
of 0.72 s over 15 min (for a total of 1200 fMRI volumes), with a spatial
resolution following initial preprocessing steps of 2 mm� 2 mm� 2 mm.

We started from the minimally preprocessed resting-state data (first
session, LR acquisition direction). The first 10 samples of the data were
discarded. We then performed linear detrending, and regressed out low-
frequency components of the discrete cosine transform basis with a cutoff
frequency at 0.01 Hz. Due to collinearity with this basis, we did not
regress out average white matter or cerebrospinal fluid time courses. We
also chose not to regress motion parameter time courses, as motion is
handled within the co-activation pattern pipeline by scrubbing, and
because recent evidence points at the fact that motion regression schemes
may not always be beneficial in the context of brain/behaviour analyses
(Bolton et al., 2020). As for global signal regression, given the lack of a
clear consensus (Murphy and Fox, 2017), we preferred to leave the data
as untouched as possible and did not include it.

Following the regression step, the data was scrubbed at a framewise
displacement threshold of 0.3 mm, and excised volumes were estimated
with cubic spline interpolation. Although scrubbing is performed within
TbCAPs, we reasoned that if we wished to try and assign scrubbed frames
to CAPs in our additional analyses regarding head motion, it would make
more sense to have previously corrected these volumes to the best of our
abilities.
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Then, individual fMRI volumes were smoothed at a full width at half
maximum value of 5 mm, and in order to make the analyses computa-
tionally more affordable, spatial resolution was downsampled at 3 mm�
3 mm � 3 mm. Eventually, z-scoring was handled within TbCAPs as a
final preprocessing step prior to CAP analysis.

2.4.2. Selection of seed and behaviour of interest
As a behaviour of interest to study, we selected the Short Penn

Continuous Performance Test (SCPT), which quantifies continuous sus-
tained attention (Gur et al., 2010). In more details, participants see
vertical and horizontal red lines flash on screen, and from block to block,
must respond either when the lines form a number, or a letter. The lines
are displayed for 300 ms, followed by a 700 ms inter-trial interval.

We started from raw behavioural entries provided by the HCP, for
951 different subjects. There are 8 available SCPT measures: amount of
true positives, false positives, true negatives or false negatives, median
response time for true positive responses, sensitivity, specificity and
longest run of non-responses. In order to reduce this information into one
summary measure while filling in missing behavioural entries, we per-
formed probabilistic PCA (Bishop, 1999). The output composite score
positively correlated with true positives, true negatives, sensitivity and
specificity (ρ ¼ 0.24, 1.00, 0.25 and 1.00, respectively), thus summa-
rising overall task performance. We z-scored this output measure across
subjects, in order to quantify performance with respect to the overall
population. We then extracted the behavioural data related to the 181
subjects considered in this work.

To study sustained attention, we focussed on a right dorsolateral
prefrontal cortex seed from the task-positive network, which we extrac-
ted from the associated independent component map provided by Shirer
et al. (2012). Our hypothesis was that the expression of different TPN
configurations would relate to sustained attentional performance.

2.4.3. Co-activation pattern analysis details
We resorted to a threshold T ¼ 1:5 to select active frames, and per-

formed scrubbing with a framewise displacement thresholdM ¼ 0:3mm.
To avoid double dipping (Kriegeskorte et al., 2009), CAPs were

extracted from a randomly selected subset of 100 subjects, while we
performed correlations with behaviour for the remaining 81 only. To
determine the optimal number of clusters, we used consensus clustering
(Monti et al., 2003). We then ran k-means nrep ¼ 50 separate times,
keeping the best solution. We included all voxels in the analyses (PP ¼
PN ¼ 100%), and used spatial correlation as our distance measure; given
two similarly-sized vectors x and y, this thus yields distðx; yÞ ¼ 1�
corrðx;yÞ.

Following the extraction of the CAPs on our 100 training subjects, we
determined which CAP was expressed at each retained fMRI volume of
the other 81 subjects. To do so, we used the aforementioned assignment
process with AP ranging from 0 to 100%.

