Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Multimode optical fiber transmission with a deep learning network
 
research article

Multimode optical fiber transmission with a deep learning network

Rahmani, Babak  
•
Loterie, Damien  
•
Konstantinou, Georgia  
Show more
October 3, 2018
Light-Science & Applications

Multimode fibers (MMFs) are an example of a highly scattering medium, which scramble the coherent light propagating within them to produce seemingly random patterns. Thus, for applications such as imaging and image projection through an MMF, careful measurements of the relationship between the inputs and outputs of the fiber are required. We show, as a proof of concept, that a deep neural network can learn the input-output relationship in a 0.75 m long MMF. Specifically, we demonstrate that a deep convolutional neural network (CNN) can learn the nonlinear relationships between the amplitude of the speckle pattern (phase information lost) obtained at the output of the fiber and the phase or the amplitude at the input of the fiber. Effectively, the network performs a nonlinear inversion task. We obtained image fidelities (correlations) as high as similar to 98% for reconstruction and similar to 94% for image projection in the MMF compared with the image recovered using the full knowledge of the system transmission characterized with the complex measured matrix. We further show that the network can be trained for transfer learning, i.e., it can transmit images through the MMF, which belongs to another class not used for training/testing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

articles-s41377-018-0074-1.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.68 MB

Format

Adobe PDF

Checksum (MD5)

d15346ba9ff455de201058f096484656

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés