Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Retarding Thermal Degradation in Hybrid Perovskites by Ionic Liquid Additives
 
research article

Retarding Thermal Degradation in Hybrid Perovskites by Ionic Liquid Additives

Xia, Rui
•
Fei, Zhaofu  
•
Drigo, Nikita  
Show more
May 1, 2019
Advanced Functional Materials

Recent years have witnessed considerable progress in the development of solar cells based on lead halide perovskite materials. However, their intrinsic instability remains a limitation. In this context, the interplay between the thermal degradation and the hydrophobicity of perovskite materials is investigated. To this end, the salt 1-(4-ethenylbenzyl)-3-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylimidazolium iodide (ETI), is employed as an additive in hybrid perovskites, endowing the photoactive materials with high thermal stability and hydrophobicity. The ETI additive inhibits methylammonium (MA) permeation in methylammonium lead triiodide (MAPbI(3)) occurring due to intrinsic thermal degradation, by inhibiting out-diffusion of the MA(+) cation, preserving the pristine material and preventing decomposition. With this simple approach, high efficiency solar cells based on the unstable MAPbI(3) perovskite are markedly stabilized under maximum power point tracking, leading to greater than twice the preserved efficiency after 700 h of continuous light illumination and heating (60 degrees C). These results suggest a strategy to tackle the intrinsic thermal decomposition of MAI, an essential component in all state-of-the-art perovskite compositions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Rui xia .docx

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.23 MB

Format

Microsoft Word XML

Checksum (MD5)

7cf246d9350b96416a6170c13c6b5105

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés