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Abstract
Predictive modelling of plasma profiles is an essential part of ongoing research in tokamak

plasmas, required for a successful realization of future fusion reactors. This thesis focuses

on upgrading the RAPTOR code to extend the area of its applicability for plasma modelling

and scenario development. RAPTOR is a light and fast simulator, solving radial transport

equations, developed for plasma real-time control. This thesis also demonstrates new strategy

for ramp-down optimization.

The RAPTOR transport model has been extended to take into account the influence of the

time-varying plasma equilibrium geometry and background kinetic profiles on the evolution

of the predicted plasma profiles. It allows to get more realistic predictions of the plasma state

in case of rapid changes in the plasma shape and equilibrium. Also transport equations for

the ion temperature and plasma particles (electrons and ions) have been implemented in

the code. Benchmarks have been performed with more sophisticated transport ASTRA and

CRONOS codes and with prescribed data for the particle transport in ITER. With successful

benchmarks, we confirm that the new transport equations are solved correctly.

A new ad-hoc transport model based on constant gradients for core and pedestal regions, that

is suitable for simulations of transition between H (high) and L (low confinement) modes,

has been implemented into RAPTOR. This model assumes “stiffness” of the plasma profiles

in the core region, reflecting their relatively weak reaction to changes in the heat flux. Only

few transport model parameters have to be prescribed. They are validated with predictive

simulations of the time evolution of plasma profiles for TCV, ASDEX Upgrade and JET plas-

mas. We demonstrate the capabilities of RAPTOR for fast and realistic predictions of plasma

state over the entire plasma discharges, i.e. from ramp-up to ramp-down. We have defined

characteristic gradients in the “stiff” region for each machine and L/H confinement modes

and have obtained a very good agreement with experimental measurements. We have also

demonstrated several special cases, where the obtained set of the transport parameters does

not work, and proposed possible solutions of the problems.

An optimization procedure for the plasma ramp-down phase has been developed during

this work. Nondisruptive termination scenarios are necessary for safe operation of ITER,

since it can withstand only a limited amount of plasma disruptions. Automatic optimization

algorithms can be applied for searching the optimal ramp-down trajectory. With RAPTOR,

optimization results are obtained in a reasonable time (hours). We define the goal of the

optimization as ramping down the plasma current as fast as possible while avoiding any

disruptions caused by reaching physical or technical limits. Physical constraints are relevant
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for most tokamaks, others are technical and related to the specific tokamaks. We show how

different goals and constraints can easily be included or updated in order to simulate a new

machine. A proper plasma shaping during the current ramp-down can reduce significantly

the plasma internal inductance, improving its vertical stability. Specific heating scenarios

allow to reduce the drop in βpol during H-L transition, which is important for plasma MHD

stability. Results of numerical and experimental ramp-down studies for TCV, AUG and JET

plasmas are presented.

Key words: RAPTOR, transport modelling, predictive simulations, electron heat diffusivity,

ramp-down optimization
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Résumé
La simulation prédictive des profils cinétiques du plasma est une partie essentielle de la

recherche en physique des plasmas des tokamaks, qui est importante pour la réalisation

des futurs réacteurs de fusion. La présente thèse est dédiée au développement du code

RAPTOR afin d’étendre son applicabilité pour la modélisation des plasmas de tokamak et le

développement de scénarios. Le code RAPTOR est un simulateur rapide et léger, résolvant les

équations de transport radial, qui a été développé pour le contrôle du plasma en temps réel.

Cette thèse démontre également une nouvelle stratégie pour l’optimisation de la phase de

terminaison des décharges.

Le modèle de transport de RAPTOR est étendu pour prendre en compte l’influence de la

dynamique de la géométrie des équilibres du plasma sur l’évolution des profils du plasma.

Cette modification nous permet d’avoir des prédictions plus réalistes en cas de changements

rapides de la forme et de l’équilibre du plasma. Les équations de diffusion pour la température

des ions ainsi que pour les particules du plasma (c’est-à-dire, la densité des électrons et ions)

sont également introduites dans le code. Des études comparatives sont réalisées avec les codes

de transport plus complexes et sophistiqués : ASTRA et CRONOS, ainsi qu’avec les données

prescrites pour le transport des particules dans ITER. Grâce à ces études, nous confirmons

que les équations de transport sont résolues correctement par RAPTOR.

Un nouveau modèle de transport ad-hoc a été implémenté dans le code RAPTOR. Il est

basé sur des gradients constants, pour les régions centrales et du piédestal, et est adapté

aux simulations de transitions entre le mode H (haut) et L (bas confinement). Ce modèle

suppose une «rigidité» des profils de plasma dans la région centrale, reflétant leur faible

réaction aux changements du flux de chaleur. Seuls quelques paramètres du modèle de

transport doivent être prescrits. Ils sont validés par des simulations prédictives de l’évolution

temporelle des profils des plasmas de TCV, ASDEX Upgrade et JET. Nous démontrons les

capacités du code RAPTOR pour des prédictions rapides et réalistes des profils du plasma sur

les décharges de plasma complètes, i.e. de la phase initiale à la phase de terminaison. Nous

avons défini des gradients caractéristiques dans la région «rigide» pour chaque machine et

mode de confinement bas/haut et nous avons obtenu un très bon accord avec les mesures

expérimentales. Nous avons également démontré plusieurs cas particuliers, où l’ensemble

des paramètres de transport obtenu ne fonctionne pas complètement, et avons proposé des

solutions possibles, qui peuvent être implémentées dans le code.

Une procédure d’optimisation de la phase de terminaison du plasma a été développée pen-

dant ce projet. Des scénarios de terminaison sans interruption brutale sont nécessaires pour
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ITER, car il ne peut résister qu’à une quantité limitée d’interruptions. Des algorithmes d’op-

timisation automatique peuvent être appliqués pour la recherche de la trajectoire optimale.

Avec RAPTOR, les résultats d’optimisation sont obtenus dans un délai raisonnable (heures).

Nous définissons l’objectif de l’optimisation comme la réduction du courant de plasma le

plus rapidement possible, en évitant toutes les interruptions causées par l’atteinte de limites

physiques ou techniques. Les contraintes physiques sont pertinentes pour la plupart des

tokamaks. D’autres contraintes sont techniques et liées aux tokamaks spécifiques. Nous dé-

montrons comment ces objectifs et contraintes peuvent facilement être inclus ou révisés pour

simuler une nouvelle machine. Une diminution rapide de l’élongation du plasma peut réduire

de manière significative l’inductance interne du plasma, améliorant sa stabilité verticale. Les

scénarios de chauffage spécifiques permettent de réduire la chute de βpol pendant la transi-

tion H-L, ce qui est important pour la stabilité MHD du plasma. Les résultats des optimisations

numériques et expérimentales pour les plasmas TCV, AUG et JET sont présentés.

Mots clés : RAPTOR, modélisation de transport, simulations prédictives, diffusivité de chaleur

des électrons, optimisation de terminaison
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1 Introduction

1.1 Nuclear fusion and plasmas

In contrast to nuclear fission, nuclear fusion is a reaction in which colliding multiple atomic

nuclei join together into a heavier nucleus. The total mass of the light nuclei is bigger than the

mass of the resulted heavy nucleus leading to a positive energy outcome of the fusion reaction,

because of the difference in the binding energy. Stars produce large amounts of energy, spread

across the Universe, thanks to nuclear fusion. This way of power generation is cleaner and

safer than nuclear fission and requires smaller amount of fuel. Therefore an idea of fusion

reactors is very attractive for the worldwide electricity production. Research related to the

controlled nuclear fusion has been started in the 1950’s and continues nowadays.

Stars interior, where this reaction occurs, consists of nuclei (fully ionized neutral atoms),

electrons and neutral atoms and stays in a special state of matter called plasma. In addition to

solid, liquid and gas states, plasma is the fourth state of matter and, in a general sense, is a

quasi-neutral mixture of charged particles and neutrals characterized by collective properties.

Plasma is neutral globally but not locally on a characteristic Debye length, which leads to its

quasi-neutrality. The collective behavior of charged particles arises from their interactions

through locally generated electric and magnetic fields.

To fuse, two positive nuclei have to overcome strong repelling forces. If their energy is high

enough, they can exceed the Coulomb barrier between them and come closer such that the

nuclear force becomes dominant, resulting into the fusion of a heavy nuclei. The cross-section

of fusion reaction, i.e. its probability, depends on the temperature of nuclei. There are various

fusion reactions in stars where even such heavy elements like carbon and iron can be produced.

However, the dominant process of the energy degeneration in main-sequence starts, like the

Sun, is hydrogen fusion into helium. Moreover the reaction between two isotopes of hydrogen,

deuterium (D) and tritium (T), has the largest reaction cross-section [Wesson(2004)]. As it is

shown in Fig. 1.1, the fusion reaction between D and T nuclei produces a nucleus of helium

He and a neutron n. Because of the positive outcome of the fusion reaction, the products get

additional kinetic energy, where 3.5 MeV go to heavier He and 14.1 MeV to n.
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Chapter 1. Introduction

Figure 1.1: The D-T fusion reaction produces helium He and a neutron n. Released fusion
energy is transferred to the kinetic energy of the reaction products. Reproduced from iter.org.

The fusion reaction is self-sustained if the plasma heating by its products maintains the plasma

temperature against various losses without an additional power input. This state is called

“ignition”, and the Lawson criterion [Lawson(1957), Wesson(2004)] gives a minimum required

value for the product of the plasma density n and temperature T , assuming they are equal

for all plasma species, and the energy confinement time τE to reach this state. The latter

parameter τE equals to the ratio of the plasma energy to power losses and its smaller value

indicates that more power is needed to maintain plasma energy at the required level. The

“ignition” condition developed for the D-T reaction gives

nTτE > 3 ·1021 keV s m−3. (1.1)

Thus, for the plasma to be self-sustained, the triple product of the plasma parameters has to

be larger than the minimum value defined with the Lawson criterion.

1.2 Plasma confinement with tokamaks

In order to produce fusion power in a controlled way, conceptions of various devices for plasma

confinement have been proposed. Since the plasma is a mixture of charged particles, they can

be governed by external electromagnetic fields. Thanks to the Lorentz force F = q(E+v×B),

particles of a charge q and with velocity v in the presence of the electromagnetic field (E,B)

gyrate around the magnetic field lines with v⊥ and move parallel to the field with v||, resulting

in a helical trajectory. The motion direction depends on the charge q , i.e. it is opposite for

electrons and ions. One of the most promising design for the investigation of the magnetically

confined plasma is a tokamak [Artsimovich(1972)], an abbreviation from Russian “toroidal

chamber with magnetic coils”.
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1.2. Plasma confinement with tokamaks

Figure 1.2: The principle scheme of a tokamak.
Reproduced from euro-fusion.org.

Figure 1.3: The tokamak plasma poloidal
cross-section with the divertor plates. Re-
produced from euro-fusion.org.

1.2.1 Conception of the tokamak device

A tokamak is a device of a torus shape which confines a plasma with the help of the helical

magnetic field, as shown in Fig. 1.2. This complex magnetic field can be split into two

components, defining the fields in toroidal (the blue arrow) and poloidal (small green arrows)

directions. The toroidal field coils (blue coils arranged in the poloidal plane) induce the

toroidal magnetic field. The primary coil circuit (green inner coils) generates the plasma

current by induction in the toroidal direction (the big green arrow), which produces the

magnetic field in the poloidal direction. The combination of the toroidal and poloidal fields

results in helical field lines, and charged particles in a plasma are confined by following these

field lines. Tokamak toroidal geometry leads to the generation of a hoop force in the outward

direction of the torus. This force is balanced by applying a vertical magnetic field produced by

the outer poloidal field coils. Also additional poloidal coils are used for the stabilization and

control of the plasma position and shape.

The plasma is placed inside the toroidal chamber away from the wall, since no material can

withstand against the plasma extreme temperatures. As it is shown in Fig. 1.3, the tokamak

plasma can be split into several characteristic areas [Wesson(2004)]. The plasma core (an

area in dark red) consists of charged particles following closed magnetic field lines. Then

there is a magnetic surface (the last closed flux surface LCFS or separatrix) sharply separating

closed field lines, forming the nested magnetic surfaces, from open field lines, intersecting the

vessel wall. Open field lines form the region between LCFS and machine-wall components

(an area in dark yellow), called the scrape-off layer (SOL). In an ideal case, charged particles

would stay confined in the plasma core. However, because of collisions between particles

and various plasma instabilities leading to local field fluctuations, particles can move in the

radial direction, changing the guiding magnetic field lines. The structure of the open magnetic

field lines have to be optimized to guide charged particles in the safest way for the device.

According to one of the most promising design, so called “poloidal divertor tokamaks”, the

3



Chapter 1. Introduction

Figure 1.4: A tokamak plasma heating: ohmic heating with the plasma current, injection of
neutral particles (NBI) and electromagnetic waves of different frequencies. Reproduced from
euro-fusion.org.

open magnetic field lines, thus charged particles, are diverted into a dedicated region, divertor

plates (marked in blue in Fig. 1.3), at the vessel wall from where they are pumped away.

1.2.2 Heating systems for tokamaks

The Sun core is strongly compressed by the gravity forces resulting in the plasma high pressure.

In tokamaks according to the Lawson criterion 1.1, a plasma has to be heated externally to have

sufficiently high plasma temperatures. Since the plasma conductivity increases with its tem-

perature, the ohmic heating is not efficient at high plasma temperatures. There are two main

ways for the plasma external heating: injection of neutral beams (NBI) and electromagnetic

waves at resonance frequencies for plasma particles, presented in Fig. 1.4.

In case of NBI heating, a beam of highly energetic neutrals is injected directly into a plasma

([Kelley et al.(1972), Koch(2006b)] and references therein). The beam is typically generated

from deuterium ions. Since injected particles are initially neutral, they are not affected by the

magnetic field and can penetrate rather deeply into the plasma interior. Through collisions

with ions and electrons, they become ionized. Such generated high energetic ions are confined

in the tokamak and transfer their energy to plasma particles increasing the overall plasma

temperature. Neutral beams can be injected along the main radius of the torus or in the

direction of the plasma current, i.e. tangentially to the torus. Depending on the direction of its

injection, NBI can drive an additional plasma current and change the plasma rotation.

