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Stochastic thermostats based on the Langevin equation, in which a system is coupled to an external heat bath,
are popular methods for temperature control in molecular dynamics simulations due to their ergodicity and
their ease of implementation. Traditionally, these thermostats suffer from sluggish behaviour in the limit of
high friction, unlike thermostats of the Nosé-Hoover family whose performance degrades more gently in the
strong coupling regime. We propose a simple and easy-to-implement modification to the integration scheme of
the Langevin algorithm that addresses the fundamental source of the overdamped behaviour of high-friction
Langevin dynamics: if the action of the thermostat causes the momentum of a particle to change direction, it
is flipped back. This fast-forward Langevin equation preserves the momentum distribution, and so guarantees
the correct equilibrium sampling. It mimics the quadratic behavior of Nosé-Hoover thermostats, and displays
similarly good performance in the strong coupling limit. We test the efficiency of this scheme by applying
it to a 1-dimensional harmonic oscillator, as well as to water and Lennard-Jones polymers. The sampling
efficiency of the fast-forward Langevin equation thermostat, measured by the correlation time of relevant
system variables, is at least as good as the traditional Langevin thermostat, and in the overdamped regime
the fast-forward thermostat performs much better, improving the efficiency by an order of magnitude at the
highest frictions we considered.

I. INTRODUCTION

The problem of thermostatting a molecular dynam-
ics (MD) simulation, so that it samples a constant-
temperature ensemble, is an important one in atomistic
modelling: the solution of Hamilton’s equations, the pro-
cedure at the heart of MD, produces trajectories sampling
the microcanonical ensemble,1,2 while in order to mimic
the constant-temperature conditions that are most suit-
able to reproduce the usual experimental conditions, one
would like to sample the canonical ensemble. A ther-
mostatting algorithm should have several desirable prop-
erties: it should be ergodic, sample the correct ensemble,
and have a conserved quantity to check on the quality of
the integration. Furthermore, an ideal thermostat would
not affect the dynamics of the system too much, and
would be straightforward to implement. A variety of ther-
mostats have been proposed over the years, each of which
fulfills these criteria to a varying degree.3–13

The earliest thermostatting methods were based on
stochastic dynamics, mimicking the effect of random
collisions with a heat bath. These included Langevin
dynamics,3–5 which controlled the temperature of a sys-
tem by using a combination of random noise and fric-
tional force, and the Andersen thermostat,6 in which the
momenta of particles are periodically re-drawn from a
Maxwell-Boltzmann distribution. Both of these methods
are ergodic and sample the correct ensemble, but neither
of these early algorithms had a conserved quantity, and
both disturbed the system’s dynamics to some degree.

A number of alternatives that do not depend on random
numbers were also proposed. Among these was the weak-
coupling algorithm of Berendsen,7 which removed the
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random noise term from the Langevin equation to leave
only a damping force: this thermostat is very straight-
forward to implement, but does not sample the correct
ensemble.14 Perhaps the most popular family of methods
is based on the Nosé-Hoover (NH) thermostat,8,9 in which
a system is extended to include extra degrees of freedom,
such that when the entire extended system is sampled
in the microcanonical ensemble, canonical sampling of
the original system is achieved. NH methods have a well-
defined conserved quantity, but the original formulation
suffered from nonergodic behaviour. This was solved by
coupling a system to a chain of thermostats, the so-called
Nosé-Hoover chain (NHC) method.10 The resulting ther-
mostat is robust and widely used, but suffers from the
drawback that it is relatively difficult to implement.

