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Application of Network Calculus
to Guaranteed Service Networks
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Abstract—We use recent network calculus results to study some
properties of lossless multiplexing as it may be used in guaranteed
service networks. We call network calculus a set of results that
apply min-plus algebra to packet networks. We provide a simple
proof that shaping a traffic stream to conform to a burstiness
constraint preserves the original constraints satisfied by the traffic
stream We show how all rate-based packet schedulers can be
modeled with a simple rate latency service curve. Then we
define a general form of deterministic effective bandwidth and
equivalent capacity. We find that call acceptance regions based
on deterministic criteria (loss or delay) are convex, in contrast to
statistical cases where it is the complement of the region which
is convex. We thus find that, in general, the limit of the call
acceptance region based on statistical multiplexing when the loss
probability target tends to 0 may be strictly larger than the
call acceptance region based on lossless multiplexing. Finally, we
consider the problem of determining the optimal parameters of a
variable bit rate (VBR) connection when it is used as a trunk, or
tunnel, given that the input traffic is known. We find that there
is an optimal peak rate for the VBR trunk, essentially insensitive
to the optimization criteria. For a linear cost function, we find an
explicit algorithm for the optimal remaining parameters of the
VBR trunk.

Index Terms—Arrival curves, asynchronous transfer mode
(ATM), effective bandwidth, equivalent capacity, guaranteed
quality of service, max-plus algebra, min-plus algebra, network
calculus, queueing systems, service curves.

I. INTRODUCTION

W E call network calculus a set of rules and results that
can be used for computing tight bounds on delays,

backlogs, and arrival envelopes in a lossless setting applicable
to packet networks. Fundamental work has been pioneered by
Parekh and Gallager [1], [2] and Cruz [3]–[5], where general
bounds based on the concepts of arrival and service curves
are derived. Other fundamental work for specific or general
scheduling policies is described in [6] and [7]. Recently, this
work has been extended and simplified independently and
simultaneously under equivalent forms by Sariowan [8] who
gives a formal and general treatment of the concepts of arrival
and service curves, two fundamental network calculus tools.
The mathematics involved in network calculus uses min-plus
algebra, as described in [9]. In this paper, we show how these
results can be applied to derive general concepts for packet
networks with guaranteed service. In Section II we recall
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the main network calculus results we need in this paper. In
Section III we give results on shapers. These results were
found independently in [10] and [11]. We also provide a simple
proof that shaping a traffic stream to conform with a burstiness
constraint preserves the original constraints satisfied by the
traffic stream.

The Internet Engineering Task Force (IETF) is developing a
framework for packet networks offering guaranteed quality of
service. We show how the network calculus results mentioned
above can be applied to derive general concepts for packet
networks with guaranteed service. First, in Section IV, we
show how rate-based schedulers can be modeled simply in a
way that fits with the IETF framework [7], [12], [13].

Secondly, in Section V, we introduce the general concept
of deterministic effective bandwidth, which was introduced in
a narrower context in [14, pp. 270–273]. We give a simple,
general definition, and show that it is a convex function
of the arrival curve. This enables us to determine that call
acceptance regions based on deterministic delay constraints
are convex. This is in contrast to call acceptance regions based
on statistical multiplexing with large deviation asymptotics, in
which case it is the complement in the positive orthant which
is convex [15]. This also shows that, in general, the limit of the
call acceptance region based on statistical multiplexing when
the loss probability target tends tomay be strictly larger than
the call acceptance region based on lossless multiplexing. We
also define similarly the deterministic equivalent capacity, by
analogy to the work in [16].

