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Abstract: The performance of post-processing techniques carried out on the Brillouin gain
spectrum to estimate the Brillouin frequency shift (BFS) in standard Brillouin distributed sensors
is evaluated. Curve fitting methods with standard functions such as polynomial and Lorentzian,
as well as correlation techniques such as Lorentzian Cross-correlation and Cross Reference Plot
Analysis (CRPA), are considered for the analysis. The fitting procedures and key parameters for
each technique are optimized, and the performance in terms of BFS uncertainty, BFS offset error
and processing time is compared by numerical simulations and through controlled experiments.
Such a quantitative comparison is performed in varying conditions including signal-to-noise
ratio (SNR), frequency measurement step, and BGS truncation. It is demonstrated that the
Lorentzian cross-correlation technique results in the largest BFS offset error due to truncation,
while exhibiting the smallest BFS uncertainty and the shortest processing time. A novel approach
is proposed to compensate such a BFS offset error, which enables the Lorentzian cross-correlation
technique to completely outperform other fitting methods.
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1. Introduction

Brillouin optical time-domain analysis (BOTDA) can effectively measure physical parameters
such as strain or temperature along an optical fiber in a distributed manner [1,2]. In a standard
BOTDA system, the probe wave is amplified/attenuated by a counter-propagating pump pulse
through stimulated Brillouin scattering (SBS) effect, and Brillouin gain spectrum (BGS) at
each fiber location is reconstructed by scanning the pump-probe frequency offset [3]. The
central frequency of each BGS, which is commonly referred to as Brillouin frequency shift
(BFS), depends linearly on the change of temperature or strain. The determination of such
BEFS is typically challenging since the measurement noise superposed on the BGS degrades
the signal quality, resulting in a large uncertainty in BFS estimation [4]. Therefore, in order to
alleviate the detrimental impact of noise, it is important to apply a post-processing algorithm
on each measured local BGS to extract the corresponding BFS information. Several types of
post processing techniques are currently used. One of the methods is to fit selected spectral
range of the measured BGS with a second order polynomial, since the central section of BGS
can be approximated to be a quadratic function [5, 6]. The detailed statistical analysis and the
resulted analytical expression demonstrate that the frequency uncertainty in BFS estimation
using quadratic fitting technique is determined by the SNR condition, the full width at half
maximum (FWHM) of BGS, and the frequency scanning step [5]. A viable alternative to this
technique is the Lorentzian fitting [7, 8], which exploits the fact that the entire measured BGS is
expected to be close to a Lorentzian shape [3,9, 10]. Such a fitting technique can be realized using
Levenberg-Marquardt (LM) algorithm [11-15], which is a non-linear least square algorithm
with good convergence properties, thus ensuring the smallest error in the derived BGS. The
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above mentioned fitting techniques require the pre-selection of the spectral range for fitting. This
requirement can be eliminated through a Lorentzian cross-correlation technique [16, 17], which is
independent of the parameter initialization and can also provide promising performance for BFS
estimation [16]. The uncorrelated noise superposed on the measured BGS is averaged out in the
cross correlation process, thus enhancing the SNR of the correlation output and the accuracy of
BFS estimation. In addition, by performing the operations in Fourier domain, the cross correlation
demands smaller computational complexity compared to that of the curve fitting algorithms.
More recently, we have proposed and demonstrated another approach called cross recurrence
plot analysis (CRPA) for BFS estimation [18], which is based on similarity matching algorithm
for extracting signal with deterministic behavior in the presence of additive noise [19-21].
Although the above mentioned post-processing methods have been successfully utilized in
Brillouin distributed sensing, the performance comparison between them has not yet been
reported. Such study can be helpful to identify an appropriate post-processing algorithm that is
capable of accurately estimating the BFS even at relatively low SNR, and preferably with the
least processing time. In this paper, we present a quantified analysis of the relative merits for all
the above-mentioned post-processing techniques for BFS estimation through both numerical and
experimental investigations. We begin with optimizing a set of key parameters for each technique
such as the averaging spectral window size and the fitting window size for both quadratic and
Lorentzian fitting techniques, as well as the linewidth of the reference BGS in cross correlation
based techniques. After that, a comparative investigation is performed in terms of the BFS
uncertainty, the systematic BFS bias error and the computation time under different realistic
conditions such as low SNR, large frequency scanning step and truncated BGS due to improper
frequency measurement range. It is demonstrated that the cross-correlation technique offers the
smallest BFS uncertainty and the fastest processing speed, while suffering from the relatively
high BFS offset error due to BGS truncation. A solution to compensate for the BES offset error
is proposed and implemented, leading to the cross-correlation technique outperforming all the
other techniques.

2. Optimization of techniques for BFS estimation

It is established that the Brillouin unsaturated gain profile g(v) of Stimulated Brillouin process is
Lorentzian in shape and is expressed as,

8B
1+4(V‘VB)2

AVB

gv) = 1)

which is characterized by the Brillouin gain coefficient gg, center frequency (BFS) vp and the
FWHM Avg, typically in the order of a few tens of MHz in silica fibers.
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Fig. 1. BGS measured using standard BOTDA setup with 20 ns pump pulses
(red trace) and the fit with a Lorentzian profile with a linewidth of 57 MHz.

However, since the measured BGS results from the convolution between the Lorentzian profile
of the natural gain spectrum and the normalized power spectral density (PSD) of the pump pulse,
both the peak gain and the FWHM of the measured BGS are determined by the characteristics of
the pump light, such as the pulse shape and duration. For this reason the BGS may no longer
conform to a Lorentzian shape, especially in the case of using a rectangular pump pulse [22].
In our experiment, due to the limited bandwidth of both the electrical pulse generator and the
semiconductor optical amplifier (SOA), the generated optical pump pulse reveals a super-Gaussian
shape, giving rise to a measured BGS shape close to a Lorentzian profile. As illustrated in Fig.1,
the measured BGS (red curve) corresponding to a 20 ns pump pulse fits well to a Lorentzian
profile (blue curve) with FWHM of 57 MHz, and such profile will be taken as a reference for all
the analysis presented in this work. In a practical scenario, the modulated Brillouin lineshape
may not be known apriori. In such cases, we suggest that a sample trace from the initial section
of the FUT may be chosen as a reference for further analysis.

In this section, a set of detailed numerical simulations are carried out to optimize the parameters
for different BFS estimation techniques, in which an ideal Lorentzian spectrum is considered
and different SNR levels ranging from 1 dB to 11 dB are simulated by adding corresponding
levels of additive white Gaussian noise (AWGN). Note that here the SNR is defined as the ratio
between the maximum amplitude of the BGS and the standard deviation of the signal obtained
from consecutive measurements under the same condition. For each SNR value, 1000 different
noisy spectra are generated, from which the BFS uncertainty is determined by computing the
standard deviation of estimated BFS from the entire set of data.

2.1. Fitting based techniques
2.1.1. Quadratic fitting technique

The quadratic fitting is a linear fitting technique and hence is relatively simple [5]. This technique
relies on the fact that the central part of the BGS is a Bell-shaped distribution which may be
represented as a parabolic function using a limited expansion approximation. Therefore, the BFS
vp can be obtained by fitting a quadratic polynomial to the measured noisy BGS over the FWHM
as shown in Fig. 2(a).
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Fig. 2. (a) Simulation results showing a quadratic fit over a sample Lorentzian with SNR =5 dB,
represented by the noisy spectra points (in black circles). The obtained fit curve over FWHM
(shaded region) is also shown as black. (b) Comparison of the BFS uncertainty obtained from
quadratic fitting using direct peak search and the moving averaging technique with different
window size for initial BFS value

It should be noticed that the quadratic fitting process requires a prior step to determine the
initial BFS estimation, which is subsequently used as the center of the spectral window for
fitting. We point out that a good symmetry of the fitted quadratic curve (black curve in Fig.
2(a)) within the fitting window is desirable to ensure a good fitting performance, as will be
demonstrated hereafter. This imposes a demand of precise selection of the initial BFS, which
must be close to the actual BFS. Suffering from the detrimental impact of the noise superposed
on the BGS, especially in the case of low SNR, a direct peak search algorithm results in poor
fitting performance (12 MHz BFS uncertainty for 3 dB SNR), as shown in blue colour in Fig.
2(b). A wise solution is to apply a moving averaging window on the BGS before performing peak
search, thus alleviating the impact of noise. As demonstrated in Fig. 2(b), it is found that the
BFS uncertainty obtained after fitting can be massively improved by applying a moving average
window with proper size (0.66 x FWHM of the BGS). This also indicates that the quadratic fitting
technique can reach the optimum performance (i.e., the performance reported in ref. [5]) only
when the initial BFS can be precisely estimated. For the sake of visual clarity, Fig. 3 exemplifies
the fitted quadratic curves (black ) in cases of 5 dB and 3 dB SNR, respectively. It can be clearly
observed that higher the SNR, the more precise of the initial BFS estimation, thus giving rise to
more symmetric fitting curve and smaller BFS uncertainty.
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Fig. 3. BFS estimation using quadratic fitting technique for noisy BGS with (a) SNR =5 dB and
(b) SNR = 3 dB. Fitting window selected for each SNR condition is shown for reference and the
green dot represents the measured BFS

2.1.2. Lorentzian fitting technique

As previously mentioned, since the shape of the experimentally obtained BGS matches well with
the Lorentzian profile, the a priori information available (i.e., the Lorentzian function expressed
as Eq. (1)) can be utilized for the fitting, which may help in achieving a better performance with
respect to quadratic fitting. Figure 4(a) exemplifies a noisy BGS with SNR =5 dB (red), which is
in good agreement with the corresponding Lorentzian fitted curve (blue) obtained through the
iterative Levenberg—Marquardt non-linear least squares algorithm.

It should be noted that for the Lorentzian fitting algorithm, the pre-selection of the initial
parameters (gp, Avp, vg) is also of great importance to minimize the BFS uncertainty during
the fitting process. Among these parameters, the g is always set to 1 because the amplitude of
the noisy BGS is normalized with respect to the peak value before fitting, and in the case of 2
m spatial resolution the Avp is selected as 57 MHz [23]. The value of initial v is estimated
following the same procedure for quadratic fitting, in which the moving average process using
optimized spectral window size (0.66 x FWHM) also helps to improve the fitting performance
compared with the direct peak search, as demonstrated in Fig. 4(b). Using the optimized initial
parameters, the impact of different fitting window size is compared in Fig. 4(c). The results
indicate that in order to obtain a small BFS uncertainty, fitting window size of 3 times larger than
the FWHM is desired.
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Fig. 4. (a) A noisy BGS with SNR =5 dB (red line) and the corresponding Lorentzian fit (blue
line). Green dot represents the actual BFS and the black dot represents the BFS estimated using
Lorentzian fitting. (b) BFS uncertainty estimated in different cases of initial BFS estimation. (c)
BFS uncertainty estimated using different spectral fitting window size

2.2. Correlation based techniques
2.2.1. Lorentzian cross-correlation technique

Another approach to determine the BFS is based on Lorentzian cross correlation [16, 17]. One
of the primary advantages of this approach is that it does not need the procedure of initial BFS
estimation before performing the cross-correlation. The key assumption is that the spectral shape
is not altered along the sensing fiber, which makes sense for a well-designed BOTDA system.
This technique takes the cross correlation between the measured noisy BGS and a reference
Lorentzian function, the principle of which is described as following. Let g,-(v) be the normalized
reference Lorentzian spectrum:

1
g (V)= ————— )

1+4("‘VB) ,

AVB;—

where the spectral linewidth Avg, should be equal to that of an ideal BGS (57 MHz in this study)
in order to obtain the minimum BFS uncertainty [17]. On the other hand, the measured noisy
BGS g,,(v) can be expressed as an unperturbed and shifted Lorentzian spectrum g(v + v) having
the same spectral linewidth, but corrupted with AWGN n(v) as:

gn(v) = g(v +vs) + n(v), 3)

where v, corresponds to the shifted BFS owing to changes in temperature/strain. The result of
cross correlation (denoted by the ‘+’ operator) between the reference spectrum and the measured
noisy BGS can be described as:

Grn(v) = gr(v) % g(v + vg) + g-(v) x n(v) = G(v) + Ne(v), 4

where G.(v) is the obtained signal spectrum resulting from the cross-correlation between the two
ideal Lorentzian functions (reference spectrum and measured spectrum without noise), which
provides an ideal Lorentzian function with a linewidth of Avg_, = 2Avg. The other term in
Eq. (4), N.(v), which represents the cross-correlation between two un-correlated functions (the
reference Lorentzian and white noise), would have much lower amplitude than that of term G.(v),
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since the cross-correlation of any distribution with a flat white noise spectrum (without any
windowing) would result in only a flat spectrum. This way the detrimental impact of noise can
be significantly alleviated and hence the value of the BFS can be directly estimated using peak
search over G, (v). Figure 5 shows an example of using cross-correlation technique for a BGS
with 5 dB SNR, where the black curve represents the cross-correlated function.

It is to be emphasised that, in practical cases, a measured BGS from the beginning of the
fiber is used as the reference spectrum for the cross correlation technique, which can be a
non-Lorentzian due to particular experimental parameters used. Hence the performance of
Lorentzian cross-correlation is not affected by a slight deviation in the spectral shape of BGS.

Note that for all the data corresponding to a frequency step of greater than 1 MHz, we have
implemented cubic spline interpolation such that we have a data point at every 1 MHz before
performing cross correlation to get rid of quantization noise. We have verified that any finer
interpolation e.g., 0.1 MHz does not affect at all the BFS uncertainty.

Cross correlation between two signals is normally implemented by a sliding dot product
method, which is clearly not ideal in the practical applications due to the high time overhead.
In order to accelerate the cross-correlation computation, Fourier transform (FT) property, i.e.,
the FT of the cross correction between two discrete sequences is identical to the product of
conjugate of FT of one sequence with the FT of second series, is used. To take the advantage
of this implementation, two correlating functions are represented as two discrete sequences
(gr[n] and gn[n], n: sample index) and to find cross correlation, the FT of the two sequences
are first calculated and the inverse FT of conjugate product is evaluated. It is well known that
the numerical computation is much simpler if the cross correlation product is performed in this
manner in the Fourier dual domain.

—Noisy signal with SNR = 5 dB
—Cross correlation output

Amplitude (a.u)

10.62 10.64 10.66 10.68 10.7 10.72 10.74 10.76 10.78 10.8
Frequency (GHz)

Fig. 5. A sample noisy spectrum with SNR of 5 dB (red line) and the (normalized) correlated
output (black line)

2.2.2. Cross recurrence plot analysis

The cross recurrence plot analysis (CRPA) scheme has been previously proposed to track the
phase trajectory of deterministic, but dynamic signals by observing the similarity between two
time traces. We propose to implement the same to estimate the BFS by computing the cross
recurrence between a reference Lorentzian spectrum and the measured noisy BGS.

The CRPA matrix is obtained by computing the similarity (dot product in our case) between
the measured g, (v) and the reference g, (v) Lorentzian functions, which have been appropriately
delay-embedded to yield g,,(v) and g, (v). The details of this technique is described in Appendix
A. In order to mitigate the effect of noise in the similarity matrix, a threshold corresponding to
the standard deviation of the noise € is implemented. The resultant CRPA matrix is expressed as,

—_—

CRPA(, j) = Sim(g,,(v), g.(v)) — € (5)
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Consistent with the above discussion, we chose a reference Lorentzian spectrum with 57
MHz linewidth is taken for the cross recurrence analysis of BGS measured under different SNR
conditions.

Figure 6(a) illustrates the reference Lorentzian spectrum (blue line) and a measured spectrum
with 5 dB SNR corresponding to a hotspot (shifted by 50 MHz) with SNR of 5 dB. The
corresponding CRP matrix is shown in Fig. 6(b). From Fig. 6(b) we can clearly see that the
centroid of the similarity patch is shifted with respect to the diagonal line. The diagonal line
represents the case where the measured spectrum would be very similar to the reference spectrum
(without any frequency shift). Hence, we can directly deduce the BFS by observing the shift
in the centroid with respect to the diagonal line. Note that the CRPA technique is also capable
of tracking multiple features simultaneously [24], which may be useful when we encounter
multi-peak Brillouin spectrum as in the case of LEAF or few mode fibers.

2
—Reference Lorentzian spectrum
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: hotspot with SNR =5 dB ;‘ 10.64
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Fig. 6. (a) Reference Lorentzian spectrum and measured Brillouin spectrum from a hotspot with SNR
of 5 dB and (b) The cross-recurrence plot corresponding to the similarity of the two delay-embedded
spectra.