Stochastic thermostats have recently seen a resurgence
in popularity: in particular, a number of algorithms based
on the Langevin equation have been introduced, includ-
ing a stochastic velocity rescaling (SVR) thermostat11,12,
and a revisited Langevin dynamics thermostat.15 Both of
these methods include a well-defined conserved quantity,
which allows the integration timestep to be controlled.
These methods have formed the basis of a number of ther-
mostats for path integral molecular dynamics (PIMD)16

simulations, using either the white-noise or the generalized
Langevin equation.17–20 However, one key disadvantage
remains in the Langevin thermostat compared to the
NHC: in the limit of strong coupling to the system, the
interaction of the Langevin thermostat with the system
leads to frequent changes in the direction of particle mo-
menta, hindering their exploration of phase space and
greatly decreasing the efficiency of the thermostat. Nosé-
Hoover methods do not suffer from this problem, and are
applicable over a much wider range of coupling strengths.

In this paper, we introduce the fast-forward Langevin
(FFL) thermostat, a modification to the standard
Langevin dynamics algorithm whose goal is to counteract
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this inefficient sampling: the key idea of this method is
that whenever the action of the thermostat changes the
direction of the momentum, it is flipped back towards
its initial direction. This gives dynamics that are essen-
tially those of a local version of the velocity-rescaling
thermostat.11,12 As well as allowing the system to explore
phase space more quickly at high frictions, the FFL ther-
mostat should have no effect on the performance at low
friction.

The remainder of this paper is set out as follows: in
Sec. II we introduce fast-forward Langevin dynamics in
one dimension and describe three possible generalizations
to higher dimensions; in Sec. III we apply the proposed
algorithms to the simple harmonic oscillator, to liquid
water and to a Lennard-Jones polymer; in Sec. IV we
discuss our results; and finally, in Sec. V we draw our
conclusions.

II. THEORY

A. Standard Langevin Dynamics

The time-evolution of a single particle undergoing
Langevin dynamics is described by the equations,

q̇ = p/m, (1a)

ṗ = −γp+ ξ + f , (1b)

where q is the particle’s position, p its momentum, m its
mass, γ the friction coefficient, ξ a random force sampled
from a Gaussian distribution and f the force derived from
an external potential. The Cartesian components ξi of
the random force are uncorrelated in time and among
themselves, i.e. 〈ξi(t)ξj(t′)〉 = 2mγkBTδijδ(t− t′), where
kB is Boltzmann’s constant and T is the temperature.

A molecular dynamics integrator using the Langevin
equation to sample the canonical ensemble was proposed
by Bussi and Parrinello.15 This integrator is based on
the expression for time-propagation of the phase space
probability density P (p, q; t),

P (p, q; t+ ∆t) = e−L̂∆tP (p, q; t), (2)

where L̂ is the Liouville operator,

L̂ = f(q) · ∂
∂p

+
p

m
· ∂
∂q
− γ

(
∂

∂p
· p+

m

β

∂2

∂p2

)
, (3)

and β = 1/kBT the reciprocal temperature.
For a Liouvillian that can be written as the sum

L̂ =
∑n
j=1 L̂j , the Trotter approximation allows us to

write,21–23

e−L̂∆t '
n∏
j=1

e−L̂j∆t/2
1∏

j=n

e−L̂j∆t/2, (4)

where e−L̂j∆t/2 stands for propagation of a system under
the Liouvillian L̂j for a timestep ∆t/2. The Liouvillian

of Eq. (3) can be written L̂ = L̂q + L̂p + L̂γ , where,

L̂q =
p

m
· ∂
∂q
, (5a)

updates particle positions,

L̂p = f(q) · ∂
∂p

, (5b)

updates momenta under the action of the external force
and,

L̂γ = −γ
(
∂

∂p
· p+

m

β

∂2

∂p2

)
, (5c)

updates momenta under the action of the Langevin forces.
In Ref. 15 the splitting chosen for the propagator was,

e−∆tL̂ ' e−∆tL̂γ/2e−∆tL̂p/2e−∆tL̂qe−∆tL̂p/2e−∆tL̂γ/2,
(6)

although other splittings of the propagator are possible,
and have been shown to give more accurate results for
large time steps.24 When γ = 0, Eq. (6) has the same
form as the familiar velocity Verlet algorithm for NVE
molecular dynamics,25 making it very straightforward to
implement. Eq. (6) is applied to an MD simulation by
evolving the particle momenta p and positions q through
a timestep ∆t according to the scheme,

p← c1p+ c2R, (7a)

p← p+ f∆t/2, (7b)

q ← q +
p

m
∆t, (7c)

p← p+ f∆t/2, (7d)

p← c1p+ c2R
′, (7e)

where R and R′ are two independent Gaussian random
numbers with zero mean and unit variance and,

c1 = e−γ(∆t/2), (8a)

c2 =

[
(1− c21)

m

β

]1/2

. (8b)

The constant c1 accounts for damping of momenta, and
c2 for the action of the random noise. If γ = 0 there is no
frictional force, and c1 = 1 and c2 = 0, so that the ther-
mostat steps (Eqs. (7a) and (7e)) have no effect and the
integration scheme becomes the traditional velocity Verlet
algorithm. The integration timestep ∆t can be controlled
using the conserved quantity described in Ref. 15, which
corrects the total energy with a counter that keeps track
of the energy exchanged with the external heat bath.

In order to optimize the sampling efficiency of the
Langevin thermostat, the friction parameter γ must be
tuned: if the friction is too low then the thermostat will
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have too little an effect on the system, and if it is too high,
it will lead to overdamping and sluggish exploration of
configuration space. This inefficiency at high frictions is a
disadvantage that is not shared by the NH thermostat.19

Here we will show that the difference stems essentially
from the fact that the nonlinear NH equations cannot
change the sign of the momentum. One can achieve
the same effect with a simple modification of Langevin
dynamics: whenever the action of the thermostat changes
the sign of the particle momentum, it should be flipped
back to the original direction. We will show that doing
so eliminates the effects of overdamping.

B. Fast-Forward Langevin Dynamics

In a 1-dimensional system, flipping the sign of the
momentum can be achieved straightforwardly by replacing
Eq. (7a) with the following two steps,

p← c1p0 + c2R,

p← sign(pp0)p, (7a′)

and making a similar replacement for Eq. (7e) (with p0

storing the value of the momentum before the thermostat
step in each case). We call the resulting algorithm the
fast-forward Langevin (FFL) thermostat. The flipping
step in Eq. (7a′) leaves the magnitude of the momentum
unchanged; because the canonical probability distribution
for the momentum depends only on its magnitude, FFL
dynamics generate momenta drawn from the correct dis-
tribution for this ensemble, although it is not ergodic and
relies on the action of the potential to change the sign
of the momentum. One could also regard this algorithm
as arising from the solution of a stochastic differential
equation for p2, that is then implemented as a scaling of
the value of p – a point of view that might be better suited
to study it analytically, and to reveal the connections to
other thermostatting schemes such as NH and stochastic
velocity rescaling.

In multiple dimensions, this algorithm is not as straight-
forward to implement as in 1D, because the sign of the
momentum cannot be unambiguously defined. This means
that there are several possibilities for the definition of the
FFL thermostat in higher dimensions; we will consider
three of these possibilities.

In the first method, a particle’s momentum changes sign
whenever p0 · p < 0: that is, the action of the thermostat
moves the momentum into the opposite half-space to that
in which it began. In this case, p is reflected through
the plane perpendicular to p0. This algorithm, shown in
the first column of Fig. 1, is described as a “soft” flip.
Eq. (7a) is replaced by,

p← c1p0 + c2R,

p← p− 2
F [p · p0]

p0 · p0

p0, (7a′′)

where F [x] = x if x < 0, and F [x] = 0 otherwise.

Rather than considering the momentum vector of a
particle, the second method considers individual Cartesian
components, and the 1D algorithm is applied in each
dimension. This “hard” flipping algorithm is shown in
the second column of Fig. 1. Eq. (7a) is replaced by
Eq. (7a′) in each Cartesian direction.

The hard flip algorithm leads to dynamics that depend
on the choice of axis system. For isotropic systems this is
not expected to lead to any problems, but in anisotropic
systems it would be necessary to choose these axes appro-
priately, a problem that has also been observed for NHC
thermostats.18 A more elegant, and rotationally invariant,
algorithm that does not rely on the specific choice of axis
system is a “rescale” flip, shown in the third column of
Fig. 1: after the action of the thermostat, the direction
of p is set to the direction of p0, while keeping the new
magnitude. Eq. (7a) is thus replaced by,

p← |c1p+ c2R|
p0

|p0|
. (7a′′′)

This rescale flip, in which the thermostat evolves the
magnitude of each particle’s momentum without chang-
ing its direction, is essentially equivalent to applying a
SVR thermostat11,12 to each particle, crucially without
applying a correction that allows particles to change sign.

C. Thermostat Efficiency

In order to compare the efficiency of two thermostats,
we use the correlation times of physical observables. The
autocorrelation function of variable A is,

CAA(t) =
〈δA(t)δA(0)〉
〈(δA)2〉

, (9)

with δA(t) = A(t)− 〈A〉 is the instantaneous deviation of
the variable from its average value. For this correlation
function we define a correlation time as,

τA =

∫ ∞
0

CAA(t) dt. (10)

The smaller τA is, the faster the system is decorrelated
and the more efficiently the variable is sampled by the
thermostat.

We will express the strength of the thermostats in
terms of their intrinsic relaxation times. For a Langevin
thermostat, this is given by τ0 = 1/γ, whereas for a NHC

thermostat we use the definition τ0 =
√
Qβ/4, where Q

is the thermostat mass.19

III. RESULTS

A. Harmonic Oscillator

The first system to which we applied the FFL thermo-
stat was a 1D harmonic oscillator potential with frequency
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FIG. 1. Illustration (in 2 dimensions) of the different flipping
algorithms. p0 is the momentum before the thermostat step
(Eq. (7a)), p is the momentum after this step, and p′ is the
momentum after the flip is performed. The soft flip reflects
the momentum through the plane perpendicular to p0. The
hard flip applies the 1-dimensional algorithm to each axis
independently. The rescale flip preserves the initial direction
of p0 but assigns it the magnitude of p.

ω0 and potential energy,

V (q) =
1

2
mω2

0q
2. (11)

In Fig. 2 we show the potential energy correlation time
τV for the Langevin and FFL thermostats at different
values of the characteristic time τ0 = 1/γ, and for the

NHC thermostat with τ0 =
√
Qβ/4, where Q is the

thermostat mass.10,19 In each case, the target temperature
was T = ~ω0/kB. The correlation time for the harmonic
oscillator coupled to a Langevin thermostat obeys the
relation,26,27

τV ω0 =
1

2

(
τ0ω0 +

1

τ0ω0

)
, (12)

having a minimum when τ0ω0 = 1 (so that γ = ω0).
On the other hand, for the NHC thermostat τV in-

creases with τ0 when τ0 > 1/ω0, but below this point
the correlation time is essentially constant, meaning that
this thermostat can be used efficiently over a much wider
range of friction constants. Comparing both of these
thermostats to the FFL thermostat, we note that for low
frictions it gives the same correlation time as the standard
Langevin equation, when the action of the thermostat
hardly ever changes the sign of the momentum and the
fast-forward step has no effect. On the other hand, for
high frictions the correlation time remains roughly equal
to its optimum value: the flipping of the momenta clearly
gives a great improvement in the exploration of phase
space, and removes a major disadvantage of the Langevin
thermostat compared to the NHC at high friction. It
should be stressed that in order to obtain meaningful
results in the limit of very small τ0, one has to use a
time step ∆t that is smaller than τ0. If instead ∆t� τ0,

then Eqs. (8) show that c1 and c2 will saturate at their
high-friction values and the effective coupling strength
saturates at the value corresponding to ∆t. When simu-
lating a single oscillator, there is no reason to use a time
step which is much smaller than 1/ω0. Results in the
strongly overdamped regime τ0ω0 � 1 are however very
relevant in real systems, which contain multiple vibra-
tional modes spanning several orders of magnitude. In
such a case, the time step is determined by the fastest
modes in the system, while overdamping would also affect
– and be most detrimental to – slower vibrations.
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FIG. 2. Potential energy autocorrelation time τV for a 1D har-
monic potential with frequency ω0, for the standard Langevin
thermostat, FFL thermostat and the NHC thermostat.

