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Abstract—Dual active bridge (DAB) is a topology that is
receiving more and more attention as a potential solution to
interface dc grids of different voltage levels. From a system
level, the implications of DABs on the stability of complex
power systems are addressed in this work. Dynamics mod-
eling and stability assessment for a DAB implementation
aimed to interface low-voltage energy resources with a
medium-voltage dc (MVDC) collection and distribution grid
are presented. The DAB admittance is analytically derived
and assessed in order to describe its dynamics and an-
ticipate its behavior when integrated in a complex MVDC
grid. The model considers the low frequency range, mostly
dominated by the controller action, and the high frequency
range, described by a non-linear operation. The theoretical
analysis is verified by hardware-in-the-loop emulation, with
the controller running on a digital signal processor. The
proposed implementation is proved to achieve passivity in
the whole spectrum, which undoubtedly is a desired feature
for a massive power electronics integration in the future
MVDC grids.

Index Terms—Admittance measurement, dc-dc power
conversion, power generation control, stability.

|I. INTRODUCTION

Medium voltage dc (MVDC) collection and distribution
grids are being considered for different applications such as
renewable energy, big data centers, marine power systems
and microgrids. Efficiency, size and cost are among the main
reasons for the move from ac to dc [1]-[4].

As a quick overview to show the benefits of dc grids,
Fig. 1 shows a benchmark case for comparison between a
conventional ac system versus a prospective dc one. Fig. 1(a)
depicts one of the most employed configurations for distributed
generation, such as wind turbines [5]. A low voltage (LV)
synchronous machine is connected to the grid system through
a back to back converter; for multi-MW solution, paralleling
of full-converters is also a prevalent solution [5]. Interface
with distribution system is made by a bulky 50/60 Hz step-
up transformer. Usually, multiple distributed generation (DG)
resources are connected to a common medium voltage ac
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Fig. 1. A benchmark for ac vs dc comparison; LV electric machine and
connection to a MV distribution line. a) Conventional solution based on
LVAC power electronics and step-up transformer. b) Solution based on
DAB which directly interfaces MVDC distribution.

(MVAC) distribution system, with cable impedances also
playing a role in terms of losses and dynamics [6]. Using
the same electric machine in the generation, an equivalent
system to interface MVDC distribution is represented in Fig.
1(b). A controlled or uncontrolled rectifier can be employed
to convert ac to dc at the LV side [7], [8]. Subsequently a dual
active bridge (DAB) is considered in this work to deliver active
power from low voltage dc (LVDC) to MVDC. The DAB is
formed by two full bridges (FB) and a medium frequency
transformer (MFT). MVDC distribution is represented by a
single-line, regardless of an unipolar or bipolar distribution
implementation. From inspection of Fig. 1, some MVDC
benefits can be identified:

1) Enhanced efficiency: typical curves for full-converter
based wind turbines show a maximum efficiencies around
the nominal power of around 97% [9]. MVDC technology
is expected to improve this number: e.g., efficiencies near
99% have been reported for the DAB power conversion
stage [10]-[12].

2) Size, weight and cost reductions in distribution cables: for
a same power level, a dc cable based distribution increase
by a 1.56 factor the power density of a conventional three-
wire ac system [10]. Intuitive explanations are i) from
a peak voltage definition, dc voltage has a /2 times
higher rms value than an ac one; ii) the absence of
inductive/capacitive effects in dc distribution.

3) Size, weight and cost reductions in magnetic components:
MVDC technology relies on MFT to step up from LV to
MYV. MFTs provide a much higher power density than line
frequency transformers (LFTs) [13], [14]. The removal of
bulky LFTs and its substitution by much more compact
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components is a key advantages of MVDC [2], [7].

Recent contributions show enabling technologies for MVDC
grids: 1) high power dc-dc converters, based on different device
technologies (i.e., IGBTs, IGCTs, SiC MOSFETSs), have been
validated in controlled environments [10], [15]-[18]. ii) MFTs
with a high power density are also reported [13], [14], [19].
iii) solutions at a power system level have been explored [1],
[8], [20], [21]. iv) a bottleneck for MVDC technology is the
lack of commercially available protection devices [22]-[24];
efforts to develop cost-effective protection solutions have been
provided, recently [24], [25].

