
Probabilistic Schema Covering

Nguyen Thanh Toan1, Phan Thanh Cong1, Duong Chi Thang2, Nguyen Quoc Viet
Hung3, and Bela Stantic3

1 Back Khoa University, Ho Chi Minh, Vietnam
2 Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

3 Griffith University, Gold Coast, Australia

Abstract. Schema covering is the process of representing large and complex
schemas by easily comprehensible common objects. This task is done by identi-
fying a set of common concepts from a repository called concept repository and
generating a cover to describe the schema by the concepts. Traditional schema
covering approach has two shortcomings: it does not model the uncertainty in
the covering process, and it requires user to state an ambiguity constraint which
is hard to define. We remedy this problem by incorporating probabilistic model
into schema covering to generate probabilistic schema cover. The integrated prob-
abilities not only enhance the coverage of cover results but also eliminate the
need of defining the ambiguity parameter. Both probabilistic schema covering and
traditional schema covering run on top of a concept repository. Experiments on
real-datasets show the competitive performance of our approach.

Keywords: Schema matching, Schema covering, Probabilistic models

1 Introduction

An important part in business nowadays is how to cooperate with little effort. As new
organizations arise, they need to integrate with existing organizations. However, new
organizations also create their own schemas to describe their business logics, which
makes cooperation harder. Since each organization has its own schema, the process of
cooperation becomes painful and tiresome. In order to support cooperation, they need to
match a schema of an organization to another. Schema matching is the process of finding
correspondences between attributes of schemas [1,2]. It is used extensively in many
fields [3,4,5], especially data integration [6,7]. In this paper, we study a new approach to
schema matching by representing the schemas in high level of abstraction.

Schema matching traditionally performs matching on attribute-level to create attribute
correspondences. This process is ineffective considering a large schema with thousands
of attributes. Moreover, users tend to think schemas in terms of business object level when
designing schema mappings. Therefore, describing the schemas at low-level structure
such as attribute makes the manual matching process error-prone. This matching process
would be easier if we could represent schemas in a higher level of abstraction.

Since schemas are used to capture everyday business activities and some of these
business activities are the same among organizations, these schemas may contain many
common parts. These common parts represent business objects that are comprised in

2 Nguyen Thanh Toan et al.

the schemas which are called concepts. Some common concepts are “Address”, which
describes the location of an entity, or “Contact”, which provides information about a
person or an organization. Based on this observation, the process of describing schemas
in terms of concepts can be made possible and it is called schema covering. Schema
covering is a novel approach which has been studied carefully in [8,9].

In [8], the schema cover found by schema covering must satisfy a pre-defined
ambiguity constraint which limits the number of times a schema attribute can be covered.
However, this ambiguity constraint is hard to define since it must be stated beforehand
and for each attribute in the schema. Traditional schema covering approach has another
shortcoming that it does not support modeling uncertainty arisen in the covering process.
For example, given a concept “InvoiceToAddres”, we are not sure that it represents
subschema “ShipToAddress” or “BillToAddress” in the schema. Schema covering would
cover both subschemas by the “InvoiceToAddress” concept as the subschemas and the
concept all refer to the real-life concept “Address”. As a result, these problems lead to the
employment of probability to express uncertainty. We propose incorporating probabilistic
model into schema covering to introduce probabilistic schema covering. This allows us
to solve the above shortcomings through user feedback. Without probabilities, the user
feedback on schema covers would be hard.

In short, our goal is to create a new schema covering mechanism that supports user
feedback and does not require a user-defined ambiguity constraint by incorporating
probabilistic model. The paper is organized as follows. In §2, we model and formulate
the problem of probabilistic schema cover. In §3, we present the probabilistic schema
covering framework. In §4, we run various experiments on probabilistic schema covering.
Finally, we provide some related work in §5 before §6 concludes the paper.

2 Model and Problem Statement

2.1 Background

Let schema s = {a1, a2, . . . , an} be a finite set of attributes. Attributes can be both sim-
ple or compound and compound attributes should not necessarily be disjoint. Attributes
in a “Purchase Order” schema might be item, unitPrice, firstName, etc. A compound
attribute might be name, combining two other attributes – firstName, and lastName.
Defining a schema as a set of attributes is general as it can represent both relational and
hierarchial schema.