3. Results and discussions

The BOTDA experimental setup is shown in Fig. 7. Light from a narrowband laser is split into
two arms to generate both the pulsed pump and the CW probe. The lower branch in the figure
shows the generation of the pump, in which a portion of the CW laser light is modulated using
semiconductor optical amplifier (SOA) driven by programmable pulse generator (PPG). The peak
power of the pulse is boosted by an optical amplifier before launching into the fiber. The upper
branch in Fig. 7 shows the generation of the probe using an electro-optic modulator driven by a
microwave signal to generate a carrier-suppressed double-sideband CW probe wave. After that, a
polarization switch is employed to alleviate the polarization fading effect on Brillouin gain trace.
In the receiver part, a Fiber Bragg Grating (FBG) is used before the photo-detector to filter out
unwanted spectral components, such as the Rayleigh backscattered light from the pump and the
component at the anti-Stokes frequency. Note that the pump and probe power is adjusted to avoid
undesirable spectral distortions arising from modulation instability and non-local effects [23,25].
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Fig. 7. Experimental setup of a conventional BOTDA sensor scheme using a pump-probe
configuration. SOA: Semiconductor Optical Amplifier, PPG: Programmable Pulse Generator,
EDFA: Erbium Doped Fiber Amplifier, TA: Tunable Attenuator, EOM: Electro-Optic Modulator,
FUT: Fiber Under Test, PS: Polarization Switch, PD: Photodetector, FBG: Fiber Bragg Grating

In the above experiment, the probe frequency is swept from 10.605 GHz to 10.805 GHz at 1
MHz scanning steps, and 10 sets of data are obtained by performing consecutive measurements
in the same condition. The SNR values obtained from the measured data along the 50 km sensing
fiber is calculated as ranging from 1 to 11 dB , as shown in Fig. 8(b).

Amplitude (a.u)

SNR (dB)

X 0 10 20 30 40 50
0 Length (km) Length (km)

Fig. 8. (a) 3D plot of measured BGS and (b) the SNR values obtained from the measured BGS
along the 50 km standard single mode test fiber

3.1.  Comparison of performance of the estimation schemes with SNR variations

The experimentally obtained BFS uncertainty profiles are shown as the dots in Fig. 9, which
are retrieved with optimized fitting procedure for each technique as described in Section 2.
For comparison, the simulation data over 1000 trials for a range of SNR values over 1-11 dB
are also illustrated as solid lines. It can be found that the BFS uncertainty computed from
the experimental data is quite consistent with the simulation results for all the four estimation
techniques considered in our work. In addition, the figure shows that the techniques which use a
priori data (corresponding to the Lorentzian function) perform better compared to the quadratic
fitting technique. It can be also noticed that the BFS uncertainty scales drastically when the SNR
drops below 3 dB, indicating that the measured SNR is preferably maintained above 3 dB to
secure a reliable sensing performance.
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3.2. Performance of estimation schemes with different measurement frequency step
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Fig. 10. (a-c) Lorentzian spectrum with SNR = 5 dB, measured with a frequency scanning step of 1
MHz over a range from 10.605 GHz to 10.805 GHz (red line) along with the spectrum measured at
larger frequency steps of 3 MHz, SMHz and 7 MHz (blue line) respectively. BFS uncertainty as a
function of different frequency scanning step, measured for different schemes for (d) SNR=5 dB
and (e) SNR=3 dB

In the data considered above, the frequency scanning step is 1 MHz, which leads to relatively
long measurement time (in a few minutes), since the typical frequency scanning range spans over
a few hundreds of MHz. Enlarging the frequency scanning step can reduce the measurement
time, but may also lead to a degradation of BFS uncertainty. In the following validation, for each
SNR value the frequency scanning step is varied from 1 MHz to 10 MHz by down-sampling the
experimental BGS, as illustrated in Figs. 10(a)-10(c), and the obtained BFS uncertainties in 5 dB
SNR and 3 dB SNR are summarized in Figs. 10(d) and 10(e), respectively. It is observed that
for all the post-processing techniques the BFS uncertainty gets worse as the frequency scanning
step becomes larger, roughly following a square root dependence, which is in good agreement
with the study reported in [5]. It can be also seen that the performance of the quadratic fitting
technique is always poorer regardless of the frequency scanning step, and the cross-correlation
based techniques outperform fitting-based techniques, which is consistent with the results shown
in Fig. 9.
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3.3. Performance of estimation schemes with truncated BGS