Third, in Section VI (and this was our initial motivation),
we consider a connection admission control (CAC) method, for
the case where connections are admitted onto an Asynchronous
Transfer Mode (ATM) variable bit rate (VBR) trunk, or tunnel
[17]. In such a case, the CAC method can be split into two
subproblems: 1) predict the traffic for the next prediction
period and 2) given a predicted traffic, find the optimal VBR
trunk parameters that can carry the traffic. Point 2) is not as
simple as for a conventional, constant bit rate (CBR) trunk,
because, for a VBR trunk, there are three parameters to set,
instead of one for CBR. It is point 2) that we solve in this
paper, using network calculus. The VBR trunk is defined by
a peak rate, a sustainable rate, and a burst tolerance. We find
that, if a deterministic delay constraint is used, then there is
always an optimal peak rate, which is the effective bandwidth
of the arrival traffic. If the cost function for the VBR trunk
is linear, then we find an explicit algorithm for computing the
optimal VBR trunk characteristics.
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II. BACKGROUND: NETWORK CALCULUS

In this section we recall a few definitions and results, which
we collectively call “network calculus” [8], [10], [11], [18],
[19].

We consider wide-sense increasing functions of time, with
nonnegative, possibly infinite values (we say that function
is wide-sense increasing, also called “nondecreasing,” when

for all ). For two wide-sense increasing
functions and , define by

(1)

This operation is called “min-plus convolution.” It is the
correspondent of standard convolution when we move from
standard algebra to min-plus algebra [9]. Min-plus convolution
has a number of nice properties: it is associative and commu-
tative; if then with
equality if and are concave; if and are convex and
piecewise-linear, then is obtained by putting end-to-
end the different linear pieces of the individual service curves,
sorted by increasing slopes [2].

Consider a data flow, described by its arrival function ,
which is equal to the number of bits seen on the flow in time
interval . Given a wide-sense increasing function, we
say that the flow is constrained by if and only if for all

: . This is equivalent to requiring
that [10], [11]

(2)

Function is called anarrival curvefor the flow. For example,
a flow controlled by a leaky bucket has an arrival curve of the
form . Similarly, an ATM flow, constrained by
the GCRA algorithm with parameters has an arrival
curve , with in bits per second (bits/s) and

in bits given by , . In the formulas,
is the cell size in bits. A flow conforming to the draft IETF

specification for integrated service [12], with maximum packet
size , peak rate , sustainable rate, and burst tolerance,
has an arrival curve defined by . In
many references, such as [13], it is the number of bits arriving
in time interval (instead of ) for which a bound is
required; in that case, a bound is , where is the
maximum packet size, which is also the maximum number of
bits that can arrive instantly.

The function may be any nonnegative, wide-sense-
increasing function, but it defines a meaningful constraint only
if it is subadditive, which means that
for all . If is not subadditive, it can be replaced by
its subadditive closure [10]. If is concave, with ,
then is subadditive. As a consequence, all curves defined
by the minimum of affine functions are subadditive.

Consider now a system, which we view as a blackbox;
takes data in and outputs data after a variable delay. Call

the input function, namely, the number of bits seen on
the input flow in time interval , and the output
function. Thebacklog at time is ; it is the
amount of bits that are held inside the system. Similarly, the

virtual delay at time is

and

It is the delay that would be experienced by a bit arriving at
time if all bits received before it were served before it. If
the output function is continuous (no batch departure) then

.
Network calculus results give computational rules for

bounding virtual delays and backlog for arbitrary systems
that represent networks. We first need the definition ofservice
curve. We say that offers to the flow a service curve if
and only if [10], [18]

(3)

This is equivalent in practice to saying that for all , there
exists some , with , such that

The definition of a service curve is an abstraction of the
“strict service curve” concept defined by Cruz in [5]. A GPS
scheduler [1], [2] with rate guaranteeto a flow offers this
flow a service curve . Note that the universal service
curve property in [1] and [2] is a stronger guarantee than (3); it
assumes that a service rate equal to at leastis offered during
anyperiod of time where the backlog for the flow is not empty.

A delay-based scheduler, which guarantees a delay con-
straint , offers a service curve , where is the impulse
function defined by if and
if .

A first series of results gives tight bounds given arrival and
service curve constraints [18].

• Assume a flow, constrained by arrival curve, traverses
a system that offers a service curve. The backlog

for all is bounded by

The virtual delay is bounded by

(4)

where is the horizontal deviation between the
two functions, namely,

and

• Assume a flow traverses systemsand in sequence.
Assume that offers a service curve of ,
to the flow. Then the concatenation of the two systems
offers a service curve of to the flow.