2.4.4. Assessment of brain/behaviour relationship
As imaging metrics of interest, we considered in-degree, out-degree,

betweenness centrality and resilience for each CAP, and also included the
amount of excursions from the baseline state, and the amount of excur-
sions back to the baseline state. Thus, we generated a total of 6 � K im-
aging features per subject.

After having obtained the behavioral scores b 2 R81�1 and metrics
M 2 R81�6 �K for our population of subjects, we used Partial Least Squares
(PLS) analysis (McIntosh and Lobaugh, 2004; Krishnan et al., 2011) to
probe the existence of a brain/behaviour relationship.

Briefly, consider a matrix of behavioural features B 2 RS�nB and a
matrix of imaging metrics M 2 RS�nM . Assuming that nB < nM, and using
the singular value decomposition, the covariance between these two sets
is given by:
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R¼M>B ¼ UΣV> ¼
XnB

σiuiv>i ; (5)

i¼1

where each column in U and V contains the weights (so called saliences)
that respectively multiply imaging and behavioural markers to yield a
maximised covariance between both sets. The associated singular value
σi is proportional to the fraction of covariance explained by the compo-
nent at hand.

In our case, since nB ¼ 1 (we only consider one behavioural measure),
only one covariance component is retrieved, which implies v1 ¼ 1. The
interesting information lies in u1: positive-valued saliences highlight
metrics that are larger in subjects who show a greater cognitive ability,
and negative-valued saliences are associated to metrics that, when larger,
impede attentional performance.

Prior to running the algorithm, each of the 6 �K features was z-scored
across subjects. In order to assess significance, we reran PLS 1000 times
after having randomly shuffled the subject entries in one of the two
matrices; to non-parametrically derive a p-value, the singular value of the
actual covariance component was compared to the null distribution
constructed from this permutation process.

Further, to establish the stability of the salience weights, we reran PLS
1000 times using a randomly selected subsample of 80% of the data, and
computed a bootstrap score for each salience weight as its mean across
folds divided by its standard deviation.

2.4.5. Influence of head motion on quantified metrics
While scrubbing enables to minimise the deleterious impacts of mo-

tion on the analysis and compute clean CAPs, discarding frames also has
the potential to distort transition probability estimates. For example, a
succession of three frames in the same state (which would amount to a
higher resilience for the CAP in question) would not be captured if the
middle frame is scrubbed out.

To verify that our findings were minimally sensitive to this effect, we
ran another series of analyses in which we also performed the afore-
mentioned assignment process on scrubbed frames, with a similar AP

range as for assigning test subject frames. This way, frames strongly
distorted by head motion still do not enter the analysis, but more mildly
affected fMRI volumes can be matched to their CAP. We verified the
reproducibility of our findings upon this additional analytical step.

3. Results

Consensus clustering results are displayed in Fig. 3A for K values
ranging from 10 to 40. Positive peaks highlight good candidate values
(see figure legend for details); such values are present for diverse
numbers of clusters (more notably at K ¼ 16;22;32). While a lower
number of clusters yields a reduced feature space and more interpretable
outcomes, CAPs may not be segmented finely enough to resolve
insightful dynamic properties regarding cognition. Our strategy was thus
to first perform an exploratory assessment, in which we evaluated the
significance of the brain/behaviour correlation across a set of candidate
K values (Kopt ¼ f14; 16; 22;32g) and assignment thresholds (forcing the
assignment of all frames, or using TP ¼ ½0 : 5 : 100�), to select the rele-
vant parameters to proceed forward with.

The results of this exploratory assessment are displayed in Fig. 3B,
when scrubbed frames are discarded (left panel) or also assigned to the
CAPs at threshold AP (right panel). Both settings yield very similar sig-
nificance values, which is good evidence that remaining head motion
effects only have a minor influence on the analyses. As the assignment
threshold increases (that is, less and less frames are assigned because the
criterion becomes more and more stringent), significance generally de-
creases. A smooth spot can be observed for K ¼ f16;22g and AP < 15%,
which indicates that this granularity is optimal in the context of behav-
ioural prediction. We selected K ¼ 16 and AP ¼ 0% as values for more
detailed subsequent analyses.