An injection of electromagnetic waves at different frequencies into the plasma is another

way of heating. Depending on the frequency, the waves can interact more effectively with

electrons or ions. In case of ion cyclotron resonance heating (ICRH) low radio frequency

4



1.2. Plasma confinement with tokamaks

waves (30 MHz to 55 MHz) are used ([Koch(2006a)] and references therein). A special antenna,

located in the vacuum vessel, sends the high-power radio frequency waves into the plasma,

heating mainly the plasma ions (ICRH) and driving the ion cyclotron current (ICCD). Elec-

tron Cyclotron Resonance Heating (ECRH) heats the electrons with high-frequency waves

(100 GHz to 170 GHz) which resonate with the electron cyclotron motion around the field

lines ([Westerhof(2006)] and references therein). The electrons absorb the waves energy and

transfer it to ions through collisions. Another method for plasma heating is Lower Hybrid

heating (LHRH) and current drive (LHCD) using intermediate frequency waves (around 5

GHz) ([Koch(2006a)] and references therein). Depending on the plasma density, dominant

heating goes to electrons or ions. The ECRH method is less difficult from the technical side

than ICRH. Since high-frequency waves can propagate through vacuum, the ECRH system

does not need an antenna installed in the vacuum vessel. However, an efficiency of the current

drive (ECCD) is lower than LHCD.

1.2.3 Diagnostic systems for tokamaks

Main plasma characteristics like particles temperature and density, radiation losses, the mag-

netic topology and plasma fluctuations can be determined with the help of special measuring

systems, called “diagnostics”. Direct measurements inside the plasma are hardly possible for

two reasons. Since the tokamak plasma is extremely hot, it can melt sensitive elements of a

diagnostic. Secondly, such an external disturbance can bring impurity to the plasma and lead

to loss of particle and heat confinement. Thus, the information about the plasma state has to

be collected from outside with electromagnetic and radiation measurements. There is a large

amount of diagnostics common for most of existing tokamaks or developed for a specific goal.

Below, only a few of them, relevant for this thesis, are mentioned.

To measure the electron temperature and density of the plasma, the Thomson scattering

diagnostic is widely used on existing tokamaks [Bowden et al.(1999)]. With intense bursts of

laser light, the thermal motion of the plasma electrons is affected, since the electrons are

accelerated in the laser oscillating field and re-emit radiation. Analyzing the scattering of

laser light, the electron temperature can be determined from the broadening of the radiation

spectra while the density is proportional to the total scattered power. Another common way to

determine the electron temperature is measurement of the electron cyclotron emission (ECE)

[Celata and Boyd(1977)], i.e. the emission due to the Larmor motion of the electrons around

the magnetic field lines.

Soft X-ray radiation gives important information on plasma heat and particle behavior, since

it consists of radiation coming from various sources, like the electron-ion Coulomb collisions

(Bremsstrahlung), electron-ion recombination, and line radiation. These measurements can

be done with the help of the Duplex Multiwire Proportional X-ray counter (DMPX), a soft X-ray

diagnostic, for example.

Many properties of a tokamak plasma can be determined with magnetic measurements using
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Chapter 1. Introduction

TCV AUG JET ITER
Major radius [m] 0.89 1.65 3 6.2
Minor radius [m] 0.25 0.5 0.9 2.0
Magnetic field [T] 1.43 3.1 4 5.3
Plasma current [MA] 1 2 5 15
Maximum elongation 2.8 1.8 1.8 1.85
Additional heating (up to) [MW] 7 27 42 73
Plasma volume [m3] 1 13 100 840

Table 1.1: Main characteristics for tokamaks TCV, AUG, JET and ITER.

simple loops or coils of wire. Measurements with poloidal, toroidal and Rogowski coils of

variation in the magnetic flux give information on the plasma current and its distribution,

plasma position and shape, stored plasma energy, and plasma instabilities. Diamagnetic

measurements are used to derive the plasma pressure from the measured toroidal flux. On the

TCV tokamak, rapid changes in plasma pressure can be measured thanks to additional single

loops placed outside the vessel [Moret et al.(2003)].

1.2.4 Tokamaks relevant for this thesis

In the last fifty years, thanks to the growth of the plasma community interest in the tokamak

conception, many tokamaks have been constructed around the wold. In this thesis we focus on

three of them: the Tokamak à Configuration Variable (TCV) in EPFL/Lausanne (Switzerland),

the ASDEX Upgrade tokamak (AUG) near Munich (Germany) and The Joint European Torus

(JET) near Oxford (UK). These tokamaks have similar geometry and operational domains,

thus plasma transport characteristics are similar too. Main characteristic of the machines are

shown in Table 1.1.

In order of the preparation to ITER (“the way” in Latin) [Shimada et al.(2007)] operation, an

investigation of the plasma behavior and fusion properties is one of the major goals for the

nuclear fusion community. ITER is an international collaborative project for an experimental

fusion reactor with the first plasma planned in 2025. The main subject of this project is a

demonstration of the feasibility of a fusion reactor which includes generation of a plasma that

is dominantly heated by fusion reactions and a demonstration that an integrated design can

meet the technological constraints.

The Tokamak à Configuration Variable (TCV) [Hofmann et al.(1994)] started operation in 1992.

It is a medium size, highly elongated tokamak, capable of producing limited or diverted

plasmas with currents up to 1 MA. It has been developed to investigate effects of the plasma

shape on the plasma stability and confinement properties. The magnetic control system

consists of 16 poloidal field coils, 7 coils forming the Ohmic transformer primary, 16 toroidal

field coils and two internal (fast) coils placed inside the vessel for vertical position control. To

produce stable plasmas of various shapes, poloidal field coils are controlled by 16 independent
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power supplies. TCV has good capabilities in Electron Cyclotron Heating (ECH) and Electron

Cyclotron Current drive (ECCD) thanks to the powerful and flexible system, consisting of six

82.7 GHz gyrotrons coupled in two clusters for heating at the second harmonic of electron

cyclotron resonance and of three 118 GHz gyrotrons in one cluster for heating at the third

harmonic. The 82.7 GHz gyrotrons launchers are located at two equatorial and four upper

lateral ports. The nominal power of each 82.7 GHz gyrotron is 465 kW resulting in total of 2.79

MW of heating power at the second harmonic with 2 s of maximum pulse length. The first

(inner) wall of the TCV vacuum vessel is covered with graphite tiles, thus carbon is the main

impurity. It has been recently updated with 1 MW NBI heating source [Coda et al.(2017)].

The ASDEX Upgrade tokamak is based on the Axial Symmetric Divertor Experiment, which

divertor conception was upgraded in 1991. In 2007 the machine was upgraded to all-W divertor

tokamak, when the graphite tiles were replaced by the W-coated ones [Neu et al.(2007)]. The

magnetic coils system consist of 16 toroidal coils and 12 vertical field coils for plasma shape and

position control. The plasma is kept in its elliptical shape with an X-point above the bottom

divertor. The toroidal magnetic field is usually kept constant during the entire discharge.

Additionally there are two vertical field coils close to the plasma for the fast plasma position

control. The main scientific goals of the device are investigation of the divertor physics, plasma

transport and plasma fueling with pellets. There are various systems of additional heating, in

particular 8 NBI injectors, 4 ICRH antennas and 8 gyrotrons for ECRH [Kallenbach et al.(2017)].

The Joint European Torus (JET) started operations in 1983. At this moment, is the largest

tokamak in the world. Designed to study plasma properties in conditions approaching those

needed for a fusion reactor, it is the only device currently operating that can use the deuterium-

tritium fuel mixture [Litaudon et al.(2017)]. In addition to the central solenoid consisting 10

modules, JET has 32 toroidal field coils and 6 poloidal field coils. In 2011 the first wall of the

vacuum vessel was upgraded to have an ITER-like wall, with the beryllium main wall and the

full-tungsten modules in the divertor. The additional heating system provides 34 MW with

NBI, 10 MW with ICRH and 7 MW with LHCD.

1.3 Thesis motivation

For a successful realization of the project aiming to producing fusion power in future reactors,

transport codes suitable for predictive/interpretative plasma simulations and plasma real-time

control are beneficial. The development of such codes and controllers require experimental

and numerical studies of the plasma behavior on existing tokamaks. In recent years, such inte-

grated codes like DINA [Khayrutdinov and Lukash(1993)] and CRONOS [Artaud et al.(2010)],

enable for simulation of plasma and full tokamak environment, have been developed. Because

of their complexity, numerical simulations take significant time. However, it might be very

useful to test and verify plasma control systems using simulation models that can be executed

in real-time [Humphreys et al.(2015)]. For such purposes, a fast, control-oriented simulation

code, capable of predicting the plasma quantities, is required. One of such codes developed
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for the real-time plasma control is RAPTOR, the RApid Plasma simulatOR. This thesis focuses

on investigation of the reliable physical models required for the realistic description of the

time evolution of the plasma state, and contributes to the development and optimization of

plasma ramp-down scenarios with the RAPTOR code.

The RAPTOR code has been developed for plasma real-time control, aiming to fast and ac-

curate predictions of the plasma state [Felici(2011), Felici et al.(2011), Felici et al.(2012)]. In

order to reduce computing time, its transport model has been simplified assuming fixed

plasma equilibrium. The code has been focused on off-line and real-time predictions of the

poloidal magnetic flux and the electron temperature, since these parameters provide most

important information on the plasma state and many other plasma parameters can be esti-

mated from them. Moreover, appropriate analytical, and therefore fast, models for transport

coefficients have been available. To expand an area of the code applicability, several upgrades

were required with respect to the version reported in [Felici et al.(2012)]. To get realistic pre-

dictions of the plasma profiles in case of rapid changes in the plasma shape and equilibrium,

the time-varying plasma equilibrium geometry has to be taken into account. Rapid coupled

simulations of heat and particle transport open new directions in the development of real-time

controllers on existing machines. Therefore, as part of this thesis, the transport model of the

RAPTOR code is extended with time-varying geometrical terms and diffusion equations for

ions and electron particles.

To keep the high speed of simulations with the RAPTOR code, we need simple or at least fast

models for heat and particle transport. A new model, implemented in the code as part of this

thesis, is based on [Kim et al.(2016)]. This model assumes “stiffness” of the plasma profiles in

the core region, reflecting their weak reaction to changes in the heat flux [Garbet et al.(2004),

Sauter et al.(2014)] and on the global confinement properties. It is a fast model, requiring

few prescribed parameters, which are based on experimental measurements, and therefore,

they can be easily checked. However, because of the initial conception, the model developed

in [Kim et al.(2016)] is not suitable for transport modelling in case of fast changes in the

plasma state, like transitions between low and high confinement modes. Since with the recent

upgrades in the RAPTOR code, we are focusing on simulations of entire plasma discharges with

time-varying shape and equilibrium, the transport model is upgraded to allow fast changes in

the transport parameters. Although the developed model for temperature and density profiles

may not have as high predictive capabilities as models based on first principles, it gives reliable

profiles on long plasma time scales. Thus, thanks to the high speed of the model and its good

predictive capabilities, it can be used to estimate the plasma behavior in real-time and to

develop plasma scenarios off-line.

In this thesis, in particular, we contribute to the development of scenarios for the final stage of

the plasma discharge. This termination stage is characterized by the decrease in the plasma

current, pressure and volume. In a programmed way, plasma has to be guided from a high

energetic state to the cold low density plasma. Because of simultaneous changes in various

plasma parameters, plasma stability limits or machine safety requirements can be easily
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broken, leading to a plasma disruption and potentially to machine damages. Nondisruptive

termination scenarios are especially important for future fusion reactors, since they have to be

designed in a way to produce the fusion energy uninterruptedly. Because of the approaching

initiation of ITER operations, an investigation of the plasma behavior during the ramp-down

phase and development of safe plasma ramp-down strategies become more crucial, prompt-

ing more numerical and experimental studying focused on this topic. In the past, automatic

optimization algorithms were used for study of the plasma ramp-up phase [Felici et al.(2012)].

In this thesis, numerical optimization studies are carried out for the plasma ramp-down phase,

including for the first time the effects of plasma geometry and additional heating. Automatic

optimization algorithms can be applied for searching of optimal ramp-down trajectories, pro-

viding a nondisruptive plasma ramp-down within physical and technical limits of a machine.

Since RAPTOR is a fast simulator, enable for ramp-down plasma simulations, we use it in the

numerical ramp-down optimization procedure, developed as part of this thesis.

1.4 Thesis outline

The first chapter is dedicated to a brief introduction to plasma physics and thermonuclear

fusion, a general description of a tokamak plasma device, heating and diagnostic systems.

Numerical and experimental research has been carried out as part of this thesis for the TCV,

AUG and JET tokamaks, briefly introduced as well in this chapter with specifications of the

main tokamak parameters. The rest of the thesis is organized in the following way:

• Chapter 2 gives an overview of the RApid Plasma Transport simulatOR (the RAPTOR

code) what is the main tool for plasma modelling in this work. The code updates,

carried out as part of this thesis, are presented. The diffusion equations, describing

plasma transport, are extended with time varying terms increasing the range of the code

applicability. New ad-hoc models for electron and ion transport coefficients suitable for

entire plasma discharge simulations with transition between low and high confinement

modes are presented.

• Chapter 3 presents simulations of tokamak plasma discharges for TCV, AUG and JET

tokamaks. We demonstrate the capabilities of the RAPTOR code for realistic predictions

of plasma profiles for different machines, confinement modes and heating scenarios.

With a simple set of the prescribed parameters for the developed transport model, we

can well predict the evolution of the plasma state on global scales, and of the radial

profiles, in various operation regimes and scenarios.

• Chapter 4 discusses the ramp-down optimization algorithm and provides its brief

overview. Preliminary numerical optimization results are presented for TCV, AUG and

JET tokamaks. Proper plasma shaping and specification of the time instant of the H-

to L-mode transition can help to control the radial and vertical positions of a plasma

discharge. Experiments, dedicated to tests optimized trajectories and development of

the ramp-down scenarios, are discussed.
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• Chapter 5, concluding the thesis, discusses the main results obtained in the thesis, and

a brief outlook for future research directions is presented.