In the next section we give a second family of results which
we will need in this paper.



LE BOUDEC: APPLICATION OF NETWORK CALCULUS TO GUARANTEED SERVICE NETWORKS 1089

III. SHAPERS

Most results on shapers were also discovered independently
in [8], [10], and [11].

A shaper, with shaping curve, is a bit-processing device
that forces its output to have as arrival curve, by delaying
bits in a buffer whenever sending a bit would violate the
constraint for the output traffic. A buffered leaky bucket is
a shaper with of the form . The curve
can be any nonnegative, wide-sense-increasing function, but
as for any arrival curve, we may assume that it is subadditive
(otherwise, replace by its subadditive closure). In Section
VI, we consider network nodes that act as shapers. We first
recall a fundamental result on shapers.

Theorem 1. [8], [10], [11], [19]: A shaper with subaddi-
tive shaping curve such that offers as a service
curve.

The simplest proof for this result is based on the linear
characterization of shapers which has been established inde-
pendently in [8], [10], and [11]. They find that shapers are
simple linear systems, in terms of min-plus algebra. Indeed,
the output of a shaper with input is given by

(5)

provided that is subadditive and (otherwise,
replace by its closure [10]). This result uses a general method
of max-plus or min-plus algebra [9]. The theorem follows
directly from (5). An alternative proof is given in [19], which
applies only to the discrete time case and is based on what is
called in [20] the time method.

A corollary follows. Consider a case where reshapers are
introduced along a path. The shapers act as additional buffers,
that could increase the end-to-end delay. However, we can
derive easily that they “come for free.”

Corollary 1. Shaping Does Not Increase the Delay Bound:
Assume a flow, constrained by arrival curve, is input to
networks and in sequence. Assume a shaper, with curve

is added between and . Assume that . Then the
delay bound in (4) for the system without the shaper is also
valid for the system with the shaper.

Note that the condition means that the shaper may
be less restrictive than the original constraint.

Proof: We can assume without loss of generality that
is subadditive and , otherwise, we replace by its
subadditive closure [10] and the assumptions still hold.

Call the service curve of network . From Section II, the
delay bound for the system with shaper is
which, by associativity and commutativity, is also equal to

. Since the bounds are tight [11], the latter
is the worst case delay for the system where the shaper is
put immediately after the source; in that system, the shaper
introduces a zero delay, therefore,

Finally, we can derive the following proposition, which is
a generalization of original results in [5] and [19].

Proposition 1. Shaping Conserves Arrival Constraints:
Assume a flow with arrival curve is input to a shaper
with shaping curve . Then the output of the shaper is still
constrained by the original arrival curve.

Proof: We can assume without loss of generality that
is subadditive and . Call the input flow and
the output. By the characterization of arrival curves in [10]
recalled in Section II, we have . Combining with
(5) we have

IV. M ODELING GUARANTEED QUALITY OF SERVICE NODES

In this and the following section we now apply network
calculus results to integrated services packet networks. The
IETF implicitly uses a generic service curve model; it assumes
that every node offers a service of the form

(6)

for some delay and rate . Following [11], we call it a
“rate latency” curve. We show in this section that there are a
number of scheduling policies that offer such service curves.
The IETF further assumes [12] that the delay parameter
depends on the rate according to for some
constants and . The values of and are computed
during reservation setup, with a protocol such as the Resource
Reservation Protocol (RSVP) [21].

A number of scheduling policies have been proposed in the
literature (see, for example, [1], [7], [13], [22], [23]). Consider
the general form of scheduling proposed in [13] under the
name of Guaranteed Rate (GR) scheduling. It is shown in [13]
that Guaranteed Rate scheduling includes as particular cases:
virtual clock scheduling [23], packet-by-packet generalized
processor sharing [1], and self-clocked fair queuing [22].
Essentially identical results can be found in [24] using the
concept of “minimum bandwidth property.”

Following [13], we say that a scheduling policy is of the
guaranteed ratetype, with rate and delay for a given
flow if it guarantees that packet of the flow is served by
time , with defined by and

(7)

In the formula, is the length in bits of packet and
is the arrival time of packet.

