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Application of Network Calculus
to Guaranteed Service Networks
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Abstract—We use recent network calculus results to study some the main network calculus results we need in this paper. In

properties of |0i5|63\7 mu||t|i|0|e><ing E\S itlmally be used ifn gualrantﬁed Section Ill we give results on shapers. These results were
service networks. We call network calculus a set of results that . . . :

apply min-plus algebra to packet networks. We provide a simple found mdepend.ently n [j,'o] and [11]. We also pr.OV|de a S|mple
proof that shaping a traffic stream to conform to a burstiness Proof that shaping a traffic stream to conform with a burstiness
constraint preserves the original constraints satisfied by the traffic constraint preserves the original constraints satisfied by the
stream We show how all rate-based packet schedulers can betraffic stream.

modeled with a simple rate latency service curve. Then we . . : .
define a general form of deterministic effective bandwidth and The Internet Engineering Task Force (IETF) is developing a

equivalent capacity. We find that call acceptance regions based framework for packet networks offering guaranteed quality of
on deterministic criteria (loss or delay) are convex, in contrast to  service. We show how the network calculus results mentioned
statistical cases where it is the complement of the region which ghove can be applied to derive general concepts for packet
is convex. We thus find that, in general, the limit of the call . . - . .

acceptance region based on statistical multiplexing when the loss networks with guaranteed service. First, in Sectlon_ v, We
probability target tends to 0 may be strictly larger than the ~Show how rate-based schedulers can be modeled simply in a
call acceptance region based on lossless multiplexing. Finally, weway that fits with the IETF framework [7], [12], [13].
consider the problem of determining the optimal parameters ofa  Secondly, in Section V, we introduce the general concept

variable bit rate (VBR) connection when it is used as a trunk, or ¢ yeterministic effective bandwidth, which was introduced in
tunnel, given that the input traffic is known. We find that there

is an optimal peak rate for the VBR trunk, essentially insensitive & Narrower context in [14, pp. 270-273]. We give a simple,
to the optimization criteria. For a linear cost function, we find an general definition, and show that it is a convex function

explicit algorithm for the optimal remaining parameters of the  of the arrival curve. This enables us to determine that call
VBR trunk. acceptance regions based on deterministic delay constraints

Index Terms—Arrival curves, asynchronous transfer mode are convex. This is in contrast to call acceptance regions based
(ATM), effective bandwidth, equivalent capacity, guaranteed o gtatistical multiplexing with large deviation asymptotics, in
quality of service, max-plus algebra, min-plus algebra, network hich it is th | in th " h hich
calculus, queueing systems, service curves. which case itis t 'e comp ement in t' e positive ort .an.t whic

is convex [15]. This also shows that, in general, the limit of the

call acceptance region based on statistical multiplexing when
the loss probability target tends iamay be strictly larger than

the call acceptance region based on lossless multiplexing. We

W E call network calculus a set of rules and results thgjs, gefine similarly the deterministic equivalent capacity, by
can be used for computing tight bounds on delayanalogy to the work in [16]

backlogs, and arrival envelopes in a lossless setting applicablerhird’ in Section VI (and this was our initial motivation),

fo packet networks. Fundamental wark has been pioneered ¥ consider a connection admission control (CAC) method, for

Parekh and Gallager [1], [2] and Cruz .[3]_[5]’ where_ 9YENET& e case where connections are admitted onto an Asynchronous
bounds based on the concepts of arrival and service cur\ﬁes

are derived. Other fundamental work for specific or gener, ‘ansfer Mode (ATM) variable bit rate (VBR) trunk, (_)r_tunnel
scheduling policies is described in [6] and [7]. Recently, th 7] In such a case, t_he CAC mgthod can be split mt_o .tWO
work has been extended and simplified independently angoProblems: 1) predict the waffic for the next prediction
simultaneously under equivalent forms by Sariowan [8] wHiE"od and 2) given a predicted traffic, find the optimal VBR
gives a formal and general treatment of the concepts of arrif@fNk parameters that can carry the traffic. Point 2) is not as
and service curves, two fundamental network calculus toofimple as for a conventional, constant bit rate (CBR) trunk,
The mathematics involved in network calculus uses min-pl§cause, for a VBR trunk, there are three parameters to set,
algebra, as described in [9]. In this paper, we show how theégstead of one for CBR. It is point 2) that we solve in this
results can be applied to derive general concepts for pacRéper, using network calculus. The VBR trunk is defined by
networks with guaranteed service. In Section 1l we recall peak rate, a sustainable rate, and a burst tolerance. We find
that, if a deterministic delay constraint is used, then there is
Manuscript received January 9, 1997; revised September 18, 1997. always an optimal peak rate, which is the effective bandwidth
The aut_hor is with the Laboratoire deé&eaux de Communication,'EcoIeof the arrival traffic. If the cost function for the VBR trunk
m&zmmeﬁgﬁﬁ?de Lausanne (EPFL), CH-1015 Lausanne, Switzerland ;inoar then we find an explicit algorithm for computing the
Publisher Item Identifier S 0018-9448(98)02345-1. optimal VBR trunk characteristics.
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[I. BACKGROUND: NETWORK CALCULUS virtual delay at time ¢ is
In this section we recall a few definitions and results, which . .
we collectively call “network calculus” [8], [10], [11], [18], d(t) =inf{T: T > 0 and R(t) < R*(t + 1)}
[19].