Part of this thesis, related to the electron heat transport and the implementation of the

time-varying terms in the code, has been published in [Teplukhina et al.(2017)].
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2 The RAPTOR code: overview and
developments

Reliable plasma simulators are necessary for development of operational scenarios and real-

time controllers for future devices like ITER to reduce risks of its ineffective management in

terms of safety and expenses. Sophisticated physical models are required, therefore their de-

velopment with the help of numerical and experimental studies, and the following validation

on existent machines, are essential part of ongoing research in a field of integrated plasma

modelling. There are various control-oriented codes developed for fast tokamak plasma simu-

lations, like the METIS code, part of the CRONOS suite [Artaud et al.(2010)], and the transport

simulator developed at Lehigh University [Ou et al.(2007)]. This work is performed mainly with

the RAPTOR code, the RApid Plasma Transport simulatOR [Felici(2011), Felici et al.(2011)]. It

is a light and fast code developed for real-time control of a tokamak plasma and installed on

the control systems of TCV [Felici et al.(2011)], ASDEX Upgrade [Felici et al.(2016)] and RFX

[Piron et al.(2017)] tokamaks.

This chapter is focused on recent upgrades of the RAPTOR transport model, implemented into

the code as part of this thesis, to continue development of the code started in [Felici(2011),

Felici et al.(2011)]. First of all, RAPTOR transport equations have been extended with time-

varying terms. Thus, the time evolution of a plasma geometry and equilibrium can be taken

into account for plasma modelling and control [Teplukhina et al.(2017)]. It might change

significantly the quality of plasma profiles predicted by the code during phases of a plasma

discharge when fast changes in the plasma shape/heating take place. In addition to the current

density diffusion, now RAPTOR allows for coupled simulations of heat and particle profiles

for various plasma species [Felici et al.(2018)], whereas initially only a diffusion equation for

the electron temperature was simulated. This upgrade of the code improves its modelling

capabilities and opens new opportunities for controllers development on existent and future

tokamaks. Corresponding models for transport coefficients for electrons and ions have been

implemented into the code and tested as part of this thesis.

The chapter is organized as follows. Three sections are dedicated to a general description of the

RAPTOR code. In Sec. 2.1 main control and modelling capabilities of the code are discussed.

Sec. 2.2 is related to processing of the equilibrium data required by the code. Sec. 2.3 provides
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Figure 2.1: The scheme of real-time plasma control. Reproduced from [Felici et al.(2016)].

a general information about the transport equations and models built into the code. Then

the chapter continues presenting code improvements developed as part of this thesis. Sec.

2.4 focuses on the extension of the RAPTOR transport equations with time-varying terms,

and a benchmark against the ASTRA code [Pereverzev and Yushmanov(2002)] is discussed. A

benchmark to verify new transport equations implemented to RAPTOR is demonstrated in

Sec. 2.5. Then new ad-hoc models for heat and particle transport are presented in Sec. 2.6.

In Sec. 2.7, after summarizing of the main code developments, we discuss possible steps for

further improvements of the code.

2.1 Capabilities of the RAPTOR code

The RAPTOR code can be used either in real-time for the plasma control or off-line for plasma

modelling. Also one can choose between various transport equations to define plasma pa-

rameters for which one is solving for. In real-time, there is an option to use experimental

measurements. For example, one can predict the diffusion of the plasma current density

(from the poloidal flux ψ(ρ, t)) based on various experimental measurements, in particular

on measurements of the electron temperature. Otherwise, the time evolution of the plasma

kinetic profiles is prescribed from the experiment or is simulated in addition to the plasma

current density. In this work we use off-line RAPTOR only.

2.1.1 Real-time control of a tokamak plasma

The main functions of a real-time simulator in a tokamak real-time control scheme are pre-

sented in Fig. 2.1. A plasma (the red block “Tokamak”) is affected by various actuators (the pink

block “actuators”) like heating systems, external coils for plasma position and shape control,

gas puff and other ways of plasma feeding. Its state is estimated by various diagnostic systems
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(the orange block “diagnostics”). The plasma state reconstructor simulates the plasma state

based on the knowledge of the same actuators as the actual tokamak. The available real-time

diagnostics help the simulator to converge to an accurate plasma state. Deviations between

measured and simulated values can be used either to estimate disturbances, or to adapt the

model parameters in real-time. Based on combinations of controllers output signals, obtained

with the help of the reconstructor and measurements, the actuators are adapted for further

plasma control. The plasma state reconstructor, the case of RAPTOR, is a model-based plasma

state estimator, in which real-time diagnostics are combined with the expected plasma state

evolution, known from a model. In particular, the RAPTOR-based plasma profile observer

scheme is used to reconstruct profiles. RAPTOR has been constructed as a real-time capable

simulator to provide an information on a complex plasma dynamics, including plasma quan-

tities which can not be measured directly. Thus, the controller algorithms do not depend on

diagnostics only but can get actual information about the plasma state from the recontructor

which is able to exclude faulty diagnostics signals.

The main advantage of the RAPTOR code is its capability to simulate the time evolution of

the plasma state faster than real-time for existing medium-size tokamaks (1 second of a JET

plasma can be simulate in around 0.2 second [Felici et al.(2018)]), and also for ITER, which

300 s plasma can be simulated by RAPTOR in about 10 s. Thus the plasma state knowledge

provided by RAPTOR can be applied for the plasma forecasting and prediction of various

events (like disruptions) and feedback controllers [Humphreys et al.(2015)].

2.1.2 Off-line predictive simulations

Real-time controllers requires reliable physical models, thus, their off-line testing and verifying

with experimental data is an essential part of the code development. Thanks to simulation

speed and good physical representation, RAPTOR is a perfect tool for a fast post-shot analysis

and scenario development. In this work we apply RAPTOR for the optimization of the ramp-

down phase since many optimization trajectories can be tested in a reasonable time. For

example, an optimization of the AUG plasma ramp-down phase 1 s long might take up to 10

hours depending on the complexity of the optimization task, which consists in simulating

about 500 times the 1 s ramp-down phase.

A detailed description of the RAPTOR code can be found in [Felici(2011), Felici et al.(2011),

Felici et al.(2012)], and a few major points are given in the following sections 2.2 and 2.3. The

code works in a right-handed (R,φ,z) cylindrical coordinate system where R is the distance

between the vertical axis of the device and a given point in the plasma, φ is the toroidal angle

defined in the way to have the right-handed system, z is the vertical coordinate as shown

in Fig. 2.2. We assume an axisymmetric tokamak equilibrium, i.e. plasma equilibria do not

depend on the toroidal angle φ, and positive plasma current Ip and magnetic field B0. This

corresponds, with choice of ψ defined below and the direction of the poloidal angle, to the

coordinate convention COCOS=11 [Sauter and Medvedev(2013)] similar to the ITER choice,

13



Chapter 2. The RAPTOR code: overview and developments

Figure 2.2: Coordinate system for a tokamak geometry, reproduced from [Felici(2011)], corre-
sponding to COCOS=11 as defined in [Sauter and Medvedev(2013)].

but with Ip , B0 positive.

2.2 Processing of the equilibrium data

The RAPTOR code is a transport simulator without an equilibrium solver. A prescribed plasma

equilibrium has to be provided by an external source to model this plasma. Firstly, we discuss

briefly main plasma equilibrium quantities. Then, a procedure of equilibrium data processing

by RAPTOR is discussed.

The plasma MHD equilibrium

The basic condition in ideal magnetohydrodynamics (MHD) theory [Wesson(2004), Fiedberg(1982)],

for a static plasma equilibrium is a balance between the magnetic and kinetic forces:

j×B =∇p (2.1)

where j and B are the plasma current density and magnetic field, p denotes the plasma

pressure. Because of the tokamak geometry, it is convenient to consider the total magnetic

field as a sum of its toroidal Bφ and poloidal Bp components:

B = eφBφ+Bp (2.2)

The poloidal magnetic flux ψ is defined as a negative flux of the magnetic field through a circle

of radius R with its center on the vertical axis, covering an area Sp , and perpendicular to ez:

ψ(R,z) =−
∫
Sp

B ·ezdS (2.3)

Similarly, the toroidal magnetic flux Φ is defined as the flux of the magnetic field through a
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poloidal plasma cross section, covering an area St ,:

Φ(ψ) =
∫
St

B ·eφdS (2.4)

The total magnetic field produces an infinite set of nested toroidal magnetic surfaces, and

each of them is characterized by a constant ψ and constant pressure p. Helical magnetic field

lines, produced by a combination of the poloidal and toroidal magnetic fields, wrap around

the magnetic axis. An averaged twist of the magnetic field on flux surface is defined in terms

of the safety factor q which can be expressed as the rate of change of the toroidal flux with the

poloidal flux:

q = dΦ

dψ
(2.5)

A tokamak plasma stability can be determined in terms of q , which higher values correspond

to higher plasma stability because of current-driven instabilities arising when the plasma

current reaches its upper limit [Fiedberg(1982)]. The magnetic shear, determined by the radial

rate of change of q , is another important characteristic of the plasma stability:

s = ρ

q

dq

dρ
(2.6)

where ρ represents an effective plasma minor radius. This parameter can be related to the

toroidal flux Φ enclosed by a flux surface [Pereverzev and Yushmanov(2002)]:

ρ =
√

Φ

πB0
(2.7)

The poloidal field Bp according to Eq. 2.3 can be written as a function of ψ:

Bp = eφ× ∇ψ
2πR

(2.8)

It is convenient to rewrite Eq. 2.1 to split poloidal and toroidal terms:

jp ×Bφ+ jφ×Bp =∇p (2.9)

Equation 2.9 written as function of ψ after some algebra leads to the famous Grad-Shafranov

equation [Grad and Rubin(1958), Shafranov(1958)] which describes the static ideal MHD equi-

librium of an axisymmetric magnetically confined plasma:

Δ∗ψ=−4π2
(
μ0R

2 ∂p(ψ)

∂ψ
+ ∂F (ψ)

∂ψ
F (ψ)

)
(2.10)

where p(ψ) is the plasma pressure with contribution from all species and F (ψ) =RBφ is the
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poloidal plasma current function. Here the elliptic operator Δ∗ is:

Δ∗ψ=R2∇·
(

1

R2 ∇ψ
)
=R

∂

∂R

(
1

R

∂ψ

∂R

)
+ ∂ψ2

∂Z 2 (2.11)

Solving Eq. 2.10 is a major task for so called fixed boundary or reconstruction equilibrium

codes. Using experimental measurements during or after a plasma discharge, these codes pro-

vide time evolution of the plasma equilibrium and distribution of the poloidal flux ψ(R,Z , t ),

the poloidal functions p(ψ, t ), and F (ψ, t ).

Tokamaks are modeled as a toroidal transformer, where the plasma toroidal circuit with

resistance ν and inductance L is coupled with the primary transformer circuit. Plasma currents

inside the vessel can be characterized with the plasma internal inductance li , which accounts

for the energy stored in the poloidal field Bp created by the plasma current Ip and external

poloidal filed coils [Romero et al.(2010)]. The internal inductance is associated with internal

current density distribution, and its higher values correspond to more peaked density current

profiles. Using the definition for ITER [Jackson et al.(2008)], the plasma internal inductance

can be calculated in the following way:

li (3) =
2V 〈B2

p〉V
(μ0Ip )2R

(2.12)

A plasma performance can be expressed in terms of β [Wesson(2004)], which shows the

efficiency of the plasma pressure confinement by the magnetic field B0. It is defined as the

ratio of kinetic pressure 〈p〉V , averaged over the plasma volume V , to magnetic pressure in

the following form:

β= 〈p〉V
B2

0 /2μ0
(2.13)

In a similar way, the poloidal parameter βp can be defined, where a poloidal magnetic pressure

is taken into account.

Another important parameter related to the kinetic and magnetic balance is the normalized

parameter βN . It indicates, how close the plasma is to reaching the ideal MHD stability limit

[Troyon et al.(1984)]. It is defined for a tokamak plasma with the minor radius a, the toroidal

field B0, the plasma current Ip in the following way [Miyamoto(2005)]:

βN =β
a[m]B0[T ]

Ip [MA]
(2.14)

Equilibrium data for RAPTOR

As it was mentioned above, to save calculation time, the RAPTOR code does not solve the

16



2.3. Overview of the transport equations

equilibrium equation 2.10 self-consistently with the transport equations but uses equilibria

calculated externally. In case of a plasma control, a real-time equilibrium reconstruction code,

like RT-LIUQE for TCV [Moret et al.(2015)] or EQUINOX for JET [Mazon et al.(2010)], can pro-

vide time-varying plasma equilibria. For off-line simulations, there are various post-shot equi-

librium reconstruction codes, for example LIUQE [Hofmann et al.(1988), Moret et al.(2015)]

for TCV, CLISTE [Schneider et al.(2000)] for ASDEX Upgrade, EFIT [Lao et al.(1985a)] for JET.

Generally, the main disadvantage of these codes is an inaccurate information about evolution

of plasma profiles in the core since they use mainly magnetic measurements only for a plasma

state reconstruction. Special tools for integrated data analysis, like IDA [Fischer et al.(2003)]

for AUG, can be used additionally. Some codes for plasma integrated modelling, like AS-

TRA [Pereverzev and Yushmanov(2002)] and CRONOS [Artaud et al.(2010)], solve the Grad-

Shafranov equation consistently with plasma transport equations, therefore their output

parameters can be used by RAPTOR for an equilibria determination.

An equilibrium data file, generated with the help of these codes, contains information about

the various plasma geometry, like the plasma volume, and physical quantities, like the safety

factor. The former are prescribed parameters for the RAPTOR code, the latter can be used for

validation of the simulation results. If a limited set of equilibria is provided for a simulation of

a plasma shot, we assume a linear time-evolution for the plasma geometry between equilibria

times slices. Geometrical parameters required by transport equations are discussed below

in Sec. 2.3. We use the CHEASE code [Lütjens et al.(1996)], interfaced with EQDSK/EXPEQ

files, to compute the various quantities which are reprocessed with an automatic interface in

RAPTOR. In Appendix A more details on equilibrium data processing are provided.

2.3 Overview of the transport equations

The transport theory of magnetically confinement plasma provides a closed set of equations

describing time evolution of densities and pressures of all plasma species. As was shown

in [Hinton and Hazeltine(1976)], this set consists of the conservation laws for particles and

energy, determined as even moments of the momentum conservation law, and the fluxes, i.e.

moments of the distribution function, for electrons, electron heat, ion heat and an average

of the parallel current density. Depending on purposes of a transport code this set can be

extended for a specific goal or reduced to a subset of equations under appropriate assumptions

to keep it closed.

The transport equations consider a radial transport only. RAPTOR is a 1D simulator, which

means that at the every time instant, radial profiles of plasma quantities correspond to their

values averaged over a flux surface at the given radial position. Below, the general set of the

transport equations for RAPTOR is presented. All equations are constructed on a normalized
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toroidal radial grid ρ̂, defined as:

ρ̂ =
√

Φ

Φb
(2.15)

with a toroidal flux, defined in Eq. 2.4, for a tokamak geometry can be written as Φ=πρ2B0

normalized on its boundary value Φb = πρ2
bB0. The normalized grid ρ̂ does not depend on

time but the toroidal flux at the plasma boundary Φb does and is provided by an external

equilibrium solver.

2.3.1 The flux diffusion equation

The time evolution of the poloidal magnetic flux ψ is solved with the following PDE:

σ∥

(
∂ψ

∂t

∣∣∣∣
ρ̂

− ρ̂Φ̇b

2Φb

∂ψ

∂ρ̂

)
= F 2

16π2μ0Φ
2
b ρ̂

∂

∂ρ̂

[
g2g3

ρ̂

∂ψ

∂ρ̂

]
− B0

2Φb ρ̂
V ′
ρ̂ jni (2.16)

where σ∥(ρ̂, t ) is the neoclassical conductivity, F (ρ̂, t ) =RBφ is the poloidal current function,

jni (ρ̂, t ) is the non-inductive current density, the geometrical parameters are: V ′
ρ̂

(ρ̂, t ) = ∂V /∂ρ̂,

g2(ρ̂, t) = 〈(∇V )2/R2〉, g3(ρ̂, t) = 〈1/R2〉 where 〈·〉 means flux-surface averaging and V is the

plasma volume.

The flux diffusion equation represents the Ohm’s law, projected on the parallel direction of the

magnetic field and averaged over a flux surface:

〈j ·B〉
B0

=σ||
〈E|| ·B〉
B0

+ 〈jni ·B〉
B0

(2.17)

or

j|| =σ||E|| + jni (2.18)

The non-inductive current density jni consists of the currents driven by external systems

of auxiliary heating jaux = 〈jaux ·B〉/B0 and the bootstrap current density jBS = 〈jBS ·B〉/B0.

Additional currents jaux are driven by various heating systems like injection of neutral particles

(NBCD), electron cyclotron waves (ECCD) and so on.

Bootstrap current and neoclassical conductivity

The bootstrap current jBS is a naturally generated current in a tokamak geometry arising

from the pressure gradient anisotropy and inhomogeneity of the tokamak magnetic field

[Hinton and Hazeltine(1976), Kessel(1994), Peeters(2000)]. This effect is important in low col-

lisional regimes, when there is a significant fraction of charged particles trapped in outer

region of a tokamak (the weaker region of the magnetic field), so called the “banana” regime.

Formation of trapped orbits is violated in case of high collisionality, what leads to reduction
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of jBS . The pressure gradient leads to an asymmetry in a velocity space of trapped parti-

cles, which is transferred to passing particles through collisions. The momentum balance

between trapped and passing charged particles leads to generation of a toroidal current. The

density of this current, the bootstrap current, for the RAPTOR code is defined according to

[Sauter and C.(1999), Sauter et al.(2002c)]:

jBS =−2π
F (ψ)

R0B0

(
peL31

∂lnne
∂ρ

+piL31
∂lnni
∂ρ

+pe (L31 +L32)
∂lnTe
∂ρ

+ (2.19)

pi (L31 +αL34)
∂lnTi
∂ρ

)

where L31, L32, L34 and α depend on ψ and are based on the fraction trapped particles ft and

the plasma collisionality. Note that the term 2π arises because of a different definition of ψ

for RAPTOR than in [Sauter and C.(1999), Sauter et al.(2002c)]. As it can be seen from Eq. 2.19,

the bootstrap current has separate contributions from of different gradients for density and

temperature.

Passing particles, able to move freely along the magnetic field lines, respond to the present elec-

tric field and thus contribute to the plasma conductivity, which corresponds to so called Spitzer

conductivity [Hinton and Hazeltine(1976)]. The reduction of the plasma current because of

trapped particles has to be taken into account for the plasma conductivity determination. In

[Sauter and C.(1999)] the neoclassical conductivity has been defined as:

σ|| =σSptz

(
1−

(
1+ 0.36

Ze f f

)
X + 0.59

Ze f f
X 2 − 0.23

Ze f f
X 3
)

(2.20)

where Ze f f is an effective plasma charge, X ( ft ,νe∗) is the neoclassical correction depending

on the trapped fraction ft and arbitrary collisionality νe∗. Here we define the effective charge

of a mixture of ion particles with charges Zs and density ns in the following way:

Ze f f =
∑
s nsZ

2
s∑

s nsZs
=
∑
s nsZ

2
s

ne
(2.21)

using the plasma quasi-neutrality condition [Tonks and Langmuir(1929)]:

ne =
∑
s
Zsns (2.22)

In the RAPTOR code, the trapped fraction ft is calculated with an extended formula which

includes the effect of triangularity δ [Sauter(2016)]:

ft = 1− 1−εe f f

1+2
	
εe f f

√
1−ε

1+ε
(2.23)

where εe f f = 0.67(1−1.4δ|δ|)ε, ε is the inverse aspect ratio.
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2.3.2 The energy transport equation

Here we write the equation for the energy flux in the common form valid for various species

“s” (electrons, ions, other minor species)

3

2

1

(V ′
ρ̂

)5/3

(
∂

∂t

∣∣∣∣
ρ̂

− Φ̇b

2Φb

∂

∂ρ̂
ρ̂

)
[(V ′

ρ̂)5/3nsTs] = 1

V ′
ρ̂

∂

∂ρ̂

[
g1

V ′
ρ̂

nsχs
∂Ts
∂ρ̂

+ 5

2
TsΓsg0

]
+Ps (2.24)

where Ts(ρ̂, t), ns(ρ̂, t) are the temperatures and densities of the various species, χs(ρ̂, t) is

the thermal diffusivity, Γs is the convective flux defined below, g0(ρ̂, t ) = 〈∇V 〉 and g1(ρ̂, t ) =
〈|∇V |2〉 are the geometrical quantities with the plasma volumeV , Ps(ρ̂, t ) represents the power

density as a sum of various sources and sinks.

Thermal diffusivity models

Depending on the goals of a numerical code and its physical conception, various models for

the thermal diffusivity of electrons and ions χe,i can be used. In the RAPTOR code there is a

choice between several models.

Firstly, a well known Bohm/gyro-Bohm model [Erba et al.(1998)] provides heat transport

coefficients both for electrons and ions. In [Felici et al.(2012), Felici(2011)] a simple ad-hoc

model for the electron heat diffusivity has been presented. This model takes into account

a shear-dependent anomalous transport accounting an improved confinement in case of

the low and negative magnetic shear as observed in TCV [Zucca et al.(2009)]. Recently, for

calculations of the turbulent transport for the plasma energy and particles, a neural-network

emulation of the quasilinear gyrokinetic QuaLiKiz transport model [Bourdelle et al.(2016),

Citrin et al.(2015)] has been coupled to the RAPTOR code [Felici et al.(2018)].

Another ad-hoc transport model for heat and particle transport based on the assumption

of stiffness of the plasma core and non-stiffness of the plasma edge [Sauter et al.(2014),

Kim et al.(2016)] has been implemented into RAPTOR as part of this thesis. One of the advan-

tages of this model is a good capability for simulations of plasmas with transitions between

low (L) and high (H) confinement modes. Thus, this model is very efficient for an entire shot

simulations, and the transport modeling for this thesis has been done with this model. More

details are provided in Sec. 2.6.

Power sources and sinks

For electrons the power sources consist of the ohmic heating POH , the auxiliary external

heating Pe,aux and the fusion power Pe, f us . The first one comes from electron-ion collisions, as

a result of the plasma resistance to the toroidal current which produces the poloidal magnetic

field necessary for a tokamak equilibrium. In RAPTOR the ohmic power is calculated in the

following way:

POH = 1

2πR0

∫
V
Upl jtor dV = 1

2πR0

∫
V

∂ψ

∂t
jtor dV (2.25)
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where Upl denotes the plasma loop voltage, jtor is the toroidal current density, defined in

Appendix A. Since electrons are lighter than ions, ohmic heating mainly goes to electrons but

part of it nevertheless conducts to ions via thermal electron-ion collisions. Ohmic heating is

relatively strong at lower temperatures, but decreases with growth of the electron temperature

Te , since the plasma conductivity σ|| increases with its temperature as T 3/2
e .

As it was described in Subsec. 1.2.2, for external heating there are RF power sources (ECRH,

ICRH) and neutral beams (NBI). Power deposition profiles can be obtained with special codes

like ASTRA-NBI [Polevoi et al.(1997)] and NUBEAM [Pankin et al.(2004)] for NBI, TORBEAM

[Poli et al.(2001)] and TORAY-GA [Matsuda et al.(1989)] for EC heating and current drive, PION

[Eriksson et al.(1993), Eriksson et al.(1995)] and TORIC [Brambilla et al.(1999)] for IC heating

and current drive. Also, if a very high accuracy is not required, parametrized expressions

can be used, and power and current densities can be modeled by Gaussian distributions.

This approach is usually used for simulations with the RAPTOR code where the radial de-

position ρdep and the Gaussian width are user-defined parameters. For control-oriented

purposes, it is useful to model non-inductive current profile sources as parametrized functions

of engineering quantities, based on approximate theoretical formulas for current densities

[Witrant et al.(2007)]. The last source, the fusion power, as a result of the thermonuclear reac-

tion, will be a major one for ITER D-T plasmas. Therefore, RAPTOR simulations for ITER take

this power into account [Felici(2011), van Dongen et al.(2014)].

The main power sinks for electrons are an equipartition power Pei and radiated power Prad .

The first one comes from electron-ion interaction and is defined in [Hinton and Hazeltine(1976)]

in the following way:

Pei = neνeq (Te −Ti ) (2.26)

where the neoclassical equipartition rate νeq is defined as:

νeq = 0.041T−3/2
e [keV ]

∑
si
nsi

Z 2
si

Asi
(2.27)

Here Zsi and Asi are charges and atomic mass numbers for various ion species.

The radiation losses for a plasma can be split into two groups: electromagnetic and impurity

radiation. Charged particles emit radiation because of acceleration in the electric field. Since

electrons are much lighter than ions, they are more accelerated and radiate stronger. Thus in

RAPTOR, electromagnetic losses are taken into account for electrons only.

There are two ways of electrons’ acceleration. First one comes from collisions and the resulted

radiation is called Bremsstrahlung which is the most dominant in existing large tokamaks.

The formula for its definition in the RAPTOR code has been taken from [Wesson(2004)]:

Pbr = 5.35 ·10−37Ze f f neniT
1/2
e (2.28)
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where Ze f f is a plasma effective charge, defined in Eq. 2.21, ne and ni are electron and ion

densities, Te is the electron temperature.

The second source of the electromagnetic radiation is cyclotron losses because of the cy-

clotron motion of electrons. This radiation has been found negligible in comparison to

Bremsstrahlung [Wesson(2004)] and therefore is not included to Prad for RAPTOR.

Presence of impurities enhances the Bremsstrahlung radiation because of the higher ion

charge for impurities. Also there is a radiation related to the atomic process like recombination

and so called the line radiation where an emission spectrum consists of multiple emitting

lines produced by ionized high-Z impurities [Wesson(2004)]. In RAPTOR we use a simplified

formula for the line radiation estimation:

Pat =
∑
r p
ne0exp

(
(Te,r p −Te)2

w2
r p

)
(2.29)

where ne0 is the central electron density; Te,r p is the prescribed electron temperature for a

radiation peak “rp”; wrp is the prescribed width of a radiation peak “rp”. This model is tuned

for a set concentration of a given impurity with a given charge state, that radiates at a certain

temperature.

Note that for simulations, there is also an option to use prescribed radiation profiles con-

structed with the help of experimental measurements, for example provided by bolometers.

Thus the total power density for electrons is written as:

Pe = POH +Pe,aux +Pe, f us −Pei −Pe,r ad (2.30)

It can be written in a similar way for ions:

Pi = Pi ,aux +Pei +Pi , f us (2.31)

2.3.3 The particle transport equation

The particle transport equation is written in the common form for various species “s” as the

energy transport equations according to [Hinton and Hazeltine(1976)]:

1

V ′
ρ̂

(
∂

∂t

∣∣∣∣
ρ̂

− Φ̇b

2Φb

∂

∂ρ̂
ρ̂

)
[V ′

ρ̂ns] =− 1

V ′
ρ̂

∂

∂ρ̂
Γs +Ss (2.32)

where the particle flux is defined in the following way

Γs =− g1

V ′
ρ̂

Ds
∂ns
∂ρ̂

+ g0Vsns (2.33)
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here Ds corresponds to the particle diffusivity, Vs is the pinch velocity, Ss represents a combi-

nation of various sources and sinks of particles.

If Eq. 2.32 is solved for electrons and the effective charge profile Ze f f is known then densities

of main ions and one other type of minor impurities can be calculated from the Ze f f definition

Eq. 2.21 and the condition of the plasma quasi-neutrality Eq. 2.22. If several types of impurities

nsi are considered, then from the set of parameters [ne ,ni ,Ze f f ,nsi ], two of them can be

calculated with the help of the Ze f f definition and the condition of the plasma quasi-neutrality,

whereas others have to be prescribed by the user.

Transport coefficients for particles

As for the heat diffusivity, there is a wide range of transport models for particles. As it was men-

tioned earlier the quasilinear gyrokinetic QuaLiKiz transport model [Bourdelle et al.(2016),

Citrin et al.(2015)] provides transport coefficients for particles transport. More details can be

found in [Felici et al.(2018)]. In this thesis, a transport model similar to the one developed for

the electron temperature is used for ne simulations and described in detail in Sec. 2.6.

Sources and sinks of particles

An important work on the determination of particle sources and sinks has been performed as

part of the development of a particle density observer for real-time reconstruction of particle

density profiles in tokamak plasmas [Blanken et al.(2018)]. There is some level of uncertainty

in the prediction of the particle origin coming from such uncontrolled sources and sinks like

the fueling and recycling from the first wall. In particular for electrons, the main source is an

ionization of neutrals coming with NBI and pellets. For estimation of produced particle flux,

NBI and pellets fueling rates and their deposition profiles are required. Opposite processes,

like thermal recombination and wall recycling, are the sinks of electrons. For their modelling,

characteristic rates and intensity have to be prescribed.

In this work we do not consider plasma dynamics in presence of electron sources and assume

zero flux of electron particles. As a starting point for further studies, for TCV plasmas ASTRA

NBI-module [Polevoi et al.(1997)] can be used for prediction of the electron source for RAP-

TOR. On AUG, a suite of NBI modules provide various information on injected power and

particle fluxes from injectors. To keep the high speed of RAPTOR simulations, development

of simple modules has to be continued with the help of ASTRA simulations and analysis of

experimental data for TCV and AUG tokamaks [Weiland et al.(2017)].

2.3.4 Modelling of MHD instabilities

Modelling of MHD plasma instabilities is an important issue for predictions of the plasma

transport and profiles because of their huge impact on the plasma heat and particle transport

and confinement. There are two MHD instabilities simulated by the RAPTOR code: sawtooth

crashes and neoclassical tearing modes (NTMs).

23



Chapter 2. The RAPTOR code: overview and developments

Figure 2.3: MHD instabilities for the TCV tokamak: a) the sawtoothing plasma TCV #55520 rep-
resented by DMPX measurements; b) NTM m=2, n=1 TCV #53852 observed with spectrogram
of magnetic probe signals; c) ELMs for TCV #53996 observed with the Hα singal.

Sawtooth instability

The central plasma region is characterized by the periodic relaxation (“crashes”) of the plasma

temperature and density profiles which occur when the safety factor q is less than or equal to

unity [von Goeler et al.(1974)]. These instabilities can be detected measuring the soft X-ray

emission by the DMPX diagnostic (Duplex Multiwire Proportional X-ray counter), in TCV for ex-

ample, described in Subsec. 1.2.3. On Fig. 2.3.a) the sawtoothing plasma has crashes with a pe-

riod of 2.5 ms. Heat and particle transport determine a slow growth of plasma profiles, followed

by a decrease in a safety factor q to below unity what leads to growth of an internal kink mode

m = 1, n = 1 instability [von Goeler et al.(1974), Fiedberg(1982), Porcelli et al.(1996)]. Saw-

tooth crashes do not degrade the plasma confinement since the plasma profiles are affected

only within the characteristic mixing radius rmix . This radius constraints a plasma volume,

where mixing of plasma particles and energy occur during the MHD event, and it is a bit larger

than radius of q = 1 surface before the crash. A positive consequence of the sawtooth crashes

for a global plasma performance is an outward transport of high-Z impurities, which prevents

their accumulation in the core center and therefore increased radiation, what has been ob-

served in experiments on various machines [Ödblom et al.(1996)] (and references therein).

However, this process can lead to destabilization of NTMs [Sauter et al.(2002b), Canal(2013)].

Sawtooth modelling in RAPTOR has been presented and developed in [Piron et al.(2015)].

The sawtooth crash is defined according to the Porcelli crash criteria with Sauter corrections

[Porcelli et al.(1996), Sauter et al.(1998)]. In RAPTOR a simplified condition is usually used,

where a crash occurs when the plasma shear, defined with Eq. 2.6, becomes bigger than its

user-defined critical value [Sauter et al.(1998)]. Plasma profiles are reconstructed after the

crash with the Kadomtsev full reconnection model [Kadomtsev(1975)] and the incomplete

relaxation model [Porcelli et al.(1996)].

Neoclassical tearing modes

In theory [Strait(1994)] and experiments [Sauter et al.(1997)] (and references therein), it has
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been shown that maximum achievable β, in terms of which a tokamak performance can be

estimated, is limited by a growth of resistive MHD modes with low m, n numbers. These

neoclassical tearing modes (NTMs) cause the reconnection of the nested flux surfaces and

form regions of so-called magnetic islands. The temperature and density gradients are strongly

reduced inside these islands, leading to a decrease in the bootstrap current with further mode

destabilization [Sauter et al.(1997)] and plasma heat and particle confinement degradation.

Thus, these modes are unfavorable for tokamak performance and should be suppressed or

avoided. Experimentally they can be detected by measuring oscillations in the magnetic field

with magnetic probes (Fig. 2.3.b)). These modes can be triggered by a seed island created by an-

other event like a sawtooth crash, or because of an unstable q profile [Reimerdes et al.(2002)].

In the RAPTOR code, for NTMs simulations, we use the modified Rutherford equation which

determines the growth of the NTM island width, as was shown in theoretical and experimental

studies [Callen et al.(1987), Carrera et al.(1986), Sauter et al.(2002a)]. In this work NTMs are

not included to plasma simulations, we leave it for future studies.

Edge localized modes

In the pedestal region, plasmas experience crashes related to collapses in the edge pressure

gradients [Ryter et al.(1994)]. These edge localised modes (ELMs) are observed in the plasma

high confinement mode (H-mode) and their presence is a good marker to define transitions

from the low to high confinement mode and back. ELMs cause rapid spontaneous growth of

heat and particle transport at the plasma edge and their rapid exhaust to the scrape-off layer,

continuing to the divertor targets. They can be detected with the help of measured emission

spectra of hydrogen or fast ions (so called Hα and Dα signals) [Kirk et al.(2004)]. On the TCV

tokamak, photo diodes measure the hydrogen light emission. The H-mode is characterized by

a drop in the Hα signal and periodic peaks which correspond to ELMs crashes. On Fig. 2.3.c)

the plasma turns to the high confinement mode around 0.75 s and a few ELMs crashes can be

observed after it. H-modes are characterized by an edge transport barrier leading to high edge

pressure gradients which become MHD unstable and trigger ELMs [Snyder et al.(2011)].

We do not simulate these modes in the RAPTOR code but for post-shot modelling the Hα signal

has to be analysed to prescribe time instants of transitions between low and high confinement

modes.

2.3.5 A fixed geometry assumption

Here we briefly remind the reader that in the transport model used by RAPTOR in the versions

up to 2017 a simplified set of transport equations has been used. Initially, for compatibility

with real-time execution [Felici et al.(2011)], only two diffusion equations, for ψ and Te , have

been included into it. Such a simplification was justified by the fact that the most important

parameters for the plasma state description are the electron temperature Te and the poloidal

flux ψ. Indeed these quantities directly determine the transport properties, hence global
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confinement, and the plasma resistivity and the current density profile, which provide the q

profile time evolution depending on Te(ρ, t ) as well. It was chosen to use experimental mea-

surements for the electron density, which were much more reliable than a predicted value at

this stage. In the first version of the model, described in [Felici et al.(2011)],[Felici et al.(2012)],

the transport model used in RAPTOR has been constructed based on a fixed equilibrium

assumption. It was supposed that the magnetic field B0, the geometry of flux surfaces and the

enclosed toroidal flux Φ were fixed. This assumption was weaker than the condition of a fixed

Grad-Shafranov equilibrium, since in RAPTOR, the poloidal flux profile ψ(ρ) and therefore the

current density jtor (ρ) and the safety factor q(ρ) could evolve in time. In [Felici et al.(2011)] it

was shown that the geometry profiles do not change a lot with the Shafranov shift. The trans-

port equations for ψ and Te in case of a fixed equilibrium and the electron density assumption

have the following form:

• The poloidal flux equation

σ∥
∂ψ

∂t

∣∣∣∣
ρ̂

= F 2

16π2μ0Φ
2
b ρ̂

∂

∂ρ̂

[
g2g3

ρ̂

∂ψ

∂ρ̂

]
− B0

2Φb ρ̂
V ′
ρ̂ jni (2.34)

• The electron temperature equation

3

2
ne

∂Te
∂t

∣∣∣∣
ρ̂

= 1

V ′
ρ̂

∂

∂ρ̂

[
g1

V ′
ρ̂

neχe
∂Te
∂ρ̂

]
+Pe (2.35)

In this case, other kinetic parameters like the electron density ne , the ion temperature Ti
and the ion density ni , are prescribed and either analytical profiles or experimental data

can be used for their description during the simulation. Note that in Eqs. 2.34 and 2.35 the

geometrical and kinetic profiles V ′
ρ̂

, ne (ρ̂) and etc are fixed in time. Recently and as part of this

thesis, transport equations have been extended to allow time-evolving plasma equilibria as

described in details in Sec. 2.4.

2.3.6 RAPTOR transport equations summary

To summarize, here we present a set of transport equations important for this thesis including

new developments [Felici et al.(2018), Teplukhina et al.(2017)]:

• The poloidal flux diffusion equation

σ∥

(
∂ψ

∂t

∣∣∣∣
ρ̂

− ρ̂Φ̇b

2Φb

∂ψ

∂ρ̂

)
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16π2μ0Φ
2
b ρ̂

∂

∂ρ̂
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g2g3

ρ̂

∂ψ

∂ρ̂

]
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2Φb ρ̂
V ′
ρ̂ jni (2.36)
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• The electron temperature diffusion equation
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(2.37)

• The electron density diffusion equation
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∂ρ̂
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where the particle flux Γe is defined in the following way

Γe =− g1

V ′
ρ̂

De
∂ne
∂ρ̂

+ g0Vene (2.39)

• The ion temperature diffusion equation
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TiΓe g0

]
+Pi (2.40)

where V ′
ρ̂
= ∂V /∂ρ̂, V is the plasma volume, Φb is the toroidal flux within the last closed flux

surface; geomterical parameters g0 = 〈∇V 〉, g1 =
〈

(∇V )2
〉

, g2 =
〈

(∇V )2

R2

〉
, g3 =

〈 1
R2

〉
; F =RBφ is

the poloidal current function; Pe,i and Se are the heat and particle sources/sinks; χe,i , De and

Ve are the transport coefficients. Below we shortly describe the numerical method used for

RAPTOR simulations.

Boundary conditions

We set the boundary conditions at ρ̂ = 0 in the following way:

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= ∂Te
∂ρ̂

∣∣∣∣
ρ̂=0

= ∂ne
∂ρ̂

∣∣∣∣
ρ̂=0

= ∂Ti
∂ρ̂

∣∣∣∣
ρ̂=0

= 0 (2.41)

At the plasma edge, we set the time-varying Neumann boundary condition for the poloidal

flux ψ(ρ̂, t ). For this parameter, the total plasma current Ip (t ) can be imposed as a boundary

condition, analytical derivation is described in Appendix B. For the electron temperature

Te(ρ̂, t), electron density ne(ρ̂, t) and ion temperature Ti (ρ̂, t), we use Dirichlet boundary
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conditions. Their values are prescribed and can be fixed or time-varying.

ψ|ρ̂=ρb = 16π3μ0Φb

F

∣∣∣
ρ̂=ρb

Ip (2.42)

Te |ρ̂=ρb = Teb(t ) (2.43)

ne |ρ̂=ρb = neb(t ) (2.44)

Ti |ρ̂=ρb = Tib(t ) (2.45)

Spatial discretization

The RAPTOR code uses the finite element method for the discretization of infinite-dimensional

Eqs. 2.36-2.40. There are several advantages of this method, like a flexible choice of basis

functions, a natural implementation of a non-equidistant mesh and of the boundary con-

ditions and a reduction of the order of spatial derivatives through integration by parts. We

approximate plasma state profiles in the following way:

m(ρ̂, t ) =
nsp∑
α=1

Λα(ρ̂)m̂α(t ) (2.46)

where m(ρ̂, t) corresponds to ψ(ρ̂, t), Te(ρ̂, t), ne(ρ̂, t) or any other plasma profile; Λ(ρ̂) are

the finite element basis functions and are chosen as nonperiodic B-splines; m̂ is the spline

coefficient vector; nsp denotes the number of splines. To guarantee continuity up to the second

derivative, and consequently to ensure continuity of current densities and the magnetic shear,

we use cubic splines. The set of basis functions is furthermore chosen such that all elements

have zero derivatives at ρ = 0, thus, the solutions automatically satisfy the Neumann boundary

conditions in Eq. 2.41.

The continuous-time transport equations are discretized in time by choosing

xk+1 = xk +δt ẋ(t ) (2.47)

x(t ) = θxk+1 + (1−θ)xk (2.48)

Varying θ between 1 and 0 allows one to vary between a fully implicit and fully explicit method.

We choose a fully implicit method θ = 1, thus the time step can be taken quite large without

risking numerical stability problems.

More details can be found in Appendix B and in the papers [Felici(2011), Felici et al.(2011),

Felici et al.(2012), Teplukhina et al.(2017), Felici et al.(2018)] related to the RAPTOR code.
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2.4 Code development: time-varying geometry

This section is dedicated to the first stage of the code development, carried out as part of this

thesis. Thus, a reader can assume that the transport equations have been prescribed as in

Eqs. 2.34-2.35. Time evolution of the plasma equilibrium geometry influences the plasma

profiles and have to be taken into account in the case of simulations of entire discharges,

where significant changes in the plasma state occur during ramp-up and ramp-down phases,

in particular, including fast evolution of the plasma boundary.

2.4.1 Extension of the transport equations for the time-varying equilibrium

The simplified diffusion equations 2.34 and 2.35 have been extended with the time-varying

terms as stated in equations 2.36 and 2.37. The parameters related to equilibrium geometry

are defined through a linear interpolation of several equilibria corresponding to different time

instants. The kinetic profiles ne (ρ̂, t ), Ti (ρ̂, t ), etc. and geometrical quantities V ′
ρ̂

(ρ̂, t ), g1(ρ̂, t ),

etc are now both space- and time-varying. Since the solution method used in RAPTOR is based

on the finite-element approach, these equations can be easily extended to include new terms.

See [Teplukhina et al.(2017)] and Appendix B for more details of the implementation of the

time-varying terms in the code. Here the updated equations are presented:

• The poloidal flux equation

σ∥

(
∂ψ

∂t

∣∣∣∣
ρ̂

− ρ̂Φ̇b

2Φb

∂ψ

∂ρ̂

)
= F 2

16π2μ0Φ
2
b ρ̂

∂

∂ρ̂

[
g2g3

ρ̂

∂ψ

∂ρ̂

]
− B0

2Φb ρ̂
V ′
ρ̂ jni (2.49)

• The electron temperature equation

3

2

1

(V ′
ρ̂

)5/3

(
∂

∂t

∣∣∣∣
ρ̂

− Φ̇b

2Φb

∂

∂ρ̂
ρ̂

)
[(V ′

ρ̂)5/3neTe ] = 1

V ′
ρ̂

∂

∂ρ̂

[
g1

V ′
ρ̂

neχe
∂Te
∂ρ̂

]
+Pe (2.50)

In contrast to Eqs. 2.34-2.35, there are time-varying terms related to the toroidal flux Φb , thus

to the plasma equilibrium. The code had to be changed extensively since not only new terms

related to Φ̇b have been added, but also related to ∂ne/∂t and ∂V ′
ρ̂

/∂t . In addition, RAPTOR

computes analytically Jacobians related to the plasma state. To take into account time-varying

geometry and density, new derivatives have been implemented in the code.

2.4.2 Verification with the ASTRA code

Benchmark with the ASTRA code [Pereverzev and Yushmanov(2002)] has been performed to

verify the code extension with the time-varying terms.

29



Chapter 2. The RAPTOR code: overview and developments

Figure 2.4: Benchmark of RAPTOR and ASTRA simulation results for the TCV-like ohmic
plasma with time-varying plasma geometry. The first row: time evolution of the electron
temperature Te and the safety factor q at radial positions ρtor = [0.1, 0.4, 0.8] in case of the
time-varying plasma boundary elongation κ for RAPTOR (colored) and ASTRA (black). The
second row: radial profiles for the electron temperature Te , the bootstrap current density jBS
and the neoclassical conductivity σneo at time instants t=0.75 s (yellow) and t=1.25 s (green),
where RAPTOR traces are marked by colored lines, ASTRA traces are in black.

The ASTRA code

The transport code ASTRA (Automated System for Transport Analysis) is the well-known code

used for plasma transport modeling [Pereverzev and Yushmanov(2002)]. It is a 1.5D code

which solves 1D diffusion equations for densities and temperatures of different plasma species

and the 2D fixed-equilibrium Grad-Shafranov equilibrium equation. It also provides various

modules for simulations of auxiliary heating profiles and current drive profiles. The transport

model can include the transport equations for the poloidal flux ψ, the electron Te and ion Ti
temperatures, the electron density ne and other species.

Simulations verification

For the benchmark, an artificial TCV-like plasma geometry has been simulated. The Grad-

Shafranov equation has been solved by the ASTRA’s internal prescribed-boundary equi-

librium solver and then the equilibrium data has been processed by the CHEASE code

[Lütjens et al.(1996)] to generate the equilibrium geometry information as input for RAP-

TOR. Both ASTRA and RAPTOR solve the diffusion equations for the poloidal flux ψ and the

electron temperature Te . Profiles for ne(ρ̂, t ), ni (ρ̂, t ), Ti (ρ̂, t ) have been defined as Gaussian
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profiles, centered at ρ̂ = 0 with widths equal to 0.3, and fixed in time. The electron heat diffu-

sivity χe(ρ̂, t ) has been determined as a square function of the radial coordinate only. Figure

2.4 shows the results of the simulation in case when the elongation of the plasma boundary

has been increased from 1.1 to 1.5 in 800 ms. A decrease of the electron temperature Te and

growth of the safety factor q are expected and obtained with both codes which results are

similar. There is a good correspondence for various radial profiles, in particular in the electron

temperature Te , the bootstrap current density jBS and the neoclassical conductivity σ||. Small

differences between RAPTOR and ASTRA for jBS and σneo radial profiles might arise from

numerical processing of the equilibrium data, since the plasma trapped fraction and plasma

collisionallity used for calculation of jBS and σneo depend on q and geometrical parameters.

2.5 Code development: additional transport equations

Next step in the code development is related to implementation of the additional transport

equations, in particular for the electron density ne and other particles, and the ion temperature

Ti .

Prescribed data from the ITER particle transport benchmark [Na et al.(2016)] are used for

verification of the ne transport equation. Eq. 2.38 is coupled with Eqs. 2.36 and 2.37, but data

from [Na et al.(2016)] are specified only for particle transport. Hence in this simulation the ne
equation is entirely decoupled from the other equations, since the De , Ve terms are manually

specified. The ITER plasma at one time instant is considered, therefore simulations are done

for a fixed equilibrium. There are three types of impurities: helium (He), beryllium (Be) and

argon (Ar). Radial profiles for Be and Ar are scaled from ne , i.e. same transport characteristics

are assumed for electrons and impurities, and the radial profile of He is prescribed. The

diffusion equation Eq. 2.38 is solved for the electron density ne . Thus, for particle transport

there are 6 characteristic parameters (ne , ni , nHe , nBe , nAr , Ze f f ) and four of them are known.

Therefore, the ion density ni is calculated from the quasi-neutrality condition Eq. 2.22 and

the effective charge Ze f f is determined according to its definition Eq. 2.21. Here, by ions we

assume deuterium ions with charge 1 and an atomic mass 2. As shown in Fig. 2.5, there is

very good agreement for particle densities and Ze f f between RAPTOR and the benchmark

data. The diffusion coefficient De , the pinch velocity Vp and the particle source Se for the

ne diffusion equation are prescribed and shown in the second row in Fig. 2.5. Equilibrium

data processing might lead to some difference in particle radial profiles, however the pedestal

height predicted by RAPTOR is very close to the reference.

Also simultaneous prediction of the electron Te and ion Ti temperatures and the electron

density ne , defined with Eqs. 2.36-2.40, has been done for a JET discharge [Felici et al.(2018)].

Obtained plasma profiles have shown a good agreement with simulation results provided by

the CRONOS transport code [Artaud et al.(2010)], using the same transport model.

With these benchmarks we confirm that the transport equations Eqs. 2.36-2.40 are solved

correctly in the RAPTOR code.
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Figure 2.5: Particle transport benchmark of RAPTOR and reference data for ITER plasma at the
fixed time instant. Profiles for the electron density ne , ion density ni , impurities nHe/Be/Ar , an
effective charge Ze f f prescribed by RAPTOR (colored lines) are in a good agreement with their
reference values. Transport parameters De and Vp are prescribed from ITER data as well as
the plasma equilibrium (the radial profile for the plasma volume V is shown).

2.6 Code development: the gradient-based transport model

In this section we present the ad-hoc gradient-based transport model for heat and particle

transport implemented into the RAPTOR code as part of this thesis. The transport coefficients

are radially dependent and are constructed on the normalized toroidal grid ρ̂. We distinguish

between three regions: the central region between 0 and ρ̂inv which is defined as a radial

coordinate of the q = 1 surface; the intermediate region between ρ̂inv and the pedestal

position ρ̂ped ; the edge (pedestal) region between ρ̂ped and 1. In [Garbet et al.(2004)], it was

shown that we can assume the intermediate region to be “stiff” as a consequence of the

observed resistance of electron temperature profiles to increase their peaking with growth

in the central heating. In [Sauter et al.(2014)] the normalized inverse scale length R/LTe has

been defined in the pedestal region, which has been determined for an L-mode plasma too.

In Fig. 2.6.a) we show a typical profile of R/LTe for the electron temperature defined in the

following way:

R

LTe
=−R0

a

d lnTe
dρV

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for 0 < ρV < ρinv,Te
R0
a λTe for ρinv,Te < ρV < ρped ,Te
R0
a

μTe
Te (ρV ) for ρped ,Te < ρV < 1

(2.51)

Thus we have the central region with R/LTe = 0, the intermediate “stiff” region with fixedR/LTe
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Figure 2.6: L-mode AUG #33589 at 0.5 s: a) the normalized inverse scale length radial profile
R/LTe ; b) the radial profile of the electron heat diffusivity χe .

which is characterized by the constant logarithmic gradient λTe =−Te−1∂Te/∂(ρ/ρedge ), and

the edge “non-stiff” region with the characteristic gradient μTe =−∂Te/∂(ρ/ρedge). For the

electron density the inverse scale length can be defined in a similar way. It was demonstrated in

[Sauter et al.(2014)] that, for a wide range of TCV scenarios, values of λσ (σ= Te , ne ) are close

to each other, whereas μσ reflects changes in thermal and particle transport and confinement.

The model, described in detail below, has been developed to be very simple and fast to keep a

high speed of simulations. It depends only on a few characteristics which can be easily related

to experimental measurements and thus checked or identified in real-time, like the H factor

relating the experimental or predicted global confinement time to a given scaling law and

the expected profile of inverse scale length in the core plasma region. The profiles for Te ,

ne and Ti are simulated up to ρ̂ = 1, i.e. transport in the pedestal area is taken into account.

The model prescribes realistic transport for L-/H-modes, thus can be used for the entire shot

simulations and for the ramp-down simulations in particular. Note that at this stage we do not

consider an effect on plasma profiles from the internal transport barriers (ITBs) [Wolf(2003)]

(and references therein).

2.6.1 The gradient-based electron heat diffusivity

The empirical formula for the gradient-based electron heat diffusivity χe was first defined and

used in [Kim et al.(2016)] and is given by:

χe (ρ̂, t ) = f

(
ρ̂−ρinv

δρinv

)
χST︸ ︷︷ ︸

(a)

+ f
(
ρinv − ρ̂

δρinv

)
qe

V ′
ρ̂
〈(∇ρ̂)2〉neTe

(2.52)

×

⎡
⎢⎢⎢⎢⎣

λTe
ρedge

f

(
ρ̂−ρped

δρped

)
︸ ︷︷ ︸

(b)

+ μTe

Teρedge
f

(
ρped − ρ̂

δρped

)
︸ ︷︷ ︸

(c)

⎤
⎥⎥⎥⎥⎦
−1
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Figure 2.7: f -functions for the χe formula.

where ρinv is the sawtooth inversion radius which can be approximated by the q = 1 surface,

ρped is the pedestal position, δρinv,ped are the widths of the transition areas (center to core,

core to edge), respectively using f (x) = 1/(1+exp(x)) and f ∼ 1 if x < 0 and |x|� 1 and f ∼ 0

if x > 0 and |x|� 1. Corresponding f -functions are presented in Fig. 2.7.

This equation has been derived for a plasma in the stationary state, i.e. the left-hand side of

Eq. 2.36 equals zero, neglecting the electron heat flux Γe :

0 = 1

V ′
ρ̂

∂

∂ρ̂

[
g1

V ′
ρ̂

neχe
∂Te
∂ρ̂

]
+Pe (2.53)

Thus, after integration over the plasma volume, the diffusion coefficient χe is defined via the

heat flux qe :

χe =−
qeV ′

ρ̂

neg1

[
∂Te
∂ρ̂

]−1

=− qe
neV ′

ρ̂
〈(∇ρ̂)2〉

[
∂Te
∂ρ̂

]−1

(2.54)

where g1 = 〈|∇V |2〉, the last term
[
∂Te
∂ρ̂

]−1
has to be rewritten with definitions for λTe and μTe

from Eq. 2.51.

In this way the term (a) of Eq. (2.52) corresponds to the flat profile in the central region to take

into account the influence of plasma sawtoothing on electron temperature profiles, the term

(b) to the constant inverse scale length R/LTe defined by λTe in the core and the term (c) to the

linear gradient μTe in the edge. A typical χe radial profile is demonstrated in Fig. 2.6.b). We

limit χe with its neoclassical value around 0.5 [m2/s].

Setting the model parameters

An essentially constant λTe can be specified for a machine/scenario and then μTe is auto-

matically adjusted to match the correct predicted energy confinement time ratio for elec-
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Figure 2.8: Te ((a) linear plot, (b) log plot) simulated profiles by RAPTOR vs the experimental
ones provided by Thomson measurements (circles) for the TCV shots #50719 (solid) and
#53851 (dashed): – #50719 Ip=195 kA, – #50719 Ip=206 kA, – #53851 Ip=205 kA, – #53851
Ip=185 kA.

trons He = τE ,e/τscl [Kim et al.(2016)], where τscl is calculated with the H98,y,2 scaling law

[ITER Physics Expert Groups(1999a)] (but other scaling laws can be used). Figure 2.8 shows

simulated and experimental radial profiles of the electron temperature for the TCV discharges

#50719 and #53851. Simulations have been performed with fixed gradient for the core region

λTe = 3.2 and He = 0.4. Figure 2.8 shows a very good agreement with the experimental profiles.

In [Kim et al.(2016)] at each time step the characteristic gradient μTe was calculated in the

following way:

μnTe =μn−1
Te

〈
τscl H

re f
e

τE ,e

〉
t ime

(2.55)

where n and n−1 represent the values of the gradient at the current and previous time steps

and τE ,e is the electron energy confinement time defined as follows:

τE ,e = We

Ploss
= We

Paux −dW /dt
(2.56)

hereW andWe are the total and electron thermal energies correspondingly. If, for example,

the estimated Hn−1
e = τn−1

E ,e /τn−1
scl factor is lower than the prescribed one Hre f

e , μTe will be

increased, hence the pedestal top as well, and as a result the whole electron temperature

profile will be pushed up to match the desirable He value. In Eq. 2.55, averaging over time

is performed on a characteristic time period (around 10-15 confinement times) to avoid

spurious oscillations. This approach assumes slow variation of He during the simulation. In

case of large and fast changes in the prescribed He , the effect on the electron temperature

profiles is delayed because of the time averaging of μTe . For a correct simulation of L- to

H-mode and H- to L-mode transitions, plasma profiles should react quite rapidly to changes

in He . Therefore in this work, the gradient μTe is calculated with the help of a feedforward and

feedback controller, implemented as part of the transport model, based on a ratio of simulated
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and prescribed values of He .

μTe (t ) =μ
f f
Te

(Ip (t ),Ptot (t ),nel (t ))︸ ︷︷ ︸
feedforward

+Kp ·e(t )+Ki ·
∫δt

e(t )dt︸ ︷︷ ︸
feedback

(2.57)

where Kp and Ki are the proportional and integrated gains for the PI controller, an error e(t ) is

defined in this way

e(t ) =Hre f
e −Hsim

e =Hre f
e − τE ,e

τscl
(2.58)

Discussion of the controller and more details can be found in Appendix C.