Let s and s′ be schemas with n and n′ attributes, respectively. Let S = s× s′ be the
set of all possible attribute correspondences between s and s′. S is a set of attribute pairs
(e.g., (item, line)). Each attribute correspondence (a pair of attributes) is associated with
a confidence value mi,j(s, s

′) which represents the similarity between the i-th attribute
of s and the j-th attribute of s′ [10,11]. mi,j is defined to be a real number in [0, 1]
since it tends to express the probability of an attribute being substituted by the other.
These confidence values are generated by schema matchers which are matching tools
performing schema matching between two schemas. Some notable schema matchers are
AMC [12], COMA++ [13].

A concept c is also a set of attributes: c = a1, a2, ..., am where ai is an attribute. A
concept and a schema is basically the same as they are both sets of attributes. However,

Probabilistic Schema Covering 3

a concept is more meaningful as it describes a business object and it also has a smaller
size. Concepts have relations between them called micromappings. Each micromapping
is actually a set of attribute correspondences.

We also define the counterpart of concepts in the schema which are subschemas. A
subschema t is also a set of attributes and it is a subset of schema s. Each concept and its
subschema has an alignment score f(t, c) which describes the similarity between them.

2.2 Schema Covering Framework

In general, the schema covering framework mentioned in [8] takes a schema and a
prebuilt concept repository as input. The concept repository is a corpus of predefined
concepts, which is built before-hand [8]. Schema covering finds the cover of a schema
over two steps: schema decomposition and schema covering.
Schema decomposition. In the first step, given a schema s and a concept repository, the
schema is decomposed into smaller parts based on the concepts in the repository. More
specifically, we find the corresponding subschema t of each concept in the repository
by matching the schema with the concept. The corresponding attributes of the concept
attributes are grouped as the attributes of the subschema. Each concept and subschema
forms a 〈subschema, concept〉 pair that will be used in the schema covering step.
Finally, the alignment score of a pair f(t, c) is calculated based on its correspondences
where 〈t, c〉 is a 〈subschema, concept〉 pair and f is a pre-defined function. The output
of this decomposition step is a set of 〈subschema, concept〉 pairs with an alignment
score attached to each pair.
Schema covering. From the set of pairs after decomposition, we select the pairs that
best cover the schema. The selected pairs, which are called a schema cover, must satisfy
many constraints depending on the schema covering approach. The formal definition of
a schema cover is as follows:

Definition 1. Given a set of subschemas Ts of schema s, a set C of concepts, we define
a set of valid matchings between subschemas and concepts:

E(Ts, C) = {(t, c)|t ∈ Ts, c ∈ C}

where (t, c) is a set of attribute correspondences between subschema t and concept c. A
cover of s by C, vs,C ⊆ E(Ts, C) is a subset of valid matchings between Ts and C.

The schema cover found by traditional schema covering approach must satisfy an
ambiguity constraint which limits the number of times a schema attribute can be covered.
Therefore, traditional schema covering approach is also called ambiguity-based schema
covering, which is discussed in [8]. Having described the traditional schema covering
approach, we can turn to the problem we want to solve.

2.3 Problem Statement

In order to incorporate probabilistic model into schema covering, we need to find a
mechanism to integrate probabilistic model into schema covering.

4 Nguyen Thanh Toan et al.

Formally, our problem takes a set of 〈subschema, concept〉 pairs, E(Ts, C) =
{(t, c)|t ∈ Ts, c ∈ C}, as input where Ts is a set of sub-schemas and C is a set of
concepts in the repository. Each pair is attached with an alignment score f(t, c) where
f is a user-defined function. These pairs together with their alignment scores are taken
from the decomposition result. In other words, we do not focus on the decomposition
step and we assume that the decomposition result is available before.

In this problem, we want to compute a probabilistic schema cover. It is a set of
possible covers vi and each cover is associated with a probability Pr(vi). The formal
definition for probabilistic schema cover is described as follows.