The dynamical effect of these three thermostats can
be understood in more detail in Fig. 3, which shows the
trajectories of a harmonic oscillator with τ0ω = 10−4. In
this limit, plain Langevin thermostatting leads to strong
overdamped behavior, and greatly hampers sampling ef-
ficiency. Both the FFL and the NHC allow the relevant
configuration space to be sampled much more efficiently.
The FFL and NHC thermostats generate similar - and
rather peculiar - sawtooth trajectories. The rapid oscil-
lation of the value of particle momentum leads to tra-
jectories that, on the timescale of 1/ω0 correspond to
constant-average-velocity stretches separated by changes
of direction induced by the potential. The similarity
between the two schemes, as well as the equivalent perfor-
mance, reinforces the notion that strongly-coupled NHC
thermostats behave essentially like a more complicated
version of their stochastic counterpart – with the chain
generating chaotic dynamics.

B. Liquid Water

Following the success of the FFL thermostat in improv-
ing the sampling efficiency in a simple 1D system, we next
applied it to more complex, high-dimensional systems. We
ran simulations of equilibrated systems containing 216
molecules of q-TIP4P/F water28 in a cubic simulation
box with the experimental density of liquid water. The
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FIG. 3. Trajectories for a 1D harmonic oscillator with
Langevin, FFL and NHC thermostats, with τ0ω0 = 10−4.
The units are chosen such that m = kB = 1. In each case the
calculation was started off with q = −p = 1.

temperature was held constant at 298 K using the stan-
dard Langevin thermostat and the three generalizations
of the FFL thermostat, for several values of τ0 = 1/γ. For
each value of the characteristic time, we ran 8 simulations
of 10 ns and computed the potential energy correlation
time τV . All simulations were run using the i-PI code.29

Fig. 4 shows τV as a function of τ0 for the four different
types of thermostat. Qualitatively, the standard Langevin
equation shows the same behaviour as in Fig. 2 for the
1D harmonic oscillator, with a minimum correlation time
at τ0 ' 100 fs. Both the hard and soft flipping algorithms
show the same kind of trend, with a minimum at the
same characteristic time. For low frictions they give the
same τV as the standard algorithm, and for high frictions
a slightly lower correlation time. However, for the soft flip
this improvement is seen only at the highest friction and
even for the hard flip the improvement is quite small. The
rescale flip, on the other hand, gives a correlation time
that is qualitatively more similar to the 1D FFL in Fig. 2:
at high frictions, τV reaches a plateau, with a sampling
efficiency almost two orders of magnitude greater than
that of the standard Langevin thermostat.

A significant factor in determining the difference in
results between the hard and soft flips and the rescale
flip is that while the latter preserves the direction of the
momentum of each particle, the former two methods do
not; this means that after a few FFL steps the direction of
the momentum could still reverse. Table I shows the self-
diffusion coefficient D of liquid water under the action
of the different thermostats, in the underdamped and
overdamped limits, and close to the critical damping.
Since,

D =
1

3

∫ ∞
0

〈v(0) · v(t)〉 dt, (13)

is the integral of the autocorrelation function of the ve-
locity, this gives an idea of the extent to which ther-
mostatting changes the direction of momentum. In the

FIG. 4. Potential energy autocorrelation time τV for water us-
ing the standard Langevin thermostat (solid black curve), and
the soft flip (dotted blue curve), hard flip (dashed green curve)
and rescale flip (dash-dotted red curve) FFL thermostats.