Another key concern of MVDC technology, explicitly
addressed in this work, is the system level stability. An
impedance stability approach is used as natural framework
to evaluate addition of DG resources: stability properties of
individual DG resources can be studied by their corresponding
?ac(w) frequency response [26]-[34]. More specifically, input-
admittance passivity compliance provides a sufficient condi-
tion for stability and is also considered a good indicator of
the robustness of the system [15], [26], [27], [32]-[34]. In a
similar fashion as in ac system analysis, dynamic properties
can be evaluated by Yj.(w) admittance shaping [35], [36].
Therefore, in this work, a design for passivity methodology is
provided and passivity compliance is selected as a main figure
of merit to assess stability and robustness.

The paper structure is as follows. Section II shows a
description of the DAB based solution and provides controller
design guidelines. Section III develops admittance models in
low and high frequency regions of the spectrum. Section IV
shows experimental results obtained from hardware-in-the-
loop (HIL) emulation. Finally the main results and properties
of the analyzed system are discussed and summarized.

Il. SYSTEM DESCRIPTION

Fig. 2 shows a simplification suitable for the MVDC collec-
tion and distribution of the DC wind farm concept analyzed
in [2], [7], [8]. The lumped admittance model that groups
all the wind turbine generators is defined as Y¥*(w), with
Ywr 1(w), Ywr 2(w) (and so on) defining individual wind
turbine systems. Mathematically,

N
YENw) = Y Yire(w). (1)
k=1,2,...

From (1), Y¥%(w) is defined passive if all its elements
are defined passive. In this work, the wind turbines models
are based on Fig. 3(a), with Y3(w) defining an individual
admittance in the MVDC side [e.g., Ywr_1(w) in Fig. 2].
Fig. 3 represents the power circuit of the DAB based gen-
eration system for the analysis and its corresponding control
diagrams. The hardware parameters are shown in Table I. In
a practical implementation, the full bridge in the MVDC side
includes series connected IGBT/IGCT devices to reach the
desired voltage level [10]. The leakage inductance has been
calculated from the phase-angle versus active power relation
[cf. (2)] and considering a maximum angle for 1.5 times the
nominal power. The LVDC source is obtained by a rectifier
connected at the stator terminals of the DG electrical machine.

Zs(w) YEU (w)
47
Q| =
Ywr_1(w)
| N T
SO= ME
Ywr_a(w)
| N R
S0 4@
Ywr_n (w)
\ | |
A 4@

nm o

Digital Controller

—{ < Vlac

(a)

Fig. 3. Proposed system. a) DAB circuit. b) Proposed controller imple-
mentation: A1(t), A2(kTs1), C(kTs2) represent the anti-aliasing filters,
a low pass filter to smooth power measurement and the main controller,
respectively. c) Low frequency linearized model of the closed-loop; in
blue the 92 (s) perturbation path.

Therefore, the average value and ripple may depend on the
speed and active power from the wind turbine generator [8],
which is explicitly considered in the HIL validation (cf. section
IV). The DAB second stage delivers active power to the
MVDC distribution grid. For Y5 (w) modeling, the MVDC grid
is assumed to be an ideal dc source in series with a small-
signal sinusoidal perturbation. Y2(w) compliance with the
passivity property is employed to assess the stability properties
of the system integration into a MVDC grid (cf. section III-C
for the specific details and discussion).
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TABLE |
CIRCUIT PARAMETERS

TABLE Il
CONTROLLER PARAMETERS

Rated Power of DG resource Prated = 2 MW Required P tracking 15t order, max (7p) = 50 ms
LVDC nominal voltage Vi =1100V Acquisition sampling period Te1 =125 us
MVDC nominal voltage Vo =20kV Controller sampling period Ts2 = 1.25ms (0.17%1)