Another common aspect encountered in practical Brillouin sensors is the BFS uncertainty and
offset error due to truncation of the measured BGS. This comes from the fact that usually in
BOTDA the frequency scanning range is finite, so that the BFS might be spectrally located very
close to the edge of the frequency scanning range. Therefore, it is meaningful to investigate the
degradation of BFS estimation performance for different post-processing techniques in the case
of badly centred BGS (truncated BGS).
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Fig. 11. (a-d) Demonstration of performance of different BFS estimation techniques for a truncated
BGS and (e) the BFS estimated using the these techniques for BGS truncated at a fixed position

A numerical analysis is firstly carried out, in which the frequency scanning range from 10.605
GHz to 10.804 GHz is chosen at 1 MHz scanning step, and the BFS is set to 10.795 GHz as an
example, which corresponds to a BGS truncated at BFS+10 MHz. Figures 11(a-d) shows the
fitting results using all the four techniques at 5 dB SNR condition. In such a situation the BGS
includes only 10 spectral points beyond the BFS, which leads to a larger error in the initial BGS
peak search using the moving window averaging technique, thus affecting the performance of
quadratic fitting and Lorentzian fitting. Moreover, since the quadratic fitting only makes use of
the frequency points within FWHM of BGS, it is not possible to fit a symmetrical quadratic
polynomial around the BFS (Fig. 11(a)), which results in an offset error. On the other hand, the
Lorentzian fitting utilizes the entire spectral range as the fitting window, hence it shows a better
performance in determining the BFS compared to quadratic fitting technique in terms of both
offset error and the frequency uncertainty (Fig. 11(b)). Cross-correlation based techniques do not
need prior peak search, thereby offering the least BFS uncertainty. However, it is clear that the
shift of the cross-correlation peak due to the truncated signal causes larger offset error for BFS
estimation (Figs. 11(c) and 11(d)). For the sake of clarity, Fig. 11(e) shows the estimated BFS
for 1000 trials using different techniques analysed above. As mentioned before, due to the lack
of sufficient frequency points within the FWHM, fitting with a quadratic function turns out to
give a semi-parabolic function with a peak close to the last scanning frequency, which results
in the estimated BFS to be clipped beyond the maximum offset corresponding to the edge of
measurement frequency range.

Figures 12(a) and (b) summarizes the performance comparison of different techniques at 5 dB
SNR, in which the BFS is also varied from 10.765 GHz to 10.795 GHz with 10 MHz interval,
such that the BGS is truncated at BES+40 MHz, 30 MHz, 20 MHz and 10 MHz, respectively. It
can be found that Lorentzian fitting technique results (red points) in the least offset error, while
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the BFS uncertainty is the largest. Significantly, the uncertainty for Lorentzian fitting increases
for higher levels of truncation (corresponding to smaller number of points after peak of BGS).
Incidentally, the Quadratic fitting technique also provides similar uncertainty values but it is
not apparent in Fig. 12(b) due to clipping of the values in Fig. 11(e). On the contrary, the BFS
uncertainty obtained from the cross-correlation techniques remains almost constant at each level
of truncation, but the BFS offset error is far larger than other techniques.
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Fig. 12. (a) Offset error and (b)BFS uncertainty with BGS spectrum
truncated at different positions for SNR = 5 dB

We have investigated the dependence of the offset error on the different levels of truncation
as well as SNR for the cross-correlation technique. Note that this systematic BFS offset error
as illustrated in Fig. 13(a) is present even for spectra measured with high SNR. As seen from
the inset of Fig. 13(a), the offset error remains constant over a wide range of SNR values for
different levels of truncation. It is also observed that the offset error grows rapidly when the level
of truncation is larger. Figure 13(b) plots the offset error as a function of levels of truncation.
This is explained as follows: Let us consider that the Brillouin gain is obtained for frequencies
ranging between fi and f>, and let f,, be the BFS estimated from the cross-correlated output.
Interestingly, it is found that the relationship between the BFS offset error and the value of f>- f,
fits well with an exponential profile, as depicted in Fig. 13(b). This relationship has also been
validated analytically using Mathematica software.
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Fig. 13. (a) Estimated offset error in the cross correlation technique for a truncated BGS.
Estimated offset error for different truncation as a function of SNR of measured BGS is
shown in inset. (b) The estimated offset error is shown as a function of difference between
estimated BFS and the end frequency of scanning range plotted along with the corresponding
exponential fit, (c) offset error as a function of the number of points after the actual BFS
with and without compensation procedure is shown as a function of the number of points
after the actual BFS.