Problem 1 (Probabilistic Schema Cover). LetE be a set of 〈subschema, concept〉 pairs.
The probabilistic schema cover built fromE is a set V = {(v1, P r(v1)), . . . , (vn, P r(vn))}
such that

– For each i ∈ [1, n], vi is a cover and for every i, j ∈ [1, n], i 6= j ⇒ vi 6= vj
– Pr(vi) ∈ [0, 1] and

∑n
i=1 Pr(vi) = 1

The running example below illustrates a probabilistic schema cover.

Example 1. Assuming we have found two pairs 〈t1, c1〉 and 〈t2, c2〉, their alignment
scores are respectively 0.8 and 0.3. From this set of pairs, we can generate a set of possi-
ble covers namely {v1, v2, v3, v4} = {{〈t1, c1〉, 〈t2, c2〉}, {〈t1, c1〉}, {〈t2, c2〉}, ∅} Each
cover is attached with a probability, for example, (Pr(v1), P r(v2), P r(v3), P r(v4))
= (0.24, 0.56, 0.06, 0.14). Together, they form a probabilistic schema covering.

3 Probabilistic schema covering

In this section, we discuss the approach to build a probabilistic schema cover. We first
describe what properties a good cover must have. After that, we discuss the probabilistic
schema covering framework. In the framework, we show how to generate a probabilistic
cover from a set of pairs after decomposition.

3.1 Cover characteristics

A schema covering approach must satisfy two fundamental properties to ensure a good
cover result.

– Overlapping of subschemas: Schema covering must accept the overlapping of sub-
schemas. Since an attribute meaning is ambiguous, it is unreasonable to enforce “one
attribute - one concept”. For example, attribute “name” could be a person’s name or
a company’s name depending on the context. We may need two concepts “Person”
or “Company” to cover this attribute. In addition, as the concepts generating these
subschemas are also overlapping, which leads to the overlapping of subschemas.

– Although schema covering can add concepts that cover the same parts of the schema,
schema covering should not add bogus concepts into the final cover. A bogus concept
is one that is not related to the schema as illustrated in Fig. 1. There are two cases that
the concept is not related to the schema: it covers an insignificant part of the schema
or it covers the schema incorrectly. For example, the concept “Organization” in Fig. 1
is a bogus concept as it covers only two attributes but one of them is incorrect.

These properties are the guideline to create a good cover for a schema covering approach.

Probabilistic Schema Covering 5

Fig. 1. Organization is a bogus concept

3.2 Framework

The probabilistic schema covering framework has three steps as described in Fig. 2. It
takes a set of pairs after decomposition E as input and return a probabilistic schema
cover containing a set of covers with probabilities attached to each of them. There are
three steps in the framework: generating possible covers, assigning probabilities and
consolidating probabilistic cover. These steps are explained shortly below to get the
overview of the framework.

Fig. 2. The probabilistic schema covering framework

One of the fundamental requirement for the probabilities in the probabilistic cover is
that they must be added up to 1. Therefore, we generate all the subsets of the decomposi-
tion result pairs E in the first step. For each subset of E, we create a candidate cover
then it is assigned a probability. Since the number of possible covers is enormous, we
present a technique to decrease the computational space.

After generating all possible cover, each cover is assigned a probability in the next
step. The assigned probabilities must comply to a consistency constraint as described in
§3.4. The constraint is introduced to guarantee the assigned probability to be consistent
with the assigning cover.

After running probabilistic schema covering, we have generated a set of covers with
probabilities. In the last step, we need to consolidate it from a set of covers to one cover
(e.g. by selecting one with highest probability).

3.3 Generate all possible covers

From a set of pairs E = {(t, c)|t ∈ Ts, c ∈ C} found after decomposing the schema,
we generate all its subsets Ω = {vi|vi ⊂ E}. Generating its subsets using all the

6 Nguyen Thanh Toan et al.

pairs would lead to computational explosion since the size of Ω, |Ω| = 2|E|, is large.
Therefore, we need some methods to reduce the computational space.