We consider wide-sense increasing functions of time, withis the delay that would be experienced by a bit arriving at
nonnegative, possibly infinite values (we say that functioh time ¢ if all bits received before it were served before it. If
is wide-sense increasing, also called “nondecreasing,” white output function is continuous (no batch departure) then
v(s) < ~(t) for all s < t). For two wide-sense increasingR*[t + d(t)] = R(t).
functions~y; and ., definevy; ® v» by Network calculus results give computational rules for

bounding virtual delays and backlog for arbitrary systems
{71(w) + 72t —w)}. (1) that represent networks. We first need the definitiosesf/ice
curve We say thatS offers to the flow a service curv@g if
This operation is called “min-plus convolution.” It is theand only if [10], [18]
correspondent of standard convolution when we move from
standard algebra to min-plus algebra [9]. Min-plus convolution R*>R®p. 3)
has a number of nice properties: it is associative and commu-
tative; if v1(0) = 72(0) = 0 theny; ®v2 < min(y1, 72) With  This is equivalent in practice to saying that for alb 0, there
equality ify; and~y, are concave; if; andy; are convex and exists somety > 0, with ¢, < ¢, such that
piecewise-linear, then; ® 7. is obtained by putting end-to-
end the different Ii.near pieces of the individual service curves, R(t) — R*(t0) > B(t — to).
sorted by increasing slopes [2].
Consider a data flow, described by its arrival functit),

o . -7’ . The definition of a service curve is an abstraction of the
which is equal to the number of bits seen on the flow in timg, . . » : .
. . . ; : . strict service curve” concept defined by Cruz in [5]. A GPS
interval [0, ¢]. Given a wide-sense increasing functianwe

. i ) ) scheduler [1], [2] with rate guaranteeto a flow offers this
iaz tt.hzt( tt)hf ;zk():\)/ |<sci:(otn_st;)a Ir_}_i?s?syg 3::/dalg:::ytc;fréorui?ill1 flow a service curvei(t) = rt. Note that the universal service
that th] [11] = ' q q 9 curve property in [1] and [2] is a stronger guarantee than (3); it
' assumes that a service rate equal to at leésbffered during
R<Roa. ) anyperiod of time where the backlog for the flow is not empty.
- A delay-based scheduler, which guarantees a delay con-

Functione is called ararrival curvefor the flow. For example, StraintT’, offers a service curvér, whereéy is the impulse

a flow controlled by a leaky bucket has an arrival curve of tgnction defined byb;(t) = 0 if 0 <t < T andér(t) = +o0
form a(t) = b+ rt. Similarly, an ATM flow, constrained by if¢>T _ _ _ .

the GCRA algorithm with parameted’, r) has an arrival A _flrst series of resqlts gives tight bounds given arrival and
curve a(t) = B + Pt, with P in bits per second (bits/s) andService curve constraints [18].

B in bits given byB = 7P + 6, P = §/T. In the formulas, * Assume a flow, constrained by arrival cursetraverses

§ is the cell size in bits. A flow conforming to the draft IETF a system that offers a service curye The backlog
specification for integrated service [12], with maximum packet R(t) — R*(¢) for all ¢ is bounded by

size M, peak ratep, sustainable rate, and burst tolerancég,

t) = nf
71 @ 72(t) wsuch tht 0<u<t

has an arrival curve defined by(¢) = min(M +pt, b+7t). In R(t) — R*(t) < sup{a(s) — B(s)}.

many references, such as [13], it is the number of bits arriving 520

in time interval[s, t] (instead of(s, t]) for which a bound is ) ]

required; in that case, a bounddgt — s) + I, wherel is the The virtual delayd(t) is bounded by

maximum packet size, which is also the maximum number of

bits that can arrive instantly. d(t) < h(«, B) 4)

The function « may be any nonnegative, wide-sense-
increasing function, but it defines a meaningful constraint only  where h(«, /3) is the horizontal deviation between the

if it is subadditive, which means that(s + ¢) < a(s) + «(¢) two functions, namely,

for all s, ¢ > 0. If « is not subadditive, it can be replaced by

its subadditive closure [10]. If is concave, withw(0) = 0, h(a, B) = sup[inf{T: T > 0 anda(s) < (s +T)}].
then « is subadditive. As a consequence, all curves defined 5>0

by the minimum of affine functions are subadditive.

Consider now a syster§, which we view as a blackbox; ¢ Assume a flow traverses systedsandS; in sequence.
S takes data in and outputs data after a variable delay. Call Assume thatS; offers a service curve off;, i = 1, 2
R(t) the input function, namely, the number of bits seen on to the flow. Then the concatenation of the two systems
the input flow in time intervall0, #], and R*(t) the output offers a service curve of; @ 3, to the flow.
function. Thebacklog at time ¢ is R(t) — R*(¢); it is the In the next section we give a second family of results which
amount of bits that are held inside the system. Similarly, ttvee will need in this paper.
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[ll. SHAPERS Proposition 1. Shaping Conserves Arrival Constraints:

Most results on shapers were also discovered independeAtRPYMe 2 flow with arrival curve is input to a sh_aper
in [8], [10], and [L1]. with shaping curves. Then the output of the shaper is still
A shaper, with shaping curve, is a bit-processing device constralngd by the original arrival curve _
that forces its output to have as arrival curve, by delaying  ~ Proof: We can assume without loss of generality tlzat
bits in a buffer whenever sending a bit would violate thE Subadditive and(0) = 0. Call R the input flow andR

constraint for the output traffic. A buffered leaky bucket i€ output. By the characterization of arrival curves in [10]
a shaper witho of the form o(t) = b + rt. The curveo recalled in Section Il, we hav& < R ® «. Combining with

can be any nonnegative, wide-sense-increasing function, et We have
as for any arrival curve, we may assume that it is subadditiveR*
(otherwise, replace by its subadditive closure). In Section

VI, we consider network nodes that act as shapers. We first
recall a fundamental result on shapers. I[VV. MODELING GUARANTEED QUALITY OF SERVICE NODES

Theorem 1. [8], [10], [11], [19]: A shaper with subaddi- In this and the following section we now apply network

tive shaping curver such thaiz(0) = 0 offers ¢ as a service calculus results to integrated services packet networks. The
curve. IETF implicitly uses a generic service curve model; it assumes

) i . . that every node offers a service of the form
The simplest proof for this result is based on the linear

characterization of shapers which has been established inde- Bty =R(t—T)* (6)
pendently in [8], [10], and [11]. They find that shapers are
simple linear systems, in terms of min-plus algebra. Indeefdr some delayZ” and rateR. Following [11], we call it a
the outputR* of a shaper with inpuf? is given by “rate latency” curve. We show in this section that there are a
RF=Roo 5) number of scheduling policies that offer such service curves.
The IETF further assumes [12] that the delay paraméter
provided thato is subadditive andr(0) = 0 (otherwise, depends on the rat& according toZ’ = & + D for some
replaces by its closure [10]). This result uses a general methanstantsC and D. The values ofC' and D are computed
of max-plus or min-plus algebra [9]. The theorem followsluring reservation setup, with a protocol such as the Resource
directly from (5). An alternative proof is given in [19], whichReservation Protocol (RSVP) [21].
applies only to the discrete time case and is based on what i$\ number of scheduling policies have been proposed in the
called in [20] the time method. literature (see, for example, [1], [7], [13], [22], [23]). Consider
A corollary follows. Consider a case where reshapers diee general form of scheduling proposed in [13] under the
introduced along a path. The shapers act as additional bufféx@me of Guaranteed Rate (GR) scheduling. It is shown in [13]
that could increase the end-to-end delay. However, we ctérat Guaranteed Rate scheduling includes as particular cases:
derive easily that they “come for free.” virtual clock scheduling [23], packet-by-packet generalized

rocessor sharing [1], and self-clocked fair queuing [22].

A Corollaryﬂl. Shaplntg DOZS L\IOt Inprtelase the_De_zIay tB?um%ssentially identical results can be found in [24] using the
ssume a flow, constrained by arrival curee is input to concept of “minimum bandwidth property.”

n‘?tswgél(‘jﬁl t?:td?eg] S:r?(;];nCzéssriin;ﬁazszape%hv;ﬁhtﬁsrve Following [13], we say that a scheduling policy is of the
ol Ween: 2. ASSU =7 uaranteed ratetype, with rateR and delayv for a given

de:%yfboﬁr?d n (,[4) for_if;]ethsystﬁm without the shaper is al w if it guarantees that packet of the flow is served by
vaiid for the system with the Shaper. time GRC(j) + v, with GRC defined byGRC(0) = 0 and
Note that the conditiornr < ¢ means that the shaper may

be less restrictive than the original constraint. GRC(j) = max{A(j), GRC(j — 1)} + M )
? R .

=R®c<(R®a)®c=(R®0)@a=R"®a. O

Proof: We can assume without loss of generality that _ o
is subadditive and-(0) = 0, otherwise, we replace by its In the formula,(j) is the length in bits of packet and A(j)
subadditive closure [10] and the assumptions still hold.  is the arrival time of packej.

Call 3; the service curve of netwok;. From Section I, the Theorem 2. Modeling GR Nodes: node with guaranteed
del_ay bound for t_hg s_ystem with shapgﬁ(sx, ,/31 ®0 @ f) rate scheduling policy offers a service curve defined by
which, by associativity and commutativity, is also equal to

ha, o ® B1 @ f32). Since the bounds are tight [11], the latter +

is the worst case delay for the system where the shaper is B(t) = R<t "R U)

put immediately after the source; in that system, the shaper

introduces a zero delay, therefore, where!l = sup; I(j) is the maximum packet size in bits.
h(a, 0 @ B @ Ba) = hla, B © Ba). 0 Proof: Call D(:) the departure time for the last bit of

packeti. If sup; D(%) is finite, then if¢ > sup, D(4) then
Finally, we can derive the following proposition, which isR(t) = R*(¢) since any packet is guaranteed to leave the
a generalization of original results in [5] and [19]. system after a finite time. The service curve property is trivially
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Fig. 1. Input and output functions for GR scheduling.

A(3) GRC(1) D(1)

T T Ll

GRC (2) D(2)

true in that case. We can thus assume now that there is a pack&ow if A(ip) > D(j — 1) then necessarilyy = j. If

index j such thatD(j — 1) < ¢ < D(j). Thus
j—1

(8)

Define
to = max{i such thatl <i < jandGRC(i —1) < A(9)}.

Fig. 1 illustrates a case with = 2 andi, = 1. We first
consider the case whew(io) < D(j — 1).
Now

I(io)

R
and for all7 such thatip < ¢ < j we have

GRC(io) = Aldo) +

GRC(i) = GRC(i — 1) + %

thus

. AN A
GRC(j) = Alio) + = 2; 1(2). )
Definety, = A(ip)—e, wheree is small enough fot+¢ < D(y)
and A(ig) — e > A(ig — 1). We have

ig—1
R(to) =Y _ 1(i) (10)
=1
and
t—1ty < D(J) it A(Lo) < GRC(J) +v - A(Lo)
and from (9), it follows that
1 ¢ 1%
— < - < _ 4 7).
t to_v+R§ Z(L)_U-‘FR‘i‘Ri:i 1(i)
Thus by definition ofg
j—1
Blt—to) < > 1. (11)

i=ig

Assume now thatd(ip) < D(j — 1), which implies that
t—tg > 0. From (8) and (10), the last term in (11) is precisely

R*(t) — R(tp), which proves the service curve property
that case.

t > A(io), then the above reasoning applies and shows the
service curve property. Otherwis@(ig — 1) < t < A(ig),

the queue is empty &t and the service curve property is true
with ¢g = . |

The result in this section is compatible with the common
node model of IETF, who chose to restrict the modeling to
rate latency curves. Together with the network calculus results
of Section Il, they can be used to derive tight upper bounds
on delays and backlogs, which gives as a particular case the
results in [13]. Remember that, in performing the comparison,
one should be careful to map the “arrival curve” condition in
[13] to «(t — s) + 1, wherel is the maximum packet length.

There are known forms of scheduling that do not belong to
the GR type. One such form is the delay-based scheduler [25].
As mentioned in Section Il, a delay-based scheduler offers a
service curve ofér for some7’, which is thus a particular
case of a rate latency service curve. There are, however, other
forms of scheduling which cannot be modeled well with a
rate-latency curve. For example, the VBR trunk discussed in
Section VI does not fit in that framework. A more general
discussion of this point leads to the concept of service-curve
scheduling, which is defined and analyzed in [8] and [26]. The
restriction by IETF to rate latency curves is thus at the cost
of loosing some flexibility.