TABLE I. Self-diffusion coefficients of liquid water in the NVT
ensemble at 298 K, for the standard Langevin thermostat
and three types of FFL thermostat, at different values of the
characteristic time τ0.

τ0 [fs] 100 102 104

D [Å/ ps2]

Langevin 0.038(0) 0.100(1) 0.192(3)

Soft Flip 0.038(0) 0.098(1) 0.193(4)

Hard Flip 0.031(0) 0.102(1) 0.190(2)

Rescale Flip 0.083(0) 0.154(2) 0.192(3)

underdamped limit, all four thermostats give the same
diffusion coefficient within the error bars, identical to its
value for the q-TIP4P/F model in the NVE ensemble.28

At lower values of τ0, the standard Langevin and the
soft and hard flip algorithms give very similar diffusion
coefficients, while the rescale flip allows the system to
diffuse much faster, avoiding the changes in momentum
direction allowed by all of the other algorithms. As shown
in Ref. 19, however, for a highly-ergodic system such as
liquid water the stochastic velocity rescaling thermostat12

offers the best performance, guaranteeing strong coupling
without appreciable loss of diffusivity.

C. Lennard-Jones Polymer

Another system that shows a rich variety of behaviour is
the Lennard-Jones polymer.30,31 In this model, monomers
interact with each other through a Lennard-Jones po-
tential, V (r) = 4ε

[
(σ/r)12 − (σ/r)6

]
, and neighbouring

monomers interact through a harmonic potential with
force constant k and equilibrium distance r0. We take
σ = 2−1/6r0 and ε = 1

72kr
2
0, so that the two potentials

have the same equilibrium distance and the same second-
derivative at this distance.
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We used i-PI to perform simulations for a chain length
of 128 monomers at a temperature of 1.9 T ∗ (where an
asterisk denotes Lennard-Jones units). This temperature
is close to, but lower than, that of the globular-unwound
transition.32 The proximity to the transition temperature
means that convergence of the correlation times will be
more challenging. Once again, we performed 8 simulations
with each value of τ0, with duration 8.6 × 104 t∗. The
starting systems for these simulations were equilibrated
as described in Ref. 31.

The sampling efficiency was assessed using two correla-
tion times: τV for the potential energy and τEE for the
end-to-end distance between the two ends of the chain.
Fig. 5 shows these two correlation times as a function
of the characteristic time τ0. For the potential energy
correlation time, the standard Langevin equation shows
the same qualitative behaviour as observed in previous re-
sults, as do the soft and hard flip algorithms. In this case,
the soft flip provides no improvement over the Langevin
thermostat, and the hard flip leads only to a very small
improvement. As before, the rescale flip gives a significant
decrease of correlation time – in this case, two orders of
magnitude – but unlike previous results, it does not reach
a plateau at the highest friction we have considered.

The end-to-end distance correlation time τEE, on the
other hand, gives quite different results: for all of the
thermostats, the correlation time reaches a plateau at
low frictions, giving more efficient thermostatting than at
high frictions. This reflects the fact that this distance is
not a local variable, depending instead on the motion of
the entire polymer, so that the local thermostatting we
use here can significantly disturb the dynamics. For the
values of τ0 that give the most efficient behaviour, the
FFL thermostats have no effect on the dynamics. How-
ever, for higher frictions the rescale flip does improve the
sampling efficiency for the end-to-end distance, effectively
increasing the range over which Langevin dynamics can
be used to thermostat the system. The soft and hard
flipping methods give no appreciable improvement over
the standard Langevin equation.