We introduce the alignment score threshold λ and the error window ε to decrease
the size of the computational space. Using the threshold λ and the error window ε, we
define two sets of pairs Ec and Eu:

– Certain set Ec = {(t, c) ∈ E|f(t, c) ≥ λ+ ε}
– Uncertain set Eu = {(t, c) ∈ E|f(t, c) < λ+ ε ∧ f(t, c) ≥ λ− ε}

By setting the alignment score threshold λ, we want to focus only on the promising pairs.
Pairs with alignment scores higher than the threshold are more likely to be correct. On
the other hand, the error window value ε represents pairs that we are unsure if they are
correct or not. That means we need to assign probabilities to only these pairs in Eu to
express uncertainty.

From the uncertain set of pairsEu, we generate the possible coversΩu = v∗i |v∗i ⊂ Eu.
Therefore, the number of possible covers |Ωu| is 2|Eu| . Since 2|Eu| � 2|E|, we have
reduced the computational space significantly. Finally, the probabilistic schema cover
for E is computed based on Ωu as follows: Ω = {vi|vi = v∗i ∪ Ec, v∗i ∈ Ωu} and
Pr(vi) = Pr(v∗i).

In Alg. 1, we describe how to generate the probabilistic cover for the set of pairs E.
In Line 1-7, we divide the decomposition result into two sets. In Line 8, we generate
subsets of the uncertain pairs and then assign probability to each of them in Line 11.
Finally, we combine each set of pairs after assigning probability with the certain pairs to
generate a cover of the probabilistic cover in Lines 10-13. The probability assignment
step is discussed next.

Algorithm 1: Generating probabilistic cover
input : P . a set of pairs

λ . an alignment score threshold
ε . an error window

output : A set of covers with probability V
1 C = ∅ . A set of certain pairs
2 U = ∅ . A set of uncertain pairs for pair p ∈ P do
3 if p.alignmentScore ≥ λ+ ε then
4 C.add(p)

5 else if p.alignmentScore < λ+ ε and p.alignmentScore ≥ λ− ε then
6 U.add(p)

7 S = ∅ . sets of uncertain pairs
8 S = generateSubsets(U)
9 assignProbability(S)

10 for set s ∈ S do
11 c.add(C)
12 c.add(s)
13 V.add(c)

14 return V

3.4 Assign probability to each cover

After the first step, we have generated a set of possible covers Ωu from the uncertain set
of pairs Eu. In this step, we assign probability to each cover v∗i ∈ Ωu.

Probabilistic Schema Covering 7

Consistency constraint Despite the fact that alignment scores express how similar
between the subschemas and the concepts, they do not tell us which concept a subschema
should align to. For example, although a subschema “ShipToAddress” is more similar to
the concept “DeliverToAddress” than to “BillToAddress”, it is still reasonable to align
“ShipToAddress” to “BillToAddress” in a cover. The reason is that some people use their
delivery address also as a billing address. Therefore, we could find probabilistic schema
covers that still make sense according to a set of 〈subschema, concept〉 pairs. In other
words, there could be sets of probabilistic schema covers that are consistent with a set
of 〈subschema, concept〉 pairs. As a result, we can specify a consistency constraint to
define which probabilistic covers are consistent with a set of pairs.

Definition 2. A probabilistic cover V is consistent with a pair (t, c) if the sum of
probabilities of all covers that contain (t, c) equals the alignment score f(t, c). A
probabilistic cover V is consistent with a pair (t, c) if∑

(t,c)∈vi

Pr(vi) = f(t, c)

A probabilistic cover V is consistent with a set of pairs M if it is consistent with each
pair in M .

This constraint is introduced to ensure that a cover containing a pair with low
alignment score has low probability. Since a pair with low alignment score is more likely
to be incorrect, the cover in which it participates is also less likely to be correct. We
illustrate this observation in Example 2.

Example 2. Applying the consistency constraint into the covers in Example 1, we have
the following equations:

Pr(v1) + Pr(v2) = 0.8 (1)
Pr(v1) + Pr(v3) = 0.3 (2)

Since Pr(v1) ≥ 0, Pr(v3) ≥ 0 and due to Eq. 1, Pr(v1), Pr(v3) must be less than 0.3.
However,the probability for cover v2 which does not contain pair 〈t2, c2〉 is higher as
Pr(v1) < 0.3 then Pr(v2) must be higher than 0.5 according to Eq. 2. Therefore, the
consistency constraint ensures that covers containing pairs with low alignment scores:
v1, v3 have low probabilities and vice versa.