In practice, we use network calculus to compute bounds
on delay variation and backlogs. Constant propagation delays
between systems can be ignored for the computation of delay
bounds, as they simply transform an input function into the
functions shifted in time by a fixed amount. Variable delays
can be modeled simply by the addition &6f functions to
the service curves. For the computation of the backlog inside
a systems, constant delays insid§ cannot be ignored and
should be modeled with & service curve. As a consequence
of the commutativity of®, such delays can be inserted in any
order along a sequence of buffers, without altering the delay
bounds.

V. DETERMINISTIC EFFECTIVE
BANDWIDTH AND EQUIVALENT CAPACITY

in In this section we introduce the concepts of effective band-
width and equivalent capacity in a deterministic context.
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slope = effective . slope = equivalent

bits bandwidth bits, capacity
arrival arrival
curve curve
|
B
time

-D

Fig. 2. Effective bandwidth for a delay constraiit and equivalent capacity for a buffer siZe.

A. Effective Bandwidth and Equivalent Capacity of a Flow
bits
Consider a trunk system that serves a flow in a work- A

conserving manner, at a constant ra&teWe assume that the
arrival flow is constrained by an arrival curaeand would like

to characterize the minimum value 6f that is required for

a givena and a given constraint on delay or buffer capacity.

This problem has been studied in [14, pp. 270-273], in the b

specific case of a flow constrained by one leaky bucket. The

authors in [14] find that, if we impose a fixed-delay constraint .

D to the flow, then the condition oft' is thatC' > Cp, where Q/AO tn:e
Cp depends on the leaky bucket parameters and the delay -D i

constraintC'p is called the (dete_rminiStiC) eﬁ?CtiV? bandWidth:ig. 3. Effective bandwidth for an arrival curve according to the IETF
of the flow, for a delay constraint a. If N identical flows specification.
are superimposed, the effective bandwidth of the aggregate
flow is NCp;in contrg_st, for a heterogeneous mix of ﬂOWSand the peak rate by
there is no such additive property.

We show now how these results derive from a more general p=sup a(s)/s.
concept. Back to the general case, for a given arrival cutve 5>0
we wish to find a rateC' such that the horizontal deviation o
h(a, Ac) is not more thanD, where A is the function Thenm < ep(a) < p for all D. Moreover, ifa is concave,
defined by c(t) = Ct. This is equivalent to requiring that then

a(s) £ C(s+D) for all s > 0, which in turn can be expressed .
lim ep(a)=m.

as D—+4oo
C> su (s) For example, for a flow constrained according to the IETF
- SZIO) s+ D’ specification, with maximum packet si2d, peak ratep, sus-
_ tainable rate-, and burst toleranck the effective bandwidth is
We have thus shown the following: the maximum ofr and the slopes of line@)A,) and (QA;)
Proposition 2. Effective BandwidthThe queue with con- N Fig- 3; it is thus equal to
stant rateC' guarantees a delay bound &f to a flow with M
arrival curvea if C > ep(a), with M D-—
— [l p
ep = max ,ropl1— (13)
a(s) D z+D
ep(a) = sup . (12)
s>0 S+ D

with o = =M

We call ep(«) the effective bit rate or deterministic effective It also foliows directly from the definition in (12) that

bandwidthcorresponding to the arrival curwe, for a delay
constraintD. If « is differentiable,e(D) is the slope of the
tangent to the arrival curve, drawn from the time axis at ep <Z ocz> < ZGD(ai). (14)
t = =D (Fig. 2). i i

Assumeq is subadditive. We define the sustainable rate

as In other words, the effective bandwidth for an aggregate flow is

less than or equal to the sum of effective bandwidths, assuming
m= inf afs)/s the delay constraints are identical for all flows. If the flows
s5—-+oo have allidentical arrival curve, then the aggregate effective
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bandwidth is simplyl x ep(«q). It is this latter relation which value ofe. C. becomes smaller as decreases t@, and the
is the origin of the term “effective bandwidth.” The differencdimit is

C= C..
Z ep(a;) —ep <Z az) Do

' Under the assumptions in [15], the complementCoin the

is a (nonstatistical) multiplexing gain; it tells us how muchy,gitive orthant is also convex, since the union of an increasing
capacity is saved by sharing a buffer between the flows. set of convex sets is convex.