MFT (nominal) transformation ratio n = V1 /Va = 0.055

Anti-aliasing LPF 2nd order, ¢ =1, wy, =5000rad/s

PWM Carrier period (frequency) T. =250 us (fc = 4kHz)
Ly =12.6uH

> = 31 mQ

MEFT leakage inductor

MEFT leakage resistor

A. Controller Design Guidelines

In most of distributed generation systems, such as wind
turbines, the electric drive train acts as an physical actuator of a
higher level mechanical controller. Power control operation is a
suitable interface between mechanical and electric systems. In
wind turbine applications, the controller design requirements
are usually expressed in terms of power command step track-
ing: say i) a first order response is required (i.e., overshoot
is not allowed to avoid mechanical stress); ii) a maximum
allowable time constant is specified (i.e., the electric drive
train should be faster than other mechanical actuators). A
conservative value for the maximum time constant allowed
(for a power command step) 7p is 100 ms [37]. An even more
restrictive value is selected in this paper as shown in Table II.

Power control by phase-shift angle modulation and control
for DAB is considered [38], [39]. Assuming v (t) = v1(t) =
V1 and vq(t) = 03(t) = Va, for a carrier period, the average
transferred power equation is given by

T.VinVo(m — )P
< p(®,1) >5,= P(@) =TT D) )

vV O0<d<7/2

with 7, being the carrier frequency and & the relative angle
between the voltages at the MFT terminals [c.f., v14. and v
in Fig. 3(a)]. This is a non-linear expression that sets a dc-bias
operating point.

Closed loop power regulation of a DAB can be achieved
by considering ®(¢) as an actuation variable [as shown in
Fig. 3(a), ¢(t) = [wst is the same for both converters] [38],
[39]. By small signal perturbation of (2) around a given
operation point, the following linear relation is obtained

_ TchnVQ[ﬂ - fb]

AP(t) 93]

AD(t) YVO<Pd<7/2 (3)
with A®(t) and AP(t) being the small-signal perturbations
of phase-shift angle and power transferred, respectively. By
applying the Laplace transformation of (3), at each specific

operation point, the plant of the system is defined as

AP(s) = Go(Pn)Ad(s) 4)
with T.VinV; T . VinV;
cVinva cVinva
— < Pp) < ———.
drL, Ga (Pn) 27 L, ©)
N—— N——
G‘bmin G‘I’m,u;rl

15¢ order, 757 = 100 ms
kp = 1.645e¢ — 06 rad/W,

k; = 1.645e¢ — 05rad/(s - W),
[From (7) with o = 275 rad/s]

Power measurement LPF

Controller gains

Clearly, the controller gains should be selected to comply with
the requirements in the range of gains defined by (5).

Since the accuracy of (3) is, by definition, only assured
in the range of frequencies defined by w << 1/T,, a band-
limitation of the controller should be considered in order
to assure a linear behavior. This is done by down-sampling
the control rate to 759 >> T.. Even though extra time
delay is introduced with down-sampling, in practice this is
not a limitation, because the dynamic requirements from a
mechanical systems are of several orders of magnitude below
DAB PWM frequencies (i.e., 7p >> Tso >> T, in practice).
It should be noticed that, as a consequence of down-sampling,
two different sampling rates are employed. A fast acquisition
period Ts; of twice T, (double update) in combination with
analog anti-aliasing filter A;(s) is needed to avoid aliasing [by
nature 41 (¢) is pulsating]. Ao(kTs1) is a reduced bandwidth
low pass filter of the first order, which smooths the power
feedback signal. In practice, A2(kTs1) is implemented with
much slower dynamics than the one of A;(¢). Therefore,
the A;(¢t) dynamics can be neglected in the calculations
of a proportional-integral (PI) controller gains, which are
performed as follows. Firstly, A(kTs1) is approximated to
a continuous domain filter as

1
As(s) = P (6)
Subsequently, by applying internal model laws [40] with the
smallest gain, the controller gains are expressed as follows.
kyp = G?Z“Q and k; — G: ‘ %)

with « being the intended bandwidth, which is constrained by
1/a < max (7p) and 1/a >> Tyo.

Fig. 4 depicts frequency diagrams from the controller de-
sign. It is clear that from the range of operation between no
load and Pieq, the operation point is kept almost constant,
which is a good indicator for a linear response of the system.
The closed loop bandwidth is above «, which assures to
comply with the main dynamic constraint.