However, given a set of pairs Eu, there are various probabilistic schema cov-
ers that are consistent with it. In Example 2, (Pr(v1), P r(v2), P r(v3), P r(v4)) =
(0.1, 0.7, 0.2, 0) or (Pr(v1), P r(v2), P r(v3), P r(v4)) = (0.24, 0.56, 0.06, 0.14) are
the possible solutions. In the following, we describe how to select a probabilistic schema
cover from a set of probabilistic covers that are consistent with a set of pairs.

Entropy maximization Among the probabilistic covers that are consistent with a set of
pairs, we select one that maximizes the entropy of its probabilities. Maximizing entropy
is reasonable that given a set of candidate covers, we are not sure which one is correct.

8 Nguyen Thanh Toan et al.

This uncertainty leads to the observation that these covers should be treated unbiasedly.
Maximizing entropy is not a new method since it has been used in various fields such as
natural language processing [14,15].

The probability assignment problem can now be reformulated to a constraint opti-
mization problem (OPT). That is, we need to assign the probabilities to the covers in a
probabilistic cover such that both the consistency constraint is satisfied and the entropy
is maximized. The optimization problem is described as follows.

Definition 3. Let Pr(v1), . . . , P r(vn) be the probabilities of cover v1, . . . , vn respec-
tively. Pr(vi) is found by solving the following OPT problem:

maximize
∑n
i=1−Pr(vi) logPr(vi), subject to:

1. ∀i ∈ [1, n], 0 ≤ Pr(vi) ≤ 1
2.

∑
i=1..n Pr(vi) = 1

3. ∀(t, c) ∈ Eu :
∑
j∈[1,n]:(t,c)∈vj Pr(vj) = f(t, c)

Probabilities for the covers in the running example can be found by solving the
following problem:

Example 3. maximize−Pr(v1) logPr(v1)−Pr(v2) logPr(v2)−Pr(v3) logPr(v3)−
Pr(v4) logPr(v4), subject to:
1. Pr(v1) + Pr(v2) + Pr(v3) + Pr(v4) = 1
2. Pr(v1) + Pr(v2) = 0.8 (consistency constraint)
3. Pr(v1) + Pr(v3) = 0.3 (consistency constraint)
4. ∀i ∈ [1, n], 0 ≤ Pr(vi) ≤ 1

This problem can be solved by using an OPT solver such as Knitro [16]. Solving this prob-
lem, we get the following solution (Pr(v1), P r(v2), P r(v3), P r(v4)) = (0.24, 0.56, 0.06, 0.14).
We can generate many other solutions if we don’t maximize the entropy such as (Pr(v1), P r(v2),
Pr(v3), P r(v4)) = (0.1, 0.7, 0.2, 0). However, the latter solution is biased as it favors
pair (t2, c2) over (t1, c1). In addition, this solution implies that the pairs (t1, c1) and
(t2, c2) are dependent.

Observing the above example, it may seem counter-intuitive to consider an empty
cover as a possible solution. However, if all the pairs have low alignment score, it is
rational to regard the empty cover as a possible solution as other non-empty covers could
be incorrect.

Probabilistic schema covering complies with the properties we described in §3.1.
Since bogus concepts tend to have low alignment score, they are only contained in
covers with low probabilities. However, users might focus on the top-k covers with high
probabilities where these bogus concepts are not available. In other words, probabilistic
schema covering satisfies the first property of generating good covers. Moreover, since
the pairs in each cover of the probabilistic schema cover is a subset of the pairs from the
decomposition step, these pairs may overlap. This means probabilistic schema covering
satisfies the second property of good cover generation.

Probabilistic Schema Covering 9

4 Experiments

We now describe experiments that validate the performance of the probabilistic schema
covering and its application. The main goal of these experiments is to examine the quality
of the cover obtained from probabilistic schema covering.