Similar results hold if we replace delay constraints by the ¢ course, we havel C C, for all e and thusA c C. Ideally,
requirement that a fixed buffer size is not exc_eeded. Indeed, the would like to have equality, but this may in general not be
queue with constant ratg, guarantees a maximum backlog ofossiple hecausd is usually strictly convex (see [27] for an
B (in bits) for a flow with arrival curvex if ¢ > f(a), with  gyample in the case of a call acceptance criterion based on a
a(s)— B buffer requirement only). Thus the limit of acceptance regions
- . (15) based on statistical multiplexing, as the loss probability tends

to 0, may be strictly larger than the acceptance region based
We call fg(«) the equivalent capacityby analogy to [16] on a lossless criterion.
(Fig. 2 gives a graphical interpretation). Similar to effective
bandwidth, the equivalent capacity of a heterogeneous mix of
flows is less than or equal to the sum of equivalent capacities VI. OPTIMAL PARAMETERS FOR AN
of the flows, provided that the buffers are also added up; in ATM V ARIABLE BIT-RATE TRUNK
other words,

fB(a) = sup
520 5

fola) < Z o () A. Optimal Peak Rate
i As mentioned earlier, our initial motivation is a

measurement-based call admission control (CAC) method,
Loer the case where connections are admitted onto an ATM
variable bit rate (VBR) trunk, or tunnel [17]. Tunneling refers
Y5 the multiplexing of several flows into a larger flow, which
is handled in subsequent nodes as a single entity (called a
virtual trunk in [17]). Tunneling occurs when a number of

Coming back to (14), we can state in more general terr®SVP flows are multiplexed onto one single ATM connection,
that the effective bandwidth is a convex function of functioor over one RSVP flow itself. We expect tunneling to play
«, namely, an important role in the scalability of integrated services
networks. Using VBR trunks rather than constant bit rate
trunks is advantageous in particular for trunks carrying

edium amounts of traffic, that are thus best able to benefit
rom statistical multiplexing in a larger network [28].

Consider now a call acceptance criterion based solely onMore specifically, in this paper, we focus on one issue,

a delay bound, or based on a maximum buffer constraint, &Mely: given a predicted traffic, find the optimal VBR trunk
both. Consider further that there afetypes of connections; parameters that can carry the traffic. The same problem arises

connections within typei are characterized by a commod-n prerecorded video scenarios, where prediction is not based

arrival curvec;. The connections are multiplexed on the samd! traffic measurements but on the contents of a stored file.

trunk, and all connections have an identical delay constraint'Ve assume in this sect_lon the_‘t a num_ber of flows, with an
D. Define the acceptance regiod as the set of values aggregate arrival curve;, is multiplexed into a VBR trunk.

(n1, ---, ny) that satisfy the call acceptance criterion, wher-ehe VBR trunk is viewed as a single flow by downstream

n; is the number of connections of classFrom (16) we can nodes; as such, it is constrained by an arrival curviVe are
extend the acceptance region to noninteger values;afie do interested in finding, for a given arrival curve the optimal

this in order to simplify the following discussion on convexity}""llues Ofc, for a criterion that we define later. If we assume a

From the convexity of the effective bandwidth and equivalemork-conserving scheduling policy, then the multiplexing node

capacity functions, it follows that the acceptance regibis acts.as a general ehaper. From Section Ill, we can conclude
convex that it offers a service curve to the aggregate flow. Assume

This contrasts with acceptance regions based on statisti%ﬁ}t _the constraint at the mul_’uplexor node IS to guarantee a
aximum delayD. From Section Il, the requirement on the

multiplexing with large deviation asymptotics. In such casef! i
a set of valuegny, ---, ny) is acceptable if a given uppervIrtual trunk is that, for alls > 0, we have

bound on loss probability is less thanwheree is a small, o(s+ D) > afs). (17)
fixed value. In a broad family of cases, and especially for

bufferless models, it is the complement in the positive orthawife have assumed that the virtual trunk is an ATM Variable
which is convex [15]. Call. the acceptance region for a giverBit Rate (VBR) connection. The shaping curve for a VBR

Note that (12) or (15), or both, can be used to estimate t
capacity required for a flow, based on a measured arrival cur

B. Call Acceptance Regions

eplacg + (1 —a)as) < aeplay) + (1 —a)ep(az)  (16)

for all @ € [0, 1]. The same is true for the equivalent capacit
function.
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) £4D slope S We thus have to minimize.S + B in the acceptable region,
bits, ® o (t+D) defined by
/ arrival 0< S < Smax (20)
B + SD eurve 0 < B < Buax (21)
for all
s>20:B+(s+D)S—afs) >0. (22)
/ First note that the acceptance region is not empty if and only if
> Bmax Z SUP[OC(S) - (3 + D)Smax]- (23)
-D s>0