Theorem 2. Modeling GR Nodes:A node with guaranteed
rate scheduling policy offers a service curve defined by

where is the maximum packet size in bits.
Proof: Call the departure time for the last bit of

packet . If is finite, then if then
since any packet is guaranteed to leave the

system after a finite time. The service curve property is trivially
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Fig. 1. Input and output functions for GR scheduling.

true in that case. We can thus assume now that there is a packet
index such that . Thus

(8)

Define

such that and

Fig. 1 illustrates a case with and . We first
consider the case where .

Now

and for all such that we have

thus

(9)

Define , where is small enough for
and . We have

(10)

and

and from (9), it follows that

Thus by definition of

(11)

Assume now that , which implies that
. From (8) and (10), the last term in (11) is precisely

, which proves the service curve property in
that case.

Now if then necessarily . If
, then the above reasoning applies and shows the

service curve property. Otherwise, ,
the queue is empty at, and the service curve property is true
with .

The result in this section is compatible with the common
node model of IETF, who chose to restrict the modeling to
rate latency curves. Together with the network calculus results
of Section II, they can be used to derive tight upper bounds
on delays and backlogs, which gives as a particular case the
results in [13]. Remember that, in performing the comparison,
one should be careful to map the “arrival curve” condition in
[13] to , where is the maximum packet length.

There are known forms of scheduling that do not belong to
the GR type. One such form is the delay-based scheduler [25].
As mentioned in Section II, a delay-based scheduler offers a
service curve of for some , which is thus a particular
case of a rate latency service curve. There are, however, other
forms of scheduling which cannot be modeled well with a
rate-latency curve. For example, the VBR trunk discussed in
Section VI does not fit in that framework. A more general
discussion of this point leads to the concept of service-curve
scheduling, which is defined and analyzed in [8] and [26]. The
restriction by IETF to rate latency curves is thus at the cost
of loosing some flexibility.

In practice, we use network calculus to compute bounds
on delay variation and backlogs. Constant propagation delays
between systems can be ignored for the computation of delay
bounds, as they simply transform an input function into the
functions shifted in time by a fixed amount. Variable delays
can be modeled simply by the addition of functions to
the service curves. For the computation of the backlog inside
a system , constant delays inside cannot be ignored and
should be modeled with a service curve. As a consequence
of the commutativity of , such delays can be inserted in any
order along a sequence of buffers, without altering the delay
bounds.

V. DETERMINISTIC EFFECTIVE

BANDWIDTH AND EQUIVALENT CAPACITY

In this section we introduce the concepts of effective band-
width and equivalent capacity in a deterministic context.
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Fig. 2. Effective bandwidth for a delay constraintD and equivalent capacity for a buffer sizeB.

A. Effective Bandwidth and Equivalent Capacity of a Flow

Consider a trunk system that serves a flow in a work-
conserving manner, at a constant rate. We assume that the
arrival flow is constrained by an arrival curveand would like
to characterize the minimum value of that is required for
a given and a given constraint on delay or buffer capacity.
This problem has been studied in [14, pp. 270–273], in the
specific case of a flow constrained by one leaky bucket. The
authors in [14] find that, if we impose a fixed-delay constraint

to the flow, then the condition on is that , where
depends on the leaky bucket parameters and the delay

constraint. is called the (deterministic) effective bandwidth
of the flow, for a delay constraint of . If identical flows
are superimposed, the effective bandwidth of the aggregate
flow is ; in contrast, for a heterogeneous mix of flows,
there is no such additive property.