Note that the transition between L- and H-modes is modeled here through the time evolution

of the value of the pedestal position ρped and the gradient in the edge region, μTe , thus of the

position and value of the top of the pedestal, which then result in a change of the whole profile

to match the related expected thermal energy. This is effectively what happens experimentally

since the transport near the edge is the main rapid change from L- to H- transition and vice

versa. The only main part which is not specified by the model is the time rate of the L-H or H-L

transitions. We have used typical values observed in TCV, AUG and JET, but a specific study

would be required in order to better predict ITER cases for example. There are two ways to

define transition time instant. The first one is to analyse Hα signal, as it was mentioned in

Subsec. 2.3.4. The second one is to compare the input power level with the power calculated

with the scaling law for the power required for a transition to H-mode [Martin et al.(2008)]:

Pscl
LH = 2.15e0.107n0.782

e20 B0.772
T a0.975R0.999 (2.59)

Note that this scaling law has been developed for transitions from L- to H-mode but because

of the absence of an analytical scaling law for the back transition, we use it for L-H and H-L

transitions, assuming no hysteresis.

2.6.2 The gradient-based transport coefficients for electrons

We know that the particle confinement time for electrons is relatively long, up to five to ten

times as long as the energy confinement time [Becker(1988)]. Thus, in this work the electrons’

diffusivity is scaled proportionally to the electron heat diffusivity:

De = 0.2χe (2.60)

According to the particle flux definition in Eq. 2.33, a model for the pinch velocity is required. In

[Kim et al.(2016)] an empirical formula, similar to the gradient-based electron heat diffusivity
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Figure 2.9: Comparison of the line-averaged density nZel from the TCV database for the TCV
shot #51044 and nRel calculated from Thomson measurements of the electron density fitted to
the normalized toroidal grid.

χe , was derived for the ratio Ve/De and is given by:

Ve
De

=− f
(
ρinv −ρ

δρinv

)[
λne
ρedge

f

(
ρ−ρped

δρped

)
+ μne
neρedge

f

(
ρped −ρ

δρped

)]−1

(2.61)

+ Γe

neV ′〈(∇ρ)2〉
1

De

where the latter term can be neglected in absence of the strong particle sources. In this work,

for the first tests of the transport model for electrons, we assume zero particle flux Γe and

leave modelling of Γe for further studies.

The parameter λne has to be specified for a machine and/or a confinement mode in the similar

way as for the electron heat diffusivity. The controlled parameter μne is calculated according

to the requested line-averaged electron density nel . For the post-shot analysis experimental

time-varying nel can be used as a prescribed parameter.

μne (t ) =Kp ·e(t )+Ki ·
∫δt

e(t )dt (2.62)

where an error e(t ) = nre fel −nsimel .

The line-averaged density nsimel , calculated by RAPTOR, is defined in the following way:

nRel (t ) =
∫
ρ̂ ne(ρ̂, t )d ρ̂∫

d ρ̂
=
∫
ρ̂
ne (ρ̂, t )d ρ̂ (2.63)

On tokamaks an integrated value of the electron density is known from its measurements along

the interferometer chords [Ma et al.(1982)]. Therefore, generally the line-averaged density is

defined as the electron density averaged over an interferometry chord passing through the
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plasma axis Z , i.e. nZel :

nZel =
∫
ne (Z )dZ∫

dZ
=
∫
ne (ρ̂(Z ))dZd ρ̂ d ρ̂∫ dZ

d ρ̂ d ρ̂
(2.64)

where ρ̂(Z ) and dZ/d ρ̂ can be defined from the CHEASE code, for example. Since RAPTOR

ne profiles are averaged over ρ̂ nRel might be different to nZel . A simple test has been done for

the TCV shot #51044. We compare the line-averaged density from the TCV database nZel with

nRel , calculated from Thomson ne profiles fitted on the normalized toroidal grid. From Fig. 2.9

it is clear that a difference of 5% can be expected. In this thesis, we assume nRel = nZel , since

more detailed studies are required for TCV, AUG and JET plasmas in L- and H- modes. Thus,

in the following simulations in Chapter 3, the reference line-averaged density nre fel , required

by the transport model, is defined as nZel from a machine database.

We assume the same position for ρinv and ρped for ne and for Te . Note that experimentally

some differences can be observed for ρinv [Sauter et al.(2014)] and ρped [Dunne et al.(2012),

Pitzschke et al.(2012)]. The pedestal position in the transport model can be easily specified

separately for the electron temperature and the electron density.

2.6.3 The gradient-based ion heat diffusivity model

In [Sauter et al.(2014)] and [Kim et al.(2016)] transport coefficients for electrons only have

been considered. However, a similar model can be applied for the ion heat transport as a

simple test of the model capabilities. In this case the parameter μTe is controlled based on the

total confinement factor H instead of the confinement factor for electrons only, i.e. the error

in Eq. 2.57 is defined in the following way:

e(t ) =Hre f −Hsim =Hre f − τE

τscl
(2.65)

where

τE = Wtot

Paux −dW /dt
= We +Wi

Paux −dW /dt
(2.66)

From μTe and a given ratio of the pedestal temperatures of electron and ions we can get the

parameter μTi :

μTi =
μTe
f

+ TBC
e − f ·TBC

i

f (1−ρped )
(2.67)

where f = Te(ρped )/Ti (ρped ). Thus, the ion heat diffusivity χi profile is constructed with the

prescribed logarithmic gradient λTi for the intermediate region and the gradient μTi in the

edge region, whereas the central region remains flat.
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Figure 2.10: Tests of the sensitivity of electron temperature Te and density ne profiles, sim-
ulated by RAPTOR (color solid), on boundary conditions (BC) for the TCV shot #55520 at
t = 0.6 s. The first row: scan for Te BC at 10, 20, 30, 40, 50 keV with ne(BC ) = 1 ·1019m−3.
The second row: scan for ne BC at 0.5, 0.7, 0.9, 1.0, 1.2 1019m−3 with Te (BC ) = 20 keV. Radial
profiles, demonstrated on a “log” scale, are constructed with fixed λTe ,ne = 3.2/2.0, He = 0.35
and nel = 4.2 ·1019m−3. Thomson measurements of Te and ne are marked by blue circles.

2.6.4 Profiles sensitivity to the boundary conditions

One of the model advantages is the weak dependence of the simulated temperature and

density profiles on their boundary conditions (BC). In Fig. 2.10 profiles for the electron

temperature Te and density ne for the TCV shot #55520 are presented. Predictive simulations

of Te and ne are done with various boundary conditions, and the profiles are checked at t = 0.6

s. Two scans on BC are performed for Te and ne separately. In these simulations He-factor

and nel are prescribed and equal to 0.35 and 4.2 ·1019m−3. The Te and ne gradients in the

“stiff” region are fixed, λTe = 3.2 and λne = 2. Gradients in the pedestal region, μTe and μne ,

vary depending on the boundary conditions to match the requested He and nel values with

prescribed λTe and λne . Thus, main difference in the profiles can be observed in the pedestal

region, whereas the intermediate and the central region are almost not affected. For the

Te(BC ) scan ne(BC ) is fixed at 1 ·1019m−3. To get requested He factor with different Te(BC ),

values of ne (ρped ) are slightly different what leads to a shift of the ne profile in the “stiff” region.

However, as it can be seen from Fig. 2.10, these shifts are negligible for Te(BC ) and ne(BC )

scans. We can conclude that there is no strong dependence on Te and ne boundary conditions,

thus fixed BC can be used for simulations of a plasma discharge. This is because the main

39



Chapter 2. The RAPTOR code: overview and developments

Figure 2.11: Tests of the sensitivity of electron temperature Te and density ne profiles on the
pedestal position ρped at 0.75, 0.8, 0.85, 0.9, 0.95 for the TCV shot #56693 at t = 0.44 s (L-
mode) and t = 0.77 s (H-mode). Radial profiles, demonstrated on a “log” scale, are constructed
with fixed λTe ,ne = 3.2/2.0 in L-mode and λTe ,ne = 2.3/1.0 in H-mode, He = 0.35/0.4 and
nel = 2.9/4.8 ·1019m−3 in L-/H-modes.

parameters determining the kinetic profiles are the H/He factors and logarithmic gradients.

2.6.5 Summary of the transport model parameters

Here we summarize parameters required by the gradient-based transport model, presented

above. Since the model is based on the assumption of the plasma profiles “stiffness” in

the region between ρinv and ρped , a parameter, characterizing the profiles gradients, has

to be defined. To simulate one of plasma profiles, Te , ne or Ti , we prescribed a constant

logarithmic gradient λTe ,ne ,Ti . Since in the high confinement mode plasma profiles are more

flat than in L-mode, λTe ,ne ,Ti should be defined for L- and H-modes separately. Position of

the pedestal is also different for L- and H-modes, generally its width is smaller for H-mode

[Ryter et al.(1994)]. In Chapter 3, typical values of λTe ,ne ,Ti for TCV, AUG and JET plasmas are

defined. With predictive simulations, it is important to get realistic pedestal height of plasma

profiles, since it can change significantly the global plasma properties, like the heat and particle

confinement, which are necessary for correct estimation of a plasma state. Therefore, the

proposed transport model requires following prescribed parameters: the confinement factor

for the electron energy He for Te modelling, the line-averaged density nel for ne modelling,
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the confinement factor for the total plasma energy H for coupled simulations of Te and Ti .

Thus profiles in the pedestal region, i.e. between ρped and 1, are constructed with a linear

gradient μTe ,ne ,Ti to match prescribed global parameters.

Prediction of the pedestal radial coordinate ρped is a rather difficult issue for plasma simula-

tions, since its formation depend on many factors, like plasma fueling or instability activities

[Urano(2014)]. There are no proper theoretical models for L-mode, since the pedestal region

is not generally considered for this mode. The EPED model [Snyder et al.(2011)] predicted

ρped for H-mode within 20% agreement with experimental data. For the transport model,

developed in this thesis, we fix ρped at 0.8 and 0.9 for L- and H-modes respectively. Similar

values have been used in [Kim et al.(2016)]. As it can be seen from simulations of TCV #56693

with fixed λTe ,ne in Fig. 2.11, there are no big changes in the profiles in case of L-mode plasma.

In H-mode ne profiles are affected more than Te profiles, since they are much more flat.

Therefore the variation of ρped with fixed nel and λne leads to vertical shifts in the profiles.

We can see that ρped at 0.8 and 0.9 give the best matching with experimental measurements.

Since within this thesis no systematic study on the pedestal position for AUG and JET plasmas

have been done, we use the same ρped as for TCV plasmas, which matches relatively well the

measured profiles simulated so far. Note that in the simulation presented in this thesis, same

pedestal position is used for electron temperature and density profiles. However, ρped for Te
and ne can be fixed at different values, defined after more detailed analysis of the pedestal

properties.

In the developed model, plasma profiles are characterized by the constant gradient λTe ,ne ,Ti

and pedestal position ρped , prescribed for L- and H-modes separately. In the transition phases

these parameters are allowed to evolve linearly with time between their L-/H- values. Duration

of the transition phase, i.e. characteristic time of the pedestal development/decrease, depends

on various plasma parameters, like respective confinement times and plasma volume, and

can be estimated with the help of experimental measurements of the plasma profiles time

evolution. In the following chapter 3 for TCV, AUG, and JET plasma modelling, duration of

the transition phases is around 0.1 s, 0.5 s, 1.0 s respectively. These characteristic times were

defined for each machine from Thomson and Hα diagnostic measurements. In this research,

we assume same duration of L- to H-modes and H- to L-modes transitions.

2.7 Summary

In this chapter, the RAPTOR code [Felici(2011), Felici et al.(2011), Felici et al.(2012)] has been

introduced. Since it has been developed for real-time control purposes, high speed of simula-

tions is one of the important features of the code. RAPTOR is a transport simulator without

a special solver for the plasma equilibrium reconstruction. A new numerical procedure for

processing the equilibrium data has been discussed in Sec. 2.2. The RAPTOR transport model,

updated recently, includes diffusion equations for the poloidal flux, electron and ion temper-

atures, and density of various plasma species. Predictive simulations of the diffusion of the
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plasma current are coupled with plasma kinetic profiles for self-consistent simulations of the

time evolution of the plasma state.

We have presented upgrades of the RAPTOR transport equations, carried out as part of this

thesis. In contrast to the initial version of the code, now transport equations allow simulations

with time-varying terms, improving predictive capabilities of the code in case of strong changes

in the plasma equilibrium, geometry and densities. This is crucial especially for ramp-up

and ramp-down phases of a plasma discharge, where simultaneous rapid changes in the

plasma volume and the plasma current take place. It is also important to be able to simulate

transitions from L- to H-mode and vice versa. Verification tests have been performed with the

help of the ASTRA code in Sec. 2.4. Transport equations for plasma particles (Eq. 2.32) and ion

temperature (Eq. 2.24) have been implemented in the code. To prove the validity of the new

equations, successful benchmarks versus the CRONOS code and prescribed solutions for an

ITER case for particle transport have been carried out in Sec. 2.5.

For realistic predictive simulations of plasma profiles, reliable physical models are required.

We need to predict correctly a time evolution of an entire plasma discharge, therefore transport

models capable for plasma modelling both in L- and H-modes are required. The gradient-

based transport model, implemented into the RAPTOR code and described in Sec. 2.6, easily

allows switching between L- and H-modes, taking into account such characteristic changes in

plasma profiles as varying width of the pedestal or profiles flattering. Note that any change in

the parameters induce a modification of the heat and particle conductivities (Eqs. 2.52, 2.60,

2.61) which then leads to a modification of the time evolution of the kinetic profiles. The time

scales are therefore relatively well described. Since this gradient-based transport model uses

parameters well-known experimentally (the energy confinement factor, critical gradients for

temperature and density profiles, the line-averaged density), they can be easily checked and

constrained with experimental measurements.