4.1 Experimental setup

Dataset We start by introducing the dataset being used for evaluation in this document.
In fact, finding an appropriate dataset is a non-trivial task as the collected schemas must
be relevant and belong to a same domain. We have collected 5 schemas from the Purchase
Order domain. Their statistics are described in Table 1. From these schemas, we also
create the golden mappings between them manually. The number of goldenmappings
between pairs of schemas is described in Table 2.

Table 1. Statistics of the five schemas

Apertum CIDX Excel Noris Paragon

#Nodes 140 40 54 65 77
#Internal Nodes 25/115 7/33 12/42 11/54 12/65
Depth 4 3 3 3 5

Table 2. #Golden mappings between schemas

Apertum CIDX Excel Noris Paragon

Apertum 54 79 85 66
CIDX 54 65 32 49
Excel 79 65 50 60
Noris 85 32 50 45
Paragon 66 49 60 45

Concept repository In order to facilitate the schema covering process, a concept
repository must be built first. As it is hard to find a concept repository that contains
concepts that are relevant to the above schemas, we create the concepts from the schemas
based on their structure.

From three schemas Apertum, Paragon and CIDX, we create the concepts using the
leaf-only strategy. If an attribute contains leaf attributes, we create a new concept. The
concept name is the attribute’s name and the concept attributes are the leaf sub-attributes
of it. After breaking the schemas into concepts, we connect these concepts using the
available golden correspondences (i.e. correspondences present in the ground truth). For
each source and target attribute of a golden correspondence, we find the corresponding
source and target attributes of the concepts. Next, we create correspondences between
these concept attributes by COMA++ [13] with default parameters. We apply this process
to generate all correspondences between the concept. Moreover, as we want the concepts
to have various sizes, we create smaller concepts in the repository from the existing ones.
For a set of concepts that are connected to each other, we create a new concept from
the intersections of them. Next, mappings from these new concepts to their parents and
parents’ neighbors are made. Eventually, we have constructed a concept repository that
contains concepts of various sizes and correct mappings between them. The statistics
of the concept repository are: 45 concepts, 50 micromappings, 220 attributes, 5.089
attributes per concept in average, 1.11 micromappings per concept in average.

10 Nguyen Thanh Toan et al.

Metrics Let R be the set of correct correspondences found manually. Let F denote
the set of correspondences that we generate (or we consider them to be correct). Let
I = R∩F denote the actual correct correspondences in F . In order to evaluate the result,
we use two typical metrics: precision, which is |I|/|F | and recall, which is |I|/|R|.
A high value of both precision and recall is desired. As it is hard to find the correct
cover from such a large concept repository, we take a different approach to calculate the
precision and recall. For each subschema and concept pair, we calculate its precision
and recall value then we take the average to get the precision, recall of the whole cover.

4.2 Effects of score threshold and error window on cover result

In this experiment, we want to find the cover of schema Excel by the concept repository.
We vary the threshold, error window to see their effects on the final cover. In this
experiment, to consolidate cover, we select the cover with the highest probability.

The result is shown in Fig. 3. In general, precision and recall are high, both of them
are higher than 60%. This means that we can find a good cover. Intuitively, the precision
and recall increase when the threshold are higher. This is reasonable that the higher the
threshold is, we only consider the more likely-correct pairs.

Moreover, when analyzing the raw data, we observe that with some epsilon values,
the precision and recall values among the epsilon values are the same. Therefore, in
Fig. 3, we only show the distinct data series. This means probabilistic covering is not
sensitive to the epsilon value. When the epsilon value changes slightly, the precision and
recall change a little about 10%. Therefore, it is easier for user to select the epsilon value
without worrying decreasing the cover quality.

Fig. 3. Precision and recall of the cover of schema Excel

4.3 A comparison with ambiguity-based schema covering

In this experiment, we compare probabilistic schema covering with the ambiguity-
based schema covering approach mentioned in [8]. Ambiguity-based schema covering
is a covering method based on the ambiguity constraint on attributes. It takes a set
of 〈subschema, concept〉 pairs and an ambiguity threshold as input. This ambiguity
threshold defines the maximal times an attribute can be covered. While limiting the
number of times an attribute can be covered, ambiguity-based covering tries to find the
cover with the maximum total alignment score. It returns only one cover that satisfies
two above conditions. In this experiment, we set the ambiguity threshold be 2.