We show now how these results derive from a more general
concept. Back to the general case, for a given arrival curve,
we wish to find a rate such that the horizontal deviation

is not more than , where is the function
defined by . This is equivalent to requiring that

for all , which in turn can be expressed
as

We have thus shown the following:

Proposition 2. Effective Bandwidth:The queue with con-
stant rate guarantees a delay bound of to a flow with
arrival curve if , with

(12)

We call the effective bit rate, or deterministic effective
bandwidthcorresponding to the arrival curve, for a delay
constraint . If is differentiable, is the slope of the
tangent to the arrival curve, drawn from the time axis at

(Fig. 2).
Assume is subadditive. We define the sustainable rate

as

Fig. 3. Effective bandwidth for an arrival curve according to the IETF
specification.

and the peak rate by

Then for all . Moreover, if is concave,
then

For example, for a flow constrained according to the IETF
specification, with maximum packet size, peak rate , sus-
tainable rate , and burst tolerance, the effective bandwidth is
the maximum of and the slopes of lines and
in Fig. 3; it is thus equal to

(13)

with .
It also follows directly from the definition in (12) that

(14)

In other words, the effective bandwidth for an aggregate flow is
less than or equal to the sum of effective bandwidths, assuming
the delay constraints are identical for all flows. If the flows
have all identical arrival curve, then the aggregate effective
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bandwidth is simply . It is this latter relation which
is the origin of the term “effective bandwidth.” The difference

is a (nonstatistical) multiplexing gain; it tells us how much
capacity is saved by sharing a buffer between the flows.

Similar results hold if we replace delay constraints by the
requirement that a fixed buffer size is not exceeded. Indeed, the
queue with constant rate, guarantees a maximum backlog of

(in bits) for a flow with arrival curve if , with

(15)

We call the equivalent capacity, by analogy to [16]
(Fig. 2 gives a graphical interpretation). Similar to effective
bandwidth, the equivalent capacity of a heterogeneous mix of
flows is less than or equal to the sum of equivalent capacities
of the flows, provided that the buffers are also added up; in
other words,

with and .
Note that (12) or (15), or both, can be used to estimate the

capacity required for a flow, based on a measured arrival curve.

B. Call Acceptance Regions

Coming back to (14), we can state in more general terms
that the effective bandwidth is a convex function of function

, namely,

(16)

for all . The same is true for the equivalent capacity
function.

Consider now a call acceptance criterion based solely on
a delay bound, or based on a maximum buffer constraint, or
both. Consider further that there aretypes of connections;
connections within type are characterized by a common
arrival curve . The connections are multiplexed on the same
trunk, and all connections have an identical delay constraint

. Define the acceptance region as the set of values
that satisfy the call acceptance criterion, where

is the number of connections of class. From (16) we can
extend the acceptance region to noninteger values of; we do
this in order to simplify the following discussion on convexity.
From the convexity of the effective bandwidth and equivalent
capacity functions, it follows that the acceptance regionis
convex.

This contrasts with acceptance regions based on statistical
multiplexing with large deviation asymptotics. In such cases,
a set of values is acceptable if a given upper
bound on loss probability is less than, where is a small,
fixed value. In a broad family of cases, and especially for
bufferless models, it is the complement in the positive orthant
which is convex [15]. Call the acceptance region for a given

value of . becomes smaller as decreases to, and the
limit is

Under the assumptions in [15], the complement ofin the
positive orthant is also convex, since the union of an increasing
set of convex sets is convex.

Of course, we have for all and thus . Ideally,
we would like to have equality, but this may in general not be
possible because is usually strictly convex (see [27] for an
example in the case of a call acceptance criterion based on a
buffer requirement only). Thus the limit of acceptance regions
based on statistical multiplexing, as the loss probability tends
to , may be strictly larger than the acceptance region based
on a lossless criterion.

VI. OPTIMAL PARAMETERS FOR AN

ATM V ARIABLE BIT-RATE TRUNK

A. Optimal Peak Rate

As mentioned earlier, our initial motivation is a
measurement-based call admission control (CAC) method,
for the case where connections are admitted onto an ATM
variable bit rate (VBR) trunk, or tunnel [17]. Tunneling refers
to the multiplexing of several flows into a larger flow, which
is handled in subsequent nodes as a single entity (called a
virtual trunk in [17]). Tunneling occurs when a number of
RSVP flows are multiplexed onto one single ATM connection,
or over one RSVP flow itself. We expect tunneling to play
an important role in the scalability of integrated services
networks. Using VBR trunks rather than constant bit rate
trunks is advantageous in particular for trunks carrying
medium amounts of traffic, that are thus best able to benefit
from statistical multiplexing in a larger network [28].