The proposed DAB power control is based on a single-loop
with an imposed bandwidth limitation. The objective of this
strategy is to avoid closed-loop operation in the high frequency
range, where the in-loop delays would tend to make passivity
compliance unfeasible (references [32], [34] analyze in detail
how system delays effects compromise input-admittance pas-
sivity compliance, in ac grid-connected converters).

min
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Fig. 4. Controller design diagrams for the linearized model in Fig. 3(c).
a) Open loop gain. b) Closed loop P, tracking.

I11. ADMITTANCE CALCULATION

The admittance Y2(w) [i.e., the admittance as seen from
the DAB connection point to the MVDC grid, as depicted
in Figs. 1(b) and 3(a)] is derived considering a small signal
perturbation in vs(t), and how this is reflected in power ps(t)
and current ¢2(t). The power equation in the MVDC side is

p2(t) = v2(t)i2(?). ®)

For a given operation point,

Ug(t) = V5 + 09 (t) (9a)
in(t) = I +ia(t) (9b)
p2(t) = Po+ po(t) (9¢)

with [/2, Iy and P, = V5,15 representing a dc-bias point, and

0a(t), 12(t) and pPa(t) representing small-signal variables. By

combining (8) and (9), the small-signal power equation is
Pa(t) = Ita(t) + Vaia(t). (10)

Since (10) is linear, it can be expressed in the frequency
domain

P2(s) = Lot (s) + Vaia(s). (11)
The admittance transfer function is available from (11),
ia(s)  Pals)/ta(s) — I
Y- = = . 12
2(s) 52(s) V2 (12)

Therefore, the key step to obtain Y>(s) is to find the transfer
function between po(s) and ¥2(s). Analytical methodologies
depend on the range of frequency of interest, as shown next.

A. Open Loop Disturbance Model

For H(s) identification, the control action in Fig. 3(c) is
disabled. The convolution theorem for Fourier transforms (cf.
[41]) is the basis to calculate Ho(w): e.g., by applying the
Convolution Theorem to (8),

p2(w) = va(w) x ig(w). (13)
The open loop disturbance frequency response, defined as
Hy(w) = pa(w)/v2(w), is obtained by perturbation analysis.
A sinusoidal input perturbation, which is over-imposed to the
dc bias voltage V5, is defined in the complex time domain as
Ta(t) = %Q[ej(wptwp) + 3 (wptt0p)] (14)
with U2 being amplitude, w,, the perturbation frequency and
0, an arbitrary phase-offset. By inspection of (14), 02(w) is a
discrete Fourier series with two coefficients of amplitude 03 /2
and phase-angles +0,,, which are placed at +w, [41]. Fig. 5(a)
represents vo(w) in the complex frequency domain, with the
dc-bias component in black and the perturbation components
in red [Fig. 5 is included to graphically support the different
stages of Ha(w) calculation].
A key step is to calculate the mapping of dc-side harmonics

in the ac-side, for which an ideal modulator is considered for
PWM modeling [41], which is described by

e_jwct + ejwct
2

Equation (15) is indeed a simplification in the sense that it only
calculates the dominant components that define the admittance,
but neglects non-linear generation of other side-band harmon-
ics (more accurate models based on PWM models are analyzed
in [42], [43]). Fig. 5(b) shows the Fourier series coefficients
from (15). The gain of the fundamental components (in black)
has been corrected by a 4/7 term to consider the fact that
v2ac(t) 1s a square waveform of amplitude V> and frequency
we; therefore, its fundamental component, employed in the
Fourier series analysis, has an amplitude of 4/7V%.