Fig. 3. Parameter selection. (A) Consensus clustering results for a range of K values from 10 to 40. Outputs from the algorithm are percentages of ambiguously
clustered pairs (PAC); since this measure requires the definition of an interval of consensus values within which clustering is deemed ambiguous, we investigated a
range of values as colour-coded from black to yellow. For each value, we fitted a decreasing exponential to capture the overall tendency of PAC values going down with
larger cluster number. The y-axis of the plot depicts the difference between this fitted value and the actual value: thus, a positive difference means that the considered
cluster number is more satisfying than what would be predicted in terms of the overall behaviour. (B) Across candidate cluster number values selected from consensus
clustering, and assignment threshold values, significance of the relationship between CAP metrics and attentional abilities, as quantified by the p-value obtained upon
PLS analysis. The left panel depicts the results for which scrubbed frames are not considered at all, while in the right panel, scrubbed frames were also assigned to the
CAPs. The infinity symbol is used to depict a case in which assignment is done for all frames, even if a frame is not sufficiently close to any CAP when comparing its
spatial correlation to the associated correlation distribution.
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CAPs are displayed, for this chosen parameter set, in Fig. 4A, while
their involvement in driving the brain/behaviour relationship, as quan-
tified by salience weights across our range of investigated metrics, is
depicted in Fig. 4B. The correlation between actual and predicted
attentional performance was strongly significant (R ¼ 0:587, p < 0:001;
Fig. 4C). The associated covariance component found by PLS analysis was
significant at p ¼ 0:003. Note that this relationship is derived from only
subjects that were not used to construct the CAPs.

CAP1 depicts co-activation of a range of resting-state networks,
including the auditory, somatomotor, visual and salience ones. Atten-
tional performance was better in the subjects that transited more
frequently from the baseline state of seed activity to this CAP. CAP1 was
also more often the entry point towards other CAPs in high performance
subjects, as seen from a strongly positive out-degree salience weight.

Good subjects in terms of continuous performance also more often
entered CAP2 and CAP7 from other states (as seen from positive in-
degree salience weights), and these same 2 CAPs were also more influ-
ential in the transitory behaviour of CAP dynamics (since betweenness
centrality salience weights also showed large positive values). In both
CAPs, the seed region co-activates with a restricted set of areas including
the right inferior parietal cortex (for both), the posterior cingulate cortex
and medial prefrontal cortex (for CAP2), and the right anterior prefrontal
cortex (for CAP7).

CAP3 and CAP5 were associated to good attentional abilities from the
viewpoint of several metrics, which emphasises the importance of their
expression: for CAP3, it involved resilience, in-degree and out-degree,
while for CAP5, it was return to baseline, resilience, in-degree and
betweenness centrality. Both CAPs include strong co-activation with the
right inferior parietal cortex, and for CAP3, also with the left cerebellum
lobule VI and a subpart of the occipital cortex.

CAP4 and CAP14 were the only states whose expression was detri-
mental to attentional performance, in terms of betweenness centrality for
the former, and of return to baseline for the latter. CAP4 displayed
bilateral right superior cortex and anterior prefrontal cortex co-activation
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with the seed, while for CAP14, involved areas were the fusiform gyrus,
parahippocampal cortex, and a diffuse right lateralised spot covering
parts of the auditory, secondary somatosensory and posterior insular
cortices.

The majority of the other CAPs that did not show any link to atten-
tional performance involved co-activations with regions that were not
part of the attentional networks: for instance, CAP6 includes the anterior
cingulate cortex and anterior insula; CAP8 contains the anterior cingu-
late, visual and right somatosensory cortices; CAP9 showcases primary
visual and auditory cortices; CAP10 shows the angular gyrus and part of
the precuneus; and CAP11 and CAP15 mostly highlight ventral medial
prefrontal cortex signal.

4. Discussion

In this work, we have introduced TbCAPs, a toolbox for co-activation
pattern analysis, which provides practitioners with an intuitive dedicated
graphical user interface as well as a powerful scripting equivalent. It
provides an easy control over all key analytical parameters of the tech-
nique, novel methodological additions for augmented analyses, and
facilitated visualisation of the resulting CAPs and associated metrics.
Although we have focussed on the usefulness of CAP analysis in the
resting-state setting, we also remark that nothing precludes the use of the
technique in task-based investigations.