More specifically, in this paper, we focus on one issue,
namely, given a predicted traffic, find the optimal VBR trunk
parameters that can carry the traffic. The same problem arises
in prerecorded video scenarios, where prediction is not based
on traffic measurements but on the contents of a stored file.

We assume in this section that a number of flows, with an
aggregate arrival curve, is multiplexed into a VBR trunk.
The VBR trunk is viewed as a single flow by downstream
nodes; as such, it is constrained by an arrival curve. We are
interested in finding, for a given arrival curve, the optimal
values of , for a criterion that we define later. If we assume a
work-conserving scheduling policy, then the multiplexing node
acts as a general shaper. From Section III, we can conclude
that it offers a service curve to the aggregate flow. Assume
that the constraint at the multiplexor node is to guarantee a
maximum delay . From Section II, the requirement on the
virtual trunk is that, for all , we have

(17)

We have assumed that the virtual trunk is an ATM Variable
Bit Rate (VBR) connection. The shaping curve for a VBR
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Fig. 4. Virtual trunk with parameters(P; S; B) satisfies the delay constraint
D for traffic with arrival curve drawn on the picture.

connection has the form where is
the peak rate, the sustainable rate, and a burst tolerance
parameter. Equation (17) is illustrated on Fig. 4.

Equation (17) becomes

for all (18)

The first condition in (18) implies that , which
is thus a necessary and sufficient condition on. In other
words, we have shown that for a virtual trunk of the ATM
VBR type, there is a minimum peak rate , which is the
effective bandwidth of the arrival streamand that this minimum
peak rate is also optimal. More precisely, the latter statement
means the following. We say that the parameter set
of the virtual trunk is feasible if the virtual trunk is able to
carry the traffic with a delay less than the delay constraint

. The result is that, if is feasible, then on the
one hand, necessarily , and on the other
hand, is also feasible. Another aspect of this result
is that, from a bandwidth point of view, using a VBR trunk
rather than a constant bit rate (CBR) trunk is all benefit since,
by definition of the effective bandwidth, the CBR trunk would
have a rate of at least .

B. Optimal VBR Trunk

If we wish to solve the problem of finding a complete
optimal parameter set for , then we need an optimality
criterion. As an example, we assume that we wish to minimize
a cost function which is affine and wide-sense
increasing in each of its variables. The value ofshould
thus be set to and we wish to minimize

for fixed values of and . Without loss of generality, we
can set .

The values of and are also normally limited not to
exceed maximum values , respectively, . Without
loss of generality, we can further assume that

(19)

We thus have to minimize in the acceptable region,
defined by

(20)

(21)

for all

(22)

First note that the acceptance region is not empty if and only if

(23)

In the remainder of this section we assume that (23) holds.
Reduction to Another Optimization Problem:It is sug-

gested by Fig. 4, and is confirmed in the rest of the derivations,
that it is convenient to perform the change of variable defined
by

(24)

Our optimization problem becomes

Minimize on the set defined by

(25)

In the above, is the concave conjugate of, defined by

We call the region of the plane defined in (25).
Optimization Region:We now study the optimization re-

gion . The region is convex, as it is the intersection of
half-planes. Define as the set of points such that

and as the set of points such that

so that is the intersection of and . We assume that
is subadditive and define the sustainable rateas

and the peak rate by

Then we have

if then
if then

Since is convex, the latter equation implies that
is wide-sense decreasing. Define the points ,

, and in the plane as the
intersection of the border of and the line defined by

(respectively, , ) and as
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Fig. 5. The optimization regionR is the intersection ofR1 andR2. The figure shows the pointsA, Q, R, andW .

Fig. 6. Relative placements ofR1 andR2 under the conditions in this
section.

the intersection of the lines and
(see Fig. 5).

We now study the relative positions of points, , , and
. Point is defined by

which, after some algebra and using the fact that , gives

Similarly, point is defined by

Combining with (19) and (23), we obtain

Finally, we have

Again from (23), we have

(see Fig. 5).
Alltogether, this shows that intersects the border of

at points and . This is illustrated in Fig. 6.