For the probabilistic schema covering approach, we take the cover with the highest
probability to compare while vary the threshold and the epsilon value. Since probabilistic

Probabilistic Schema Covering 11

schema covering relies on the alignment score threshold, we also add an alignment score
threshold to ambiguity-based covering to make the two approaches comparable.

Fig. 4. A comparison with ambiguity-based covering

Fig. 4 shows the comparison of two approaches on the precision and recall value.
With a low threshold, ambiguity-based covering has higher precision and recall. However,
as we analyze the cover chosen by ambiguity-based covering, we found that this cover
contains no pair that has alignment score lower than 0.5. On the other hand, probabilistic
covering also consider various pairs with low alignment score that results in lower
precision and recall. When the threshold increases, precision of ambiguity-based and
probabilistic covering increase also. This is reasonable as we increase the threshold,
we only take into account the promising pairs. Since these pairs contain less incorrect
correspondences, the precision value must be high.

On the other hand, the higher the threshold, the lower the recall of ambiguity-
based covering. As we increase the threshold, we leave out some correct pairs that
have low alignment scores. Leaving out these correct pairs makes the recall value
of ambiguity-based covering decrease. Although ambiguity- based covering has low
recall value, probabilistic covering has high recall value in this case since it accepts
overlapping of pairs. For example, the final cover generated by probabilistic covering
when the threshold is 0.8 contains pairs of concept “Address Apertum”, “Address Noris”
and “Address Paragon”. Whereas, the ambiguity-based cover contains only two pairs
“Address Apertum” and “Address Noris” since the ambiguity threshold is only two. The
pair “Address Paragon” is correct that adding it to the final cover would increase the
recall value. This is the reason why ambiguity-based covering has a lower recall value
than probabilistic covering when the threshold is high.

5 Related Work

Schema matching has been studied extensively for more than 25 years [17,18] that
various schema matching techniques have been invented. Years of studies have shown
the need to automate the matching process since matching schema manually is time
consuming and error prone. Therefore, much efforts have been done towards automatic
schema matchers that many automatic schema matchers have been proposed such as
AMC [12], COMA++ [19] or OpenII [20]. These schema matchers support users with
various schema matching techniques and some of them even implement reuse of matching
results. For state-of-the-arts schema matching techniques and the comparison of schema

12 Nguyen Thanh Toan et al.

matchers, one can consult the surveys at [17,21]. The closest approach to our work is
the schema covering technique discussed in [8]. In this work, they have described the
general framework for schema covering and showed that schema covering is possible.
However, their approach required user to define an ambiguity constraint before starting
the covering process, which is unrealistic. Our probability assignment approach for
probabilistic schema covering basically follows the approach mentioned in [22,23].
In this work, they have described a systematic way to assign probabilities to schema
mappings to generate probabilistic schema mappings. Since there are various analogies
between two approaches such as a cover, a pair and its alignment score are similar to a
schema mapping, a correspondence and its confidence value, their probability assignment
approach is applied in our work.

6 Conclusions

This paper describes a novel approach to schema covering in order to mitigate uncertainty
and improve covering results: probabilistic schema covering. In order to propose this
approach, we have solved the problem of finding a mechanism to integrate probabilistic
model into schema covering In order to generate a probabilistic schema cover, we first
construct its possible set of covers and then we assign probability to each cover. The
assigned probabilities must satisfy a consistency constraint and their entropy must also
be maximized. Throughout the experiments, we have shown that probabilistic schema
covering is a robust approach and competitive to traditional schema covering approach.