The exponential relationship is repeatable for different SNR cases, and the parameters for
the exponential function are the same for a Lorentzian of fixed linewidth. Such predictability
offers the distinct possibility of compensating the BFS offset error based on the proximity of the
estimated BFS from the end frequency. Specifically, we find that the offset error is significant
only when f>- f, is less than 40 MHz i.e., roughly two-thirds of the FWHM of BGS. Under this
circumstance, we can compensate for the offset error using the expression:

BFS = f, — Aexp(~c1(f2 — fy))

where A and cl are constants that can be calibrated for Lorentzian functions of different linewidth.
As demonstrated in Fig. 13(c), the offset error present in cross-correlation technique is greatly
eliminated after the compensation procedure that utilizes the exponential function obtained
above. The analysis has been repeated for Lorentzian profiles of different linewidth and found to
be following similar exponential trends with different rate parameters (Fig. 14(a)). These rate
parameters of offset error for different linewidth can be pre-calibrated as they show a linear
dependence on the rate parameters of the trailing edge of the corresponding Lorentzian. The offset
error is estimated for different measurement frequency steps using a Lorentzian of linewidth
of 57 MHz and found to maintain the similar exponential function as shown in Fig. 14(b). As
mentioned earlier, for frequency scanning step larger than 1 MHz, interpolation is done prior to
the cross-correlation process.
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with (a) different linewidth and (b) different frequency scanning step are shown as a function
of difference between estimated BFS and the end frequency of scanning range.

Note that the compensation method presented above is aimed at BGS with Lorentzian profiles

which are truncated due to improper measurement frequency range. The deformation in the
Lorentzian profile such as presence of multi-peak BGS due to spatially non-resolved events, shift
in Brillouin peak due to pump depletion and non-local effects, etc are out of scope of the work
presented in this paper.
The BFS uncertainty and the processing time of different BFS estimation techniques under
different measurement conditions, such as SNR level, frequency scanning step and the truncation
due to inappropriate frequency scanning range, are summarized in Table 1. One can find that the
BFS uncertainty is smaller for techniques that use a priori information, i.e., the Lorentzian profile
of the BGS. Especially for the Lorentzian cross-correlation technique, the BES uncertainty is
the smallest, and since the corresponding computation is performed in the Fourier domain, the
processing time is the shortest as well. The results indicate that associating with the BFS offset
error compensation, the Lorentzian cross-correlation is the preferable technique to estimate the
BFS when the shape of the measured BGS is close to Lorentzian profile.

Table 1. Comparison of performance of BFS estimation techniques for different
measurement conditions

Quadratic | Lorentzian | Lorentzian | CRPA

Performance Metrics fitting fitting correlation
3dB 3.86 3.01 2.94 2.71
BFS due to SNR 5dB 2.29 1.63 1.63 1.80
uncer- | different scanning 2 MHz 5.85 4.57 4.02 3.75
tainty step at SNR=3 dB 4 MHz 9.64 7.12 5.97 5.50
(MHz) | different truncation | 10 MHz 4.39 5.58 1.98 2.73
at SNR=3 dB 20 MHz 6.50 5.02 2.21 2.95
Processing time* ( seconds) 2.9 4.51 0.25 4.19

*Processing time for 1000 trials per SNR. Hardware: Intel Core i3-3210 CPU with 8 GB RAM. Software:
Matlab R2016b (Academic License-IIT Madras), OS-Windows7
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4. Conclusion