Subsequently, the ac current terms are calculated. The
perturbation terms are given by

Toac(t) = a(t) - cos(wet) = Ba(t) - (15)

< V2ac(w)
12ac(W) = Tl jw (16)
with L/ = L,/n? being the leakage inductance referred

to the MV terminal (R, is neglected at this step). The
i2qc(FTw.) symmetrical coefficients are calculated in order to
equal the power in MVAC and MVDC sides, i.e., from (13)
and neglecting the small signal perturbation (in this step),

Vac2 (wc)iaCQ(_wc) + vacQ(_wc)iaCQ (wc) = VQI2 (17)

The Fourier series coefficients of i9,.(w) are depicted in
Fig. 5(c). Fig. 5(d) shows the main' Fourier coefficients of
P2ac(w), which are obtained from (13) and the Fourier co-
efficients of vou.(w) and ig4.(w), depicted in Fig. 5(b) and

ICoefficients of paq.(w) of a frequency larger than w. are discarded.
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Fig. 5. Fourier Series coefficients of the signals involved in the high frequency model. Black bars correspond to dc-bias components. Red bars

correspond to small-signal perturbation signals.

Fig. 5(c), respectively. It can be observed that, after convolu-
tion, Pa(wp) is linearly dependent on ¥2(wy), and, therefore

_ ﬁg(wp) 7T12 2V2wp
H = = — —_— . 18
)= G~ 1 V- Y
By using the Laplace variable s = jw,, the open loop
frequency model for the disturbance is given by
7TIQ 2‘/28
H =— 4 —F . 19
2(5) = 7L (52 + w?) (19

B. Closed Loop Model

Taking into account the controller action, p(s)/02(s) is ob-
tained from the closed loop dynamics represented in Fig. 3(c).
It can be appreciated that 95(s) is a disturbance of the power
loop and, therefore, p(s)/02(s) is the disturbance to signal
transfer function, which can be obtained analytically as

pa(s) Hy(s)
Uo(s) 1+ C(s)em*T2Go(Pn)Az2(s)
sHs(s) (20)
= “oT. GalPa)
s+ aesT: ‘;mm
Subsequently, from (12)
s[Ha(s) — I3]) — Iyae™sTs2 Ga(Fn)
Ya(s) = Sime (1)

Vals + ae=sTs2 Céi(ﬁn)]

min

Y2(s) has a dc value defined by the operation point:
Y5(0) = —I,/V5 in steady-state. At high frequencies, distur-
bance and delay effects also shape the frequency response.

C. Passivity Compliance

Y5(w) compliance with the passivity criterion is established
as stability and robustness figure of merit. This criterion
has been previously adopted for certification of electric trac-
tion systems and can be also employed in the design of
robust controllers for grid-connected converters [15], [26],
[27], [32], [33]. The main feature of design for passivity
is the fact that it provides a sufficient condition for stabil-
ity, despite a big uncertainty in the grid model (environ-
ment). Mathematically, the passivity compliance is formu-
lated as —90 deg < /Y3(w) < 90deg V w or, equivalently, as
Real{Ys(w)} > 0V w.

From (21), a maximum theoretical bandwidth to fulfill
passivity criterion at nominal power conditions can be ap-
proximated as follows. Firstly, Ga(Pn) Gomer = 9 s a

Pmin Pmin
reasonable assumption [cf., Fig. 4(a)]. Also, Hs(s)
is a very accurate assumption for the low frequency range.
Equation (21) can be then simplified to

~
~

~
~

wlo
4

4Z7r] + 20[678T32
S

+ 2cie=5Ts2

Ya(s) ~ bl

(22)
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Fig. 6. Theoretical bandwidth limit for passivity compliance. a) Nominal
power injection (2 MW). b) 2.5% of nominal power injection.

An insightful approximation for the maximum achievable
bandwidth (i.e., maximum « value that assures passivity com-

pliance) can be identified by inspection of (22) at w = 57—,
which is given by
. 4—n
N R % s b i Bk e
Y- = = === - 23
2(jw 2T82) [ ——r (23)
Since Ys(jw = % = Real{Ys(jw = %)}, a limit

condition for passivity is expected from a numerator sign
change, which defines a maximum bandwidth as®
= M (24)
1670

Using the data of Table II in (24), anae = 134.83rad/s
(21.46 Hz). Fig. 6(a) shows Y(w) for different o values and
proves the accuracy of (24) approximation. It can be also
appreciated that, the passivity compliance can be achieved
with a electrical response much faster than the one considered
in section II-A. It can be also observed that o,,., Sets a
reasonable limit between a low frequency model (i.e., closed
loop regulation is effective) and a high frequency one (i.e.,
open loop operation).