As most CAP studies to date have revealed the potential of the
approach in clinical settings (Amico et al., 2014; Di Perri et al., 2018;
Kaiser et al., 2019; Tuleasca et al., 2019), we sought to demonstrate the
relevance of the technique in another context; i.e., rather than consid-
ering a classification problem in which two or more distinct subject
populations are separated, we considered a regression task in which we
attempted to explain attentional abilities within a more homogeneous
population in a continuous vigilance task by means of CAPs dynamics.

We observed that of all the extracted CAPs showing coupling with the
right dorsolateral prefrontal seed, the large majority either did not



Fig. 4. Co-activation patterns, and relationship to attentional abilities. (A) The 16 obtained CAPs are plotted, with coloured rectangles symbolising the CAPs that
are particularly important (bootstrap score of the associated salience weight larger than 2) for the brain/behaviour relationship as quantified from a given metric
(grey: entries from baseline state, black: exits to baseline state, yellow: resilience, red: in-degree, blue: out-degree, green: betweenness centrality). Filled rectangles
highlight beneficial CAPs (positive bootstrap score), while hollow rectangles depict detrimental CAPs (negative bootstrap score). (B) Salience weights across all 16
CAPs and the 6 investigated CAP metrics. The threshold bootstrap score past which a weight is considered significant is highlighted by a horizontal dashed line. Empty
bars denote non-significant weights, while filled bars represent significant ones. (C) Actual attentional performance score (x-axis) versus predicted values with PLS
(y-axis).
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appear to be involved in attentional abilities, or showed positive salience
weights indicating a positive impact of their expression. This is not so
surprising, given that our analysis was focussed on a region of the
attention network in the first place. The common feature of beneficial
CAPs appeared to be the coupling of an array of other regions previously
pinpointed in continuous performance tasks, including the inferior pa-
rietal cortex, cerebellum lobule VI or occipital cortex (H€ager et al., 1998;
Ogg et al., 2008; Tana et al., 2010). At the same time, these beneficial
CAPs also barely involved coupling of other functionally distinct
networks.

The one CAP for which the above reasoning does not hold is CAP1:
despite the involvement of a very diverse set of regions, it was also
retrieved as beneficial for attentional performance. More precisely,
contrarily to most of the others, the expression of this CAP appears to be
essential at the start of a seed activation sequence: indeed, salience
weights were large specifically for the entries from baseline and out-
degree metrics. In other words, there is first a transition from baseline
to this CAP, followed by the exit of that configuration to reach more
spatially well-defined states. This involvement of short-lived periods of
extensive cross-network interactions in mediating some aspects of human
cognition has recently started to be appreciated as an insightful func-
tional brain mechanism (Betzel et al., 2016; Fukushima et al., 2018).

The fact that all the probedmetrics significantly contributed to explain
attention is good evidence in favour of the temporal complexity of func-
tional brain dynamics: instead of an instantaneous characterisation or a
one-frame expression of a telling functional state, what truly matters is a
complex mix between how activation starts (captured by the from-
baseline and to-baseline metrics), how transitions occur across distinct
functional states (as seen from in-degree, out-degree and betweenness
centrality), and how lasting a given state is (as quantified by resilience).
Our characterisation relates to the broad family of temporal modelling
approaches, of which notable examples include the use of graph-
theoretical analysis for energy landscape (Kang et al., 2019), or hidden
Markov models—HMMs (Vidaurre et al., 2017; Bolton et al., 2017).

A future actual use of HMMs in CAP analysis would make it possible
to not only estimate the transitory behaviour across CAPs, but also the
parameters governing the expression of the voxelwise patterns of BOLD
signal. In addition, this full characterisation of the system would enable
the generation of new data, going beyond the mere computation of
empirical estimates as done now. However, HMM-based approaches
require extensive amounts of data to converge properly, which hinders
the exploration of subject-specific properties with typical data amounts
(Bolton et al., 2017). It is to bypass this issue that we instead set, in our
current approach, to derive composite metrics that incorporate the in-
formation from several CAPs at once. Going back to the above example
where we considered K ¼ 16 CAPs, we could thus lower our amount of
imaging features from K2 ¼ 256 (all of which should be estimated with
an HMM) to 6 �K ¼ 96, and this feature extraction strategy will become
more and more beneficial as the number of examined CAPs increases.