In this paper, we analyze through numerical simulations and experiments the performance of four
different post-processing techniques for BFS estimation in BOTDA, including quadratic fitting,
Lorentzian fitting, Lorentzian cross-correlation and Cross Recurrence Plot Analysis (CRPA).
The optimization of each fitting technique is firstly carried out using numerical simulation. It
is pointed out that the performance of both the quadratic fitting and Lorentzian fitting highly
depends on the spectral position of the fitting window that centers on the initial estimated BFS.
One proper way to find the initial BFS is to apply a moving average procedure with the averaging
size of 0.66XFWHM on the raw BGS, followed by a peak search algorithm performed on the
smoothed BGS. We also determine that the size of the fitting window is of great importance, and
should be equal to FWHM and 3XFWHM for the quadratic fitting and the Lorentzian fitting,
respectively. The cross-correlation based techniques do not need the step of initial BFS estimation,
and the only important point is the FWHM of the reference Lorentzian function should be the
same as the unperturbed BGS at the initial section of the sensing fiber. After optimization, a
quantified performance comparison is carried out in terms of the BFS uncertainty, the systematic
BES offset error and the computation time, under different realistic conditions such as low
SNR, large frequency scanning step and truncated BGS. It turns out that techniques relying on
a priori information about the BGS (i.e., the Lorentzian function) perform better. Specifically,
the Lorentzian cross-correlation technique exhibits the smallest BFS uncertainty and needs the
shortest processing time, but with the compromise of the largest offset error. It is pointed out that
this frequency offset is predictable and hence can be efficiently compensated, which allows to
fully make use of the advantage of the Lorentzian cross-correlation technique. Note that all the
study performed in this paper is with the BGS having a Lorentzian shape, which results from
the pulse shape used in our experiment. Different pulse shape can lead to different BGS profile,
which may affect the fitting performance of each fitting technique but can be readily addressed by
appropriately choosing the reference spectrum.

5. Appendix A

The CRP Analysis scheme is implemented in a similar manner as previously reported [19,20,24],
except that the time delay in previous work is substituted by a frequency shift. Let g, be the
measured noisy BGS which can be represented as

gn(v) = (8(f1), 8(f2)s wvvnnnn 8(fn,)) (6)

First, the frequency space corresponding to the above spectrum is constructed by a frequency-delay
embedding technique over a series of vectors given by

8nm(V) = [8n(0), gn(i + 6), ......gn(+(m — 1)5)] (7
g(fi)  g(f) g . . glfm)
g(f)  g(fs) g(fa) . . g(fm+1)
sv) gUne) gUfwed) - . s(f,)

where i is the sample index corresponding to the scanning frequency range; i = 1,2,3,...N =
Ng — (m —1)6, ¢ is the index corresponding to the frequency step, m is the embedding dimension
and N, is the number of samples of g, . Both embedding parameters, the dimension m and the
frequency step ¢ have to be chosen appropriately. In our case, ¢ is taken as 1 corresponding to
the measurement frequency step and the embedding dimension is taken as 16. Similarly, the
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reference spectrum is reconstructed by a series of vectors as

&rm(v) = [8r(j) gr(j +6), ......gr(j + (m = 1)0)] ®)

The frequency space constructed above are appropriately repeated to get the matrices g,(v) and
g, (v) with order of N? x m.

The test of similarity of the spectra is calculated using a similarity function, calculated on all
possible pairs of frequency space to get the similarity matrix as,

—

d(i, j) = Sim(g,(v), £.()) ©9)

where Sim is the function chosen to study the closeness of the vectors. Here, we used dot product
as the similarity function, which is a kind of piece-wise cross-correlation. The CRPA matrix is
then obtained with proper thresholding of the similarity matrix d(i, j) and can be expressed as

—_—

CRPA(, j) = Sim(g,(v), g,(v)) — € (10)

where € corresponds to the threshold set for obtaining the CRPA matrix. Note that the CRPA
matrix is appropriately reshaped to N X N and Recurrence Quantification analysis (RQA) [26] is
used to quantify the similarity between the spectra based on the non-zero entries in the recurrence
plot. A commonly used metric for RQA is the SS-metric, which is defined as

S CRPA( = v,i) © d(i — v, i)
SS(v) =<3} (1D
S CRPAG +v,i) © d(i + v, i)

i=1

where © is the Hadamard product and v represents the diagonal index,v= 0 corresponds to main
diagonal,v < 0 correspond to the diagonals below the main diagonal and v > 0 correspond to the
diagonals above. The frequency shift v can be estimated as the maximum of SS(v) matrix.
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