However, the accuracy of (24) would be compromised if
a very low power set-point is employed, since the second

amaz

2The accuracy of this approximation is evaluated in the appendix.
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Fig. 7. Real time HIL experimental setup. (a) Model and controller
implementation diagram. (b) Physical Devices.

order term in (19) becomes dominant when I> = 0. A more
restrictive theoretical bandwidth would be necessary to comply
with the passivity criterion for very reduced power set-points.
Referring to a typical wind turbine application, a minimum
set-point is around 5% of the nominal power [44]. Fig. 6(b)
predicts passivity compliance for an even smaller minimum
power set point, such as 2.5% of the nominal power, using
Qmaz = 275 rad/s, which proves the suitability of the design
obtained in section II-A).

IV. REAL-TIME HIL RESULTS

Fig. 7 shows the HIL based verification test-bed. The
power hardware circuit, including switched model convert-
ers, is implemented in the R7-Box by Plexim, running at
a 2.5us cycle time. The controller has been implemented
in a TI TMS320F28069 digital signal processor, running at
Ts1 = 125 us. The phase-shift angle ®(¢) of the MV side
converter is implemented by the TBPHS register. TBPHS word
length is 16 bits, but it range is limited to [0,7/2], so in
practice the phase-angle shift has 14 bits of resolution (i.e.,
the minimum angle step change is A®yy, = 3 - 2,% rad).

Fig. 8 shows steady-state results at the rated power point.
PWMI and PWM?2 firing signals correspond to the LV and
MYV half bridge, respectively [cf., ¢ and ¢ — ® in Fig. 3(a)].
The voltage drop in the leakage inductor and the ac current in
LV side are also depicted.

Fig. 9 shows the time response for a positive and negative
Pt steps, respectively. The proposed system achieves the Fr
tracking requirements, despite the response is a bit slower than
predicted. As expected from Fig. 4, a little dependence on the
operation point is observed.

For each operation point, Y2(w) is calculated in real time.
A voltage perturbation with known frequency and phase-angle
offset 05 is added to the ideal MVDC source V5. The amplitude
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Fig. 8. Steady-state waveforms working at rated power

(Pref = 2MW, ® = 39deg). With reference to Fig. 7(a), the phase-
angles of PWM1 and PWM2 are ¢(¢) and ¢(t) — ®(t), respectively.
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Fig. 9. Step response and time constant estimation. a) Response to
a positive command step (from half to rated power). b) Response to a
negative command step (from rated to half power).
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Fig. 10. Phase-angle and magnitude calculation for 72 (w) based on a
recursive calculation of Fourier coefficients [45].

of the small-signal perturbation ¥ is 0.05 p.u.. Subsequently,
amplitude and phase-angle of i5(w) are measured in real-
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Fig. 11. Experimental results for Y2(w). The theoretical curves are

obtained from (21). (a) operation at 2 MW. (b) operation at 1 MW.

time by recursive Fourier transform (RFT) [45], which is
depicted in Fig. 10. Since an accurate calculation of low
order harmonics is required, an infinite impulse low pass
filter Hyp(s) with very reduced cut-off frequency (< 1Hz)
is employed instead of moving average filters. The admittance
at such frequency is given by

[Liz(w) = LUz (w)]. (25)

Key results are depicted in Fig. 11: Y3(w) is represented
for full and half load, respectively. The real-time points closely
match the predictions given by (21), which comprises both low
and high frequency ranges. Passivity compliance is achieved in
the whole spectrum, which, from system integration point of
view, is undoubtedly a beneficial feature: i) inside a complex
MVDC distribution system with multiple sources of back-
ground harmonics, the DAB would not amplify those ones and
create further deterioration of the overall system performance;
ii) dynamic interactions with other active components of the
MVDC grid (i.e, harmonic instability issues) are avoided [26].

Fig. 12 shows results focused on the high frequency model.
Fig. 12(a) shows the resonant behavior around w., which is
expected from the second order response in (19). Fig. 12(b)
is included in order to support the assumption about ineffec-
tiveness of the control action at high frequencies.