Prediction of continuous performance abilities from resting-state
fMRI recordings has been shown possible in previous functional con-
nectivity work relying on second-order correlational measures across
brain regions (Rosenberg et al., 2016). More recently, this characterisa-
tion has been pushed to the dynamic level by Fong et al. (2019), who
showed that prediction can also be successfully achieved when temporal
variability, which quantifies fluctuations in functional connectivity over
the course of a scanning session, is used as a metric of interest. Our
prediction accuracy is on par with the one achieved in this whole-brain
analysis, despite focussing on one seed region. Interestingly, the au-
thors described the fact that lowered temporal variability was beneficial
for better attentional performance, and that many of the most important
features for prediction involved an executive control brain network: this
is fully consistent with our results, in which increased resilience (which
can be expected to yield lowered temporal variability) of CAPs featuring
executive control areas is beneficial.
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In comparison to clinical applications of CAP analysis, in which be-
tween 3 and 8 CAPs are typically considered, a finer granularity was
required in the present work (see Fig. 3). This is not surprising given that
the regression problem at hand here is more challenging than a classifi-
cation task, as we need to predict a value within a continuum. Further-
more, the functional underpinnings of inter-individual differences in
cognitive abilities are likely more subtle than when comparing subjects
across consciousness or disease severity levels. In fact, if a too low
number of CAPs is extracted, patterns with a different cognitive relevance
are averaged together as a single cluster, which impedes prediction;
conversely, if a too large number of CAPs is extracted, meaningful con-
figurations become further segmented, and statistical power is lost due to
the smaller amount of frames constituting each CAP.

A limitation of our work, and of any standard CAP analysis, is that
computations are performed on BOLD time courses that have not been
freed from hemodynamic effects (i.e., that have not underwent decon-
volution with a hemodynamic response function—HRF—estimate). The
parameters of the HRF vary across brain regions (Handwerker et al.,
2004), and such differences can confound functional connectivity esti-
mates (Rangaprakash et al., 2018). However, we believe that such im-
pacts remain minimal in the present analysis, since the areas located in
most CAPs are also consistently found in the literature on attentional
performance. Furthermore, we do not focus on the spatial patterns of the
CAPs, but instead, on the transitory dynamics between them. Since the
HRF also varies across subjects (Aguirre et al., 1998), we cannot rule out
that our association to behaviour was partly influenced by such effects,
but given the fact that our sample of subjects was distributed over a
narrow age range of 10 years—a leading factor in HRF variability
(D’Esposito et al., 1999), we consider this an unlikely scenario.

While the example application introduced here involved fast TR
(0.72 s) data acquired in a multi-band setting, it should be remarked that
the findings of CAP analyses may partly vary as a function of the
employed acquisition type. Since the HRF acts as a bottleneck factor,
setting a limit below which functional dynamics cannot be resolved more
finely anymore even at faster acquisition paces, the influence of the TR
per se may remain limited. However, another associated problematic is
the differential influence of physiological rhythms on the functional data
(Chen et al., 2019). This even extends to the motion time courses typi-
cally used in data preprocessing—including scrubbing as performed
within TbCAPs, since additional physiology-driven components are
observed at faster TRs (Power et al., 2019). All in all, we thus wish to
emphasise the importance of freeing the data from such physiological
impacts as well as possible using the available resources for this purpose
(Glover et al., 2000; Griffanti et al., 2014; Pruim et al., 2015).

In future work, it will be interesting to examine clinical or cognitive
research hypotheses at the broader focus level of more than one seed
region. As alluded to above, this is already feasible with our current
toolbox version, and may enable to better bridge the gap between seed-
based and whole-brain analyses. We also foresee additional technical
developments in the near future, such as the possibility to extract co-
activation sequences (that is, series of successive fMRI volumes) rather
than CAPs. Finally, we would like to encourage the motivated readers to
help us in further improving our publicly accessible toolbox, so that it can
become an even more multimodal package integrated with other widely
used existing software.
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