IV. DISCUSSION

In all of the systems we have studied, the FFL ther-
mostat has performed at least as well as the standard
Langevin thermostat, and in the limit of high friction,
gives sampling that is much more efficient. This means
that including momentum flips increases the range of γ
over which Langevin dynamics can be used to control the
temperature of a system, and thus helps to ameliorate
the major disadvantage of Langevin thermostatting com-
pared to Nosé-Hoover. In fact, this also helps to provide a
more intuitive picture of the effect of a NHC thermostat:
the coupling of multiple chains gives a chaotic dynamics
that improves the ergodicity compared to the original NH
thermostat, with the result that NHC dynamics are very
similar to Langevin dynamics under the constraint that

FIG. 5. Potential energy autocorrelation time τV (top panel)
and end-to-end distance correlation time τEE (bottom panel)
for a Lennard-Jones polymer using the standard Langevin
thermostat (solid black curve), and the soft flip (dotted blue
curve), hard flip (dashed green curve) and rescale flip (dash-
dotted red curve) FFL thermostats. All quantities are in LJ
units.

the sign of the momentum does not change due to the
action of the thermostat (a result of the nonlinear form
of the NHC equations of motion), but only due to the
external force.

Although there is no unique generalization of the 1D
FFL algorithm to multiple dimensions, the rescale flip, in
which the direction of the momentum does not change, is
probably the most natural one. There is a parallelism be-
tween the 1D FFL, the rescale-flipping algorithm and the
SVR thermostat,11 in which constant-temperature sam-
pling is obtained by an appropriate stochastic evolution
of the system’s kinetic energy.12 This means that FFL
dynamics is a local version of the SVR, without applying
a correction that allows the momentum to change sign.
This locality allows the FFL thermostat to more efficiently
sample local properties, and thus to better equilibrate
non-ergodic systems. However, for more ergodic systems
the global SVR thermostat is a better choice, as it will
give effective thermostatting with very little disturbance
of the system’s dynamics.19

While the rescale flip increases the sampling efficiency
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significantly compared to the standard Langevin equation,
the soft and hard flipping methods lead to smaller effects.
This is because these two algorithms do not preserve
the direction of the momentum, so that after several
thermostat steps the direction is able to reverse. Unlike
the rescale flip, these two methods have no real advantage
over Langevin dynamics.

A key advantage of the FFL thermostat is its ease of
implementation, either from scratch or as a modification
of an existing Langevin dynamics algorithm. In contrast,
Nosé-Hoover chains involve a much more complex time-
evolution, and thus more effort to implement. Further, as
noted in Ref. 19, unlike Langevin thermostats the NHC
algorithm can add a significant overhead to calculations
that use empirical forcefields. These operational advan-
tages, along with the improved sampling efficiency in the
high-friction regime, mean that fast-forward Langevin
dynamics provide a promising method for temperature
control in molecular dynamics. An extension of this ap-
proach to the generalized Langevin equation thermostat
is trivial, although it might not be obvious to recover
the many analytical estimators that make it possible to
fine-tune sampling19 and dynamics33.

V. CONCLUSIONS

In this paper, we have introduced fast-forward Langevin
dynamics, a modification of the traditional Langevin dy-
namics that improves the efficiency of sampling the canon-
ical ensemble in the high-friction limit by flipping the mo-
mentum whenever the thermostat changes its direction,
avoiding the over-damped behavior that would otherwise
slow down exploration of configuration space. This results
in an algorithm akin to a local version of the stochastic
velocity rescaling thermostat, which is expected to im-
prove sampling in non-ergodic systems. By comparison
with the NHC thermostat, we see that the additional
steps we have added to Langevin dynamics remove their
major disadvantage compared to Nosé-Hoover dynamics.
We also note a strong analogy in the overdamped limit
between the chaotic motion of a system thermostatted by
NHC and Brownian dynamics in which the direction of a
particle’s momentum does not change.

The simplicity of FFL dynamics, coupled with the im-
provement it gives over traditional Langevin dynamics,
makes it a useful tool in atomistic modelling. This algo-
rithm could be easily extended to integrate generalized
Langevin dynamics,18 as well as to provide efficient sam-
pling of path integral simulations.19
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