Fig. 13 represents the curves obtained for a reduced LVDC
bus [i.e., v1(t) < V1], which in wind energy is the typical
scenario for low power generation [8], [37]. These results
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Fig. 12. Experimental results focused on the high frequency behavior.
(a) Admittance measurements around the Nyquist frequency, i.e., 4 kHz.
(b) Admittance measurements of the open loop operation.

show that the power controller naturally adapts to the LVDC
operating point and the passivity compliance is kept.

Figs. 14 show, in the time domain, the responses to an
input perturbation at vo(¢). It can be checked that, inside its
bandwidth, the controller is able to attenuate low frequency
oscillations. However, the controller has little effect on compo-
nents of a frequency outside its theoretical bandwidth. Fig. 15
shows the effect when a 300 Hz ripple is programmed in v (¢)
in order to mimic LVDC ripple due to passive rectification. As
this frequency is outside the controller bandwidth, the effect
is analogous to the one represented in Fig. 14(b).

V. CONCLUSIONS

This paper addresses the stability properties of a DAB
based system aimed to interface LV distributed generation with
MVDC grids. Detailed design guidelines for the controller are
elaborated and provided. Analytical derivation of the admit-
tance, as seen from the MVDC point of connection, is provided
(accurate for all frequencies of the spectrum). Real time HIL
verification using a detailed switched physical system confirms
the accuracy of the theoretical modeling. Passivity compliance
is employed as key figure of merit to assess the system from
a system-level integration point of view. The results are really
positive for the emerging MVDC technologies and systems:
passivity compliance is achieved with a simple implementation
(e.g., active damping or similar complex strategies have not
been implemented) and a down-sampling strategy that restrains

Viae(t) — nv2ac(t)[kV]

t1ac(t)[kA]
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Fig. 13. Experimental results at light load and reduced
LV bus. (a) Steady-state waveforms working at rated power

(Pref = 0.5 MW, 71(t) = 0.6V1,® = 16 deg). (b) Measured admittance
versus mathematical model from (21).

the effective control action in the low frequency range, taking
advantage of the inherent passive properties of the DAB circuit
at higher frequencies.

APPENDIX
This appendix provides an extended analysis of the condi-
tions for passivity compliance of Y3(jw) as defined in (22).
Firstly, by a change of variable s = jw in (22),
_ — I jw[*5E] + 20e 99T
Ya(jw) = —= [,4] —
Vs Jw + 2ae=Iw1s2
With some basic manipulations Y5(jw) can be expressed as
Ys2(jw) = Real{Y2(w)} + j Imag{Y2(w)}. (27)

To do so, the numerator and denominator of (26) are multiplied
by the complex conjugate of the denominator. Subsequently,
the Euler formula is used to substitute e*/“72 terms by
sine/cosine functions. The resulting expressions are

(26)

I 4?Tﬂw2 4402 — (&Tﬂ)aw sin(wTs2)

Vs w? +4a? — daw sin(wT2)

Real{Y2(w)} =
(28)
and
—Ip (55)aw cos(wTiz)
Vo w? +4a? — dawsin(wTs)

Imag{Ys(w)} = (29)
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Fig. 14. Power response to a 10% amplitude perturbation in v (%),
obtained for different controller bandwidths (a clean Apa(t,w,) mea-
surement is obtained by the FFT selective filtering method of Fig. 10).
(a) Response to an input perturbation oscillating at 3 Hz. (b) Response
to an input perturbation oscillating at 30 Hz.
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Fig. 15. Effect of a 10% amplitude, 300 Hz ripple in v1 (¢) (rated power).

From basic property of complex numbers, the denominator
of (28) [and (29)] is positive. Furthermore, according to the
current direction employed [see Fig. 3(a)], Io < 0. Therefore,
the passivity condition is achieved if

TWwQ + 4a? — (8
A solution to this inequality is complex to find analytically,
but easy to solve by numerical methods (e.g., by a Matlab
script). It has been found that equation (24) provides an
optimistic estimation and should be corrected by a 0.852 gain.
Regardless, once numerical/graphical methods are considered,
evaluation of the complete admittance model in (21) is more
accurate (e.g., analysis based on inspection of Fig. 6).

W)aw sin(wTs2) >0V w  (30)
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