Computation of the Optimum:Since the cost function is
linear, its minimum is attained on the border of, and it
can be only on a point of the border of or at point

[29]. It is straightforward to see that in all cases, the cost
at is superior than or equal to the costs atand , thus
the cost is minimum for a point on which lies between

and . Thus the optimization problem is reduced to the
following one:

Minimize on the set

defined by (26)

Call the function . If then is
wide-sense decreasing thus its minimum is for .

Assume now that . Function is convex, thus its
minimum is attained on an interval . In addition,
is wide-sense decreasing on the set and wide-sense
increasing on (some of these sets may be empty). In
order to determine the minimum of on the set ,
we determine the relative positions of all these intervals.
This gives the following result. Let be one point which
minimizes .

• If then the minimum of our cost
function is obtained for .

• Else if then the minimum is obtained for
.

• Else (namely, if ) then the minimum is obtained
for

In general we need to obtain the value of oneby a numerical
procedure.

Special Cases:In some cases we can assume thatis two
times differentiable. In such cases, we can parameterize
by instead of , using the fact that

for some that attains the maximum in . We have
thus

Function is now differentiable and

Thus one point where the minimum of is attained is for
and is .
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Define ��(x) = infs�0(xs� �(s));
P0 = sup

s�0

�(s)

s+D
;

Smax = min fP0; Smaxg ;
if Bmax < sup

s�0 f�(s)� (s+D)Smaxg there is no solution;
elsef

if(u < D)S0 = Smax;

elsef
�S= one value ofx that minimizes(u�D)x���(x); (1)
Se = sup

s�0
�(s)�B

s+D
;

if ( �S > Smax)S0 = Smax;
else if ( �S < Se)S0 = Se;
elseS0 = �S (2);

g
B0 = sup

s�0f�(s)� (s+D)S0g (3)
g

If � is twice differentiable, then replace (1) by
�S = �0(u�D)

If moreover� is concave then in case (2) replace (3) by
B0 = �(u�D)� uS0

Fig. 7. The algorithm for the optimal VBR virtual trunk parameters
(P0; S0; B0) for a given arrival curve�, a delay constraintD, a cost
parameteru, and maximum valuesSmax andBmax.

If we further assume that is concave, then, since it is
continuous (because it is differentiable), it is equal to the
concave conjugate of , thus

and, in that case, the value of corresponding to the minimum
cost function is given by

Note that the assumption thatis concave is too strong in the
cases where is obtained by measurements.

Now if we put together these results and perform the reverse
mapping from (24), we obtain the optimal value
according to the algorithm in Fig. 7.

The algorithm shows the relation betweenand . We can
interpret as the ratio of the monetary costs attributed to the
rate and to the burst tolerance. If is less than the time
constant of the node, then the optimum rate is equal to
the maximum value .

The above result generalizes to the case where the virtual
trunk arrival curve is defined by any number of affine con-
straints (not just two as in this example). Similar results hold
if a maximum buffer requirement is considered.

The algorithm in Fig. 7 can be used to estimate the optimal
characteristics of the virtual trunk, based on a measured arrival
curve .

VII. CONCLUSION

We have shown how network calculus can be used to
provide a unifying treatment to a variety of problems arising in
packet networks offering guaranteed service. We have shown
that all rate-base schedulers fit in the framework of the IETF.
Then we have applied the results to defining the concepts

of deterministic effective bandwidth and equivalent capacity.
We have shown that the limit of the acceptance region based
on statistical multiplexing, as the loss probability tends to,
may be in general strictly larger than the acceptance region
based on a lossless criterion. Finally, we have given an explicit
algorithm for determining the optimal characteristics of a VBR
trunk, assuming that the input traffic is known, and for a strict
delay constraint. We have shown that the peak rate for the
VBR trunk is the very rate of the CBR trunk that would carry
the traffic with the same strict delay constraint, thus in this
sense, a VBR trunk is the benefit.

The network calculus results derived in this paper have been
developed independently and simultaneously by Chang [10],
Agrawal and Rajan [11], and Cruz and Okino [18], who have
developed applications to window flow control.
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