References

1. Hung, N.Q.V., Luong, X.H., Miklós, Z., Quan, T.T., Aberer, K.: Collaborative schema
matching reconciliation. In: CoopIS. (2013) 222–240

2. Hung, N.Q.V., Tam, N.T., Chau, V.T., Wijaya, T.K., Miklós, Z., Aberer, K., Gal, A., Weidlich,
M.: SMART: A tool for analyzing and reconciling schema matching networks. In: ICDE.
(2015) 1488–1491

3. Hung, N.Q.V., Tam, N.T., Miklós, Z., Aberer, K.: On leveraging crowdsourcing techniques
for schema matching networks. In: DASFAA. (2013) 139–154

4. Hung, N.Q.V., Luong, X.H., Miklós, Z., Quan, T.T., Aberer, K.: An MAS negotiation support
tool for schema matching. In: AAMAS. (2013) 1391–1392

5. Hung, N.Q.V., Tam, N.T., Miklós, Z., Aberer, K.: Reconciling schema matching networks
through crowdsourcing. EAI (2014) e2

6. NGUYEN, Q.V.H.: Reconciling Schema Matching Networks. PhD thesis, Ecole Polytech-
nique Federale de Lausanne (2014)

7. Gal, A., Sagi, T., Weidlich, M., Levy, E., Shafran, V., Miklós, Z., Hung, N.Q.V.: Making
sense of top-k matchings: A unified match graph for schema matching. In: IIWeb. (2012) 6

8. Saha, B., Stanoi, I., Clarkson, K.L.: Schema covering: a step towards enabling reuse in
information integration. In: ICDE. (2010) 285–296

9. Gal, A., Katz, M., Sagi, T., Weidlich, M., Aberer, K., Hung, N.Q.V., Miklós, Z., Levy, E.,
Shafran, V.: Completeness and ambiguity of schema cover. In: CoopIS. (2013) 241–258

10. Hung, N.Q.V., Wijaya, T.K., Miklós, Z., Aberer, K., Levy, E., Shafran, V., Gal, A., Weidlich,
M.: Minimizing human effort in reconciling match networks. In: ER. (2013) 212–226

Probabilistic Schema Covering 13

11. Hung, N.Q.V., Tam, N.T., Miklós, Z., Aberer, K., Gal, A., Weidlich, M.: Pay-as-you-go
reconciliation in schema matching networks. In: ICDE. (2014) 220–231

12. Peukert, E., Eberius, J., Rahm, E.: Amc-a framework for modelling and comparing matching
systems as matching processes. In: Data Engineering (ICDE), 2011 IEEE 27th International
Conference on, IEEE (2011) 1304–1307

13. Arnold, P., Rahm, E.: Enriching ontology mappings with semantic relations. Data & Knowl-
edge Engineering 93 (2014) 1–18

14. Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to natural language
processing. Computational linguistics 22(1) (1996) 39–71

15. Della Pietra, S., Della Pietra, V., Lafferty, J.: Inducing features of random fields. IEEE
transactions on pattern analysis and machine intelligence 19(4) (1997) 380–393

16. Byrd, R.H., Nocedal, J., Waltz, R.A.: Knitro: An integrated package for nonlinear optimization.
In: Large-scale nonlinear optimization. Springer (2006) 35–59

17. Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years later. Proceed-
ings of the VLDB Endowment 4(11) (2011) 695–701

18. Rahm, E.: The case for holistic data integration. In: East European Conference on Advances
in Databases and Information Systems, Springer (2016) 11–27

19. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with
coma++. In: Proceedings of the 2005 ACM SIGMOD international conference on Manage-
ment of data, Acm (2005) 906–908

20. Seligman, L., Mork, P., Halevy, A., Smith, K., Carey, M.J., Chen, K., Wolf, C., Madhavan,
J., Kannan, A., Burdick, D.: Openii: an open source information integration toolkit. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,
ACM (2010) 1057–1060

21. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. the VLDB
Journal 10(4) (2001) 334–350

22. Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration systems.
In: Proceedings of the 2008 ACM SIGMOD international conference on Management of data,
ACM (2008) 861–874

23. Nguyen, Q.V.H., Nguyen, T.T., Miklos, Z., Aberer, K., Gal, A., Weidlich, M.: Pay-as-you-go
reconciliation in schema matching networks. In: Data Engineering (ICDE), 2014 IEEE 30th
International Conference on, IEEE (2014) 220–231