Fig. 4. Virtual trunk with parameters”, S, B) satisfies the delay constraint |n the remainder of this section we assume that (23) holds.
D for traffic with arrival curve drawn on the picture. Reduction to Another Optimization Problent is sug-
gested by Fig. 4, and is confirmed in the rest of the derivations,

. . that it is convenient to perform the change of variable defined
connection has the form(¢) = min(P¢, St + B) whereP is ! ven P g var I

the peak rate$S the sustainable rate, argl a burst tolerance by
parameter. Equation (17) is illustrated on Fig. 4. {a: =5 (24)

Equation (17) becomes y=DB+5D.
Our optimization problem becomes
for all s > 0: { (s+ D)P > afs) (18)
(s +D)S+B > a(s). Minimize (u — D)z + y on the set defined by
The first condition in (18) implies thaP > ep(a), which 0SS Simax
. - — 0<y— Dz < Bpax (25
is thus a necessary and sufficient condition BnIn other y> —al)

words, we have shown that for a virtual trunk of the ATM
VBR type, there is a minimum peak raté}, which is the |n the above is the concave conjugate of, defined by
effective bandwidth of the arrival streaand that this minimum ]
peak rate is also optimal. More precisely, the latter statement a(r) = ;2%{373 —afs)}.
means the following. We say that the parameter £tS, B) ) B _ )
of the virtual trunk is feasible if the virtual trunk is able toWe call’R the region of the(z, y) plane defined in (25).
carry the traffic with a delay less than the delay constraint Optimization Region:We now study the optimization re-
D. The result is that, if(P, S, B) is feasible, then on the 9iON R. The region is convex, as it is the intersection of
one hand, necessaril® > P, = ep(a), and on the other half-planes. DefinéR, as the set of pointsx, ) such that
hand,(Fo, S, B) is also feasible. Another aspect of this result 0<2< Sy
is that, from a bandW|dt_h point of view, using a VBR_ trL_mk {0 <y — Dz < Buax
rather than a constant bit rate (CBR) trunk is all benefit since,
by definition of the effective bandwidth, the CBR trunk wouldnd R as the set of pointéz, ) such that
have a rate of at lead,. .
y = —d(z)

. so thatR is the intersection ofR; and R>. We assume that
B. Optimal VBR Trunk « is subadditive and define the sustainable ratas

If we wish to solve the problem of finding a complete _ als)
optimal parameter set fqiS, B), then we need an optimality m= S_lgfoo s
criterion. As an example, we assume that we wish to minimize
a cost functionc(P, S, B) which is affine and wide-sense@nd the peak rate by

increasing in each of its variables. The value Bfshould a(s)
thus be set ta?, and we wish to minimize p= SliIO) PR
e(Py, S, B)—c(Po, 0,0) =uS +vB Then we have

{if x <m, then—ad&(x)=+00

for fixed values ofu and . Without loss of generality, we if 2>p, then—a(z) = a(0).

can setv = 1.

The values ofS and B are also normally limited not to Since —¢ is convex, the latter equation implies thatx
exceed maximum valuesS,,..., respectively,B,,... Without is wide-sense decreasing. Define the poits= (zq, yq),
loss of generality, we can further assume that R = (zr, yr), andW = (zw, yw) in the(z, y) plane as the

intersection of the borde?R, of R» and the line defined by
Smax < . (19) y = Dx + By (respectivelyy = Dz, x = Siac) and A as
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Fig. 5. The optimization regiofR is the intersection ofR; andR2. The
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>
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Fig. 6. Relative placements dR; and R under the conditions in this
section.

the intersection of the lineg = Dz + B, andz = Spax
(see Fig. 5).

We now study the relative positions of points @, R, and
W. Point @ is defined by

sup(a(s) — zQs) = yq
520

Yo = Dz + Bax
which, after some algebra and using the fact that 0, gives
a(8) — Bmax
=T s+ D
Yo = Dz + Biax-

Similarly, point R is defined by

a(s)
= :P
SN s+D Y
yR:Da:R.

Combining with (19) and (23), we obtain

g S Smax S TR-
Finally, we have
Tw = Smax

{yVV = _d(Smax)-
Again from (23), we have
yw S DSma.X + Bmax =Ya

(see Fig. 5).
Alltogether, this shows thak, intersects the border 6%,
at points@ andW. This is illustrated in Fig. 6.

m Smax

figure shows the pointd, @, R, andW.

Computation of the OptimumSince the cost function is
linear, its minimum is attained on the border &f, and it
can be only on a point of the bordéR, of R, or at point
A [29]. It is straightforward to see that in all cases, the cost
at A is superior than or equal to the costscatand R, thus
the cost is minimum for a point o0&k, which lies between
@ and R. Thus the optimization problem is reduced to the
following one:

Minimize (u — D)z — &(x) on the set
defined byzg < & < Smax-  (26)
Call g the functionz — (v — D)z — &(z). If w < D theng is
wide-sense decreasing thus its minimum is fo& S,,,.
Assume now that: > D. Functiong is convex, thus its
minimum is attained on an intervédk;, xz2]. In addition, g
is wide-sense decreasing on the sek z; and wide-sense
increasing on: > x» (some of these sets may be empty). In
order to determine the minimum @f on the sefzg, Simaxs
we determine the relative positions of all these intervals.
This gives the following result. Leky be one point which
minimizesg(z) = (u — D)x — &(x).
* If 29 £ 20 £ Smax then the minimum of our cost
function is obtained forr = xq.
e Else if zp > Smax then the minimum is obtained for
Z = Smax-
* Else (namely, ifzg < z¢) then the minimum is obtained
for x = zq
In general we need to obtain the value of ageéy a numerical
procedure.
Special Casesin some cases we can assume thas two
times differentiable. In such cases, we can parametéize
by s instead ofz, using the fact that

x = d(s)

for somes that attains the maximum ia(s) — zs. We have
thus

9(x) = (u—D = 5)d/(s) + afs) = G(s).
Function G is now differentiable and
G'(s) = (u—D —s5)d(s).

Thus one pointzg where the minimum of; is attained is for
s =u—D and iszg = o/(u — D).
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Defined(x) = inf,>o(xs — a(s));
Py =sup,> j—i(-%;
Smax = min {Po, Smax};
if Bmax < sup,~q{a(s) — (s+ D)Smax} there is no solution;
else{ -
if(u < D)So = Smax;

else{
S= one value ofr that minimizes(u— D)z —d(z); (1)
Se = sup, g _u(s)sjr%mx;

if (5 > SlﬂaX)SO = Sn‘mx;

else if (§ < Sc)So = Se;

elseS, = S (2);
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of deterministic effective bandwidth and equivalent capacity.
We have shown that the limit of the acceptance region based
on statistical multiplexing, as the loss probability tend€to
may be in general strictly larger than the acceptance region
based on a lossless criterion. Finally, we have given an explicit
algorithm for determining the optimal characteristics of a VBR
trunk, assuming that the input traffic is known, and for a strict
delay constraint. We have shown that the peak rate for the
VBR trunk is the very rate of the CBR trunk that would carry
the traffic with the same strict delay constraint, thus in this
sense, a VBR trunk is the benefit.

The network calculus results derived in this paper have been
developed independently and simultaneously by Chang [10],
Agrawal and Rajan [11], and Cruz and Okino [18], who have

}
By = sup, = {a(s) - (s + D)So} (3)

If o is twice differentiable, then replace (1) by
S=a'(u—D)

If moreovera« is concave then in case (2) replace (3) by
By = «a(u — D) —uSy

Fig. 7. The algorithm for the optimal VBR virtual trunk parameters
(Po, So, By) for a given arrival curvea, a delay constraintD, a cost
parameter:, and maximum value$'max and Bmax.

(1]

If we further assume that is concave, then, since it is
continuous (because it is differentiable), it is equal to thd2]
concave conjugate of, thus

(3]
(4]
(5]

inflsz — a(z)] = afs)

and, in that case, the value#f corresponding to the minimum
cost function is given by

yo = a(u — D) — (u — D)zo. 6]

Note that the assumption thatis concave is too strong in the
cases wherey is obtained by measurements. [7]

Now if we put together these results and perform the reverse
mapping from (24), we obtain the optimal val(gy, So, By)  [8]
according to the algorithm in Fig. 7.

The algorithm shows the relation betwesandD. We can  [g]
interpretw, as the ratio of the monetary costs attributed to the
rate S and to the burst tolerancB. If « is less than the time
constantD of the node, then the optimum rafg is equal to
the maximum valueS pax. [11]

The above result generalizes to the case where the virtyigh
trunk arrival curve is defined by any number of affine con-
straints (not just two as in this example). Similar results hold
if a maximum buffer requirement is considered.

The algorithm in Fig. 7 can be used to estimate the optimgB]
characteristics of the virtual trunk, based on a measured arrival
curve «.

[14]
VILI.

We have shown how network calculus can be used
provide a unifying treatment to a variety of problems arising in
packet networks offering guaranteed service. We have shown
that all rate-base schedulers fit in the framework of the IETh,
Then we have applied the results to defining the concepts

CONCLUSION [15]

} developed applications to window flow control.
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