In this thesis, we consider only off-line applications of the model. However, it is rather

promising for real-time applications too. With model parameters prescribed for a machine

or confinement mode, plasma profiles are constructed correctly on a global time scale. If a

strong difference is observed between predicted and measured plasma profiles, it can indicate

the presence of internal barriers or a mode growth which lead to local changes of the plasma

profile. Deviations in the plasma confinement estimated in real-time from one prescribed by

the model can determine periods of improved or degraded plasma confinement, providing

useful information to real-time controllers, or of failure of some diagnostic. Note that at this

moment, for real-time usage with the RAPTOR code, the model still has to be optimized. The

PI controller, used for calculations of the gradient μs in the edge region (s denotes to Te , ne ,

Ti ), increases the number of Newton steps, required for the solution convergence at every

time step, up to 3÷4 instead of 1÷2 typical for RAPTOR [Felici et al.(2011)]. If a scaling law for

the parameter μs is developed or typical values for μs are known, then the PI controller can be

replaced by prescribed μs , saving calculations time.
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2.7. Summary

Since RAPTOR has been developed as a fast and light simulator, there is no intention to include

detailed and extremely precises physical modules as such more complex codes like CRONOS

[Artaud et al.(2010)] and ASTRA have [Pereverzev and Yushmanov(2002)]. We are aiming to

develop simple and fast modules which nevertheless provide realistic predictions on the

plasma state and can be used as core elements for real-time plasma controllers. Note that the

development of neural network transport models based on first principles gyrokinetic calcula-

tions (like QuaLiKiz [Bourdelle et al.(2016)] coupled with RAPTOR in [Felici et al.(2018)]) can

provide fast and sophisticated models.
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3 Entire shot simulations with the RAP-
TOR code

Development of physical models for future machines and their experimental validation on

existing devices is an essential part of the ongoing research. Various codes like CRONOS

[Artaud et al.(2010)], ASTRA [Pereverzev and Yushmanov(2002)], JETTO [Cenacchi et al.(1988)]

have been developed for these purposes focusing on specific goals.

This thesis, related to the development of transport models for the RAPTOR code, is devoted to

realistic prediction of plasma transport, electron heat and particle confinement, while keeping

a high calculation speed. We focus more on analysis of plasma kinetic profiles on global

scales of a plasma discharge rather than their accurate prediction in a specific time instant.

Nevertheless for testing the developed models, plasma profiles are checked with respect to

local and global measurements. This chapter is dedicated to the validation of the extended set

of transport equations, described in Sec 2.4, and the new ad-hoc models for the electron heat

and particle transport, implemented into the RAPTOR code and presented in Sec. 2.6, which

enable a demonstration of realistic simulations of various plasma profiles for TCV, ASDEX

Upgrade (AUG) and JET tokamaks.

As part of this work, transport models are tuned for three machines and appropriate parameter

values and ranges are provided. We have found that for the chosen tokamaks, characteristic

gradients for electron heat transport λTe , describing the “stiff” region defined in Sec. 2.6, are

close to each other. They belong to the range 3÷3.2 for L-mode plasmas and are around

2.3 for H-mode, i.e. the normalized inverse scale length R/LTe lies between 6÷14 for ma-

chines with aspect ratios ε = 3÷3.5. Obtained results stay in a good agreement with theo-

retical predictions of gyrokinetic studies [Jenko et al.(2005)] and experimental observations

[Ryter et al.(2001)], which show that the temperature profiles are limited by a critical gradient

R/LTe
∣∣
c because of generation of various turbulent modes and their growth with increasing

electron heat flux. Similar studies have been carried out for the electron particle transport

[Angioni et al.(2009), Fable et al.(2010)]. Characteristic gradients λne used in this work belong

to the range 1÷2 in L-mode and 0.5÷1.0 in H-mode, thus R/Lne is around 1.5÷7. Exact

values of the critical gradient R/LTe ,ne

∣∣
c depends on the driven turbulent mode (trapped elec-

tron mode TEM [Coppi and Rewoldt(1974)], ion-temperature-gradient ITG [Romanelli(1989)]
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and electron-temperature-gradient ETG [Horton and Hong(1988)] driven modes) and various

plasma parameters, like the plasma shear s, an effective charge Ze f f and the ion-electron

temperature balance. Analytical formulas, based on experimental observations and theo-

retical predictions, have been derived for R/LTe ,ne

∣∣
c estimation like in [Jenko et al.(2001)]

and [Hillesheim et al.(2013)]. However, a detailed analysis of critical gradients and driven

turbulent modes is out of scope of this work. Obtained characteristic gradients λTe ,ne and

corresponding inverse scale lengths R/LTe ,ne are within the typical range observed on TCV,

AUG and JET tokamaks. Also typical values of the electron energy confinement factor He ,

required for a description of the “non-stiff” transport gradient at the plasma edge region μTe
(in Eq. 2.57), has been specified for a machine and a confinement mode. At this stage of the

model development as a part of a post-shot analysis, the line-averaged density nel , required

by the predictive transport model for electrons, is defined from experimental measurements.

In addition to obtained general set of transport parameters, we also consider a couple of

special cases of plasma behavior. Firstly, a TCV plasma with off-axis heating is simulated.

Since there is a well known effect of a plasma confinement degradation because of dominant

off-axis heating, He for the TCV transport model has to be decreased to match experimental

measurements. Also a generation of hollow electron temperature profiles in case of strong

radiation from a plasma core is considered for AUG and JET plasmas.

Transport parameters, determined in this chapter for TCV, AUG and JET plasmas, are helpful for

future development of feedback controllers and operational scenarios. Since these parameters

represent most common plasma behavior on chosen machines, an information provided by

RAPTOR simulations can be used for a basic analysis of a plasma behavior before running

an experiment, thus helping to improve a plasma performance and to increase a positive

outcome of experiments. If feedback controllers observe a large difference between predicted

and measured temperature profiles, for example, it can be used as an indicator of an instability

mode growth, an improved confinement or diagnostic problem.

The chapter is organized in the following way. Firstly, in Sec. 3.1 we discuss a general set

of predicted parameters required by RAPTOR to run a simulation. In Sec. 3.2 we start with

simulations of TCV low confinement (L-mode) mode plasmas and continue with simulations

of a TCV plasma in the high confinement mode (H-mode) with various heating scenarios.

Validation of the transport models is continued with simulations of AUG plasmas in Sec. 3.3.

Then results of JET plasma modelling are presented in Sec. 3.4. We conclude the chapter with

a general discussion on the presented simulations and with a summary of the main results

and proposals of the next-step improvements and requirements in the RAPTOR transport

models in Sec. 3.5.

3.1 Predicted parameters for a RAPTOR run

To start a simulation with the RAPTOR code, since it does not include an equilibrium solver,

we need a prescribed plasma equilibrium to determine the geometrical quantities used in
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the transport equations 2.36-2.40. For the simulations discussed below, output of various

equilibrium reconstruction codes is reprocessed with the CHEASE code [Lütjens et al.(1996)]

to a special format required by RAPTOR, as described in Sec. 2.2 and Appendix A. To take

into account the time evolution of the plasma equilibrium, thus the geometrical quantities,

a series of equilibria is required. The exact number of equilibria to characterize a plasma

discharge depends on the plasma state time evolution, but at least three equilibria have to be

taken for each of the ramp-up and ramp-down phases and a couple of extra equilibria for the

flattop phase. The choice is easily made in order to follow well Ip (t ) and κ(t ) in particular with

piecewise linear interpolations, as well as β(t ) and transitions between low (L) and high (H)

confinement modes when needed.

The evolution of plasma profiles is considered in two dimensions: in space and time. For

simulations presented in this section, the radial grid ρ̂ is defined on 21 points to have more

than one point in the transition regions between “stiff” and “non-stiff” regions. TCV shots are

simulated on a time grid with 1 ms step. For simulations of AUG and JET shots the time grid

has a 10 ms step and a phase of 0.2 s at the beginning with 1 ms step for a faster stabilization

of the controller in the transport model described in Appenix C.

The next step is to specify plasma actuators, like the plasma current and heating and current

drive scenarios. Time evolution of the parameters like total plasma current Ip , total input

powers from NBI PNBI , ECRH PECRH and ICRH PICRH are generally programmed before an

experiment, thus they are known in real-time, and can be obtained from the database after an

experiment. The problem of reconstruction of heating and current profiles can be solved with

specialized codes, briefly mentioned in Subsec. 2.3.2. To save CPU time, in RAPTOR, heating

and current driven profiles are approximated by Gaussian curves with prescribed widths and

radial depositions, such that the integrated values match the expected total absorbed power

and driven currents.

We use the RAPTOR internal module to simulate sawtoothing plasmas as it has been described

in Subsec. 2.3.4. In the simplest form, a critical shear value has to be specified by the user

except if the s1cr i t formula is used. Thus we choose either typical values, known for a machine

from experiments or previous simulations, or specify it to match experimental measurements

of the sawtooth period.

A critical issue of using the experimental data as input parameters or for the validation of

RAPTOR simulation results, is that they have to be provided on the RAPTOR radial grid, i.e. on

the toroidal normalized grid ρ̂, defined in Eq. 2.15. Some databases, like one for TCV, provide

electron temperature Te and density ne profiles both on the normalized poloidal and toroidal

grids. Thus, they can be used by RAPTOR directly. However generally, the radial coordinate

is associated with the poloidal flux ψ, and the measurements have to be interpolated from

their own radial grid to the RAPTOR radial grid ρ̂. A relation between these grids usually is

obtained from an equilibrium reconstruction code, since poloidal and toroidal fluxes are

generated by the code. With magnetic measurements of the poloidal flux ψ and solving of
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the Grad-Shafranov equilibrium equation 2.10, the code provides the plasma equilibrium

quantities on the normalized poloidal grid ρ̂ψ̂, associated with fluxes of constant ψ. Such

equilibrium profiles like the toroidal flux Φ and the safety factor q are calculated as functions

of ρ̂ψ̂. Using the definition of the toroidal normalized grid ρ̂ in Eq. 2.15, q can be remapped

from ρ̂ψ̂ to ρ̂. If the time evolution of a plasma equilibrium is known, then q profiles can be

defined as functions of ρ̂ψ̂ and ρ̂ in time. In similar way any other profiles can be interpolated

from ρ̂ψ̂ to ρ̂, if plasma equilibria are known. Thus, for example Te and ne profiles provided by

Thomson diagnostic on ρ̂ψ̂ for AUG and JET plasmas can easily be remapped to ρ̂.

The transport parameters discussed above can generally be obtained after an experiment

from the machine database or from a known scenario of a discharge. For a transport code like

RAPTOR, depending on a simulation goal, proper transport coefficients have to be determined.

In Sec. 2.3 various transport models implemented into RAPTOR have been mentioned. In this

chapter we focus on the validation of the ad-hoc gradient-based transport models proposed

in Sec. 2.6. As it has been discussed in that section, for the electron heat and particle transport,

there are few model parameters: constant gradients for the “stiff” region λTe ,ne , the pedestal

radial coordinate ρped , the heat confinement factor for electrons He and the line-averaged

density nel . These parameters, except the last one, are specified for L- and H-modes separately.

The line-averaged density nel at this moment is prescribed from the experimental signal. Time

instants of transitions between the modes and their duration also have to be specified by a

user and can be defined in several ways, as discussed in Subsec. 2.6.1. In the simulations

presented below, we validate the transport model simulating TCV, AUG and JET plasmas. A

critical question for such transport models is that the various parameters should not need

to be tuned in too much detailed for various phases of specific discharges and should be

easily applicable to a new machine. From the experience presented here, we will see that

the proposed model is efficient across a full discharge simulation and has been very easily

extended from one machine to the next.

3.2 TCV plasma modelling

Since the gradient-based transport models have been first developed for various TCV plasmas

[Sauter et al.(2014), Kim et al.(2016)], we start this chapter with a section dedicated to simula-

tions of various TCV plasma discharges and developing of the transport model for TCV within

RAPTOR.

3.2.1 An ohmic L-mode shot

Here we consider an ohmic L-mode TCV shot #55520. Firstly, we have to define plasma

parameters which will be used as input parameters for RAPTOR.
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λTe (L) 2.4 2.8 3.2 3.6 4.0
χ2 5.4 4.2 3.5 4.4 5.3

λne (L) 1.2 1.6 2.0 2.4 2.6
χ2 8.1 5.6 5.3 7.3 10.7

λTe (H) 1.7 1.9 2.3 2.7 2.9
χ2 5.4 4.2 4.0 5.6 6.8

λne (H) 0.4 0.6 1.0 1.4 1.6
χ2 9.6 8.5 7.3 7.8 8.6

Table 3.1: The χ2 tests for various TCV λTe ,ne to define the goodness of the fit between RAPTOR
simulated and Thomson measured Te and ne profiles.

The prescribed data set

The total plasma current Ip (t) is known from the TCV database and, since we consider an

ohmic shot, it is the only actuator for RAPTOR. Experimental equilibria for TCV plasmas are

generated by the LIUQE code [Hofmann et al.(1988)]. Since RAPTOR requires an equilibrium

data set in a special format, LIUQE equilibria have been reprocessed by the CHEASE code

[Lütjens et al.(1996)] as it was discussed in Sec. 2.2 and Appendix A. For the entire TCV shot

#55520 simulation, twelve CHEASE equilibria have been used. Of course more equilibria can

be used but it does not change the result.

For this particular case, we are going to predict time and radial evolution of the poloidal flux

ψ(ρ̂, t) and the electron temperature Te(ρ̂, t). Thus profiles for the ion temperature Ti , the

electron ne and ion density ni have to be prescribed in advance. We take time-varying radial

profiles for ne from Thomson measurements fitted in a radial direction to get smooth radial

profiles. Plasma profiles for ions Ti and ni are scaled from Te and ne with 10% difference

in the plasma center to match measured MHD energy, stored in the plasma. Because of the

absence of necessary measurements, the effective charge Ze f f is fixed at 1.8, typical TCV value,

assuming a radially constant profile.

The gradient-based transport model for the electron heat diffusivity χe , described in Subsec.

2.6.1, has been chosen for this simulation, thus parameters He-factor and ρped have to be

defined. The latter parameter represents the right boundary of the “stiff” region and, in a

similar way as for the H-mode, defines the pedestal region in the L-mode [Sauter et al.(2014)].

Here, it is fixed at ρ̂ped = 0.8, the typical value for TCV L-mode shots as shown in Subsec. 2.6.5.

The He factor has been specified after analyzing various TCV L-mode phases at He (L) = 0.35.

Predicted parameters

The simulation starts from the middle of the ramp-up phase at 0.1 s, where we have the first

LIUQE equilibrium, and continues until 1.07 s, i.e. up to the last available LIUQE equilibrium

at the end of the shot. Simulation with 1 ms time step of the entire shot 1 s long took only 50 s

of CPU time without any optimization on a standard PC.
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Figure 3.1: Electron temperature Te profiles for the TCV shot #55520 provided by Thomson
measurements and predicted by RAPTOR simulations with fixed He = 0.35 and λTe = 3.2. The
parameter χ2

tk is used to estimate the goodness of predicted profiles at the time instant tk .

To define λTe with which RAPTOR simulated Te profiles will best fit experimental Te , several

simulations have been performed. Their results are presented in Table 3.1 for the parameter

λTe (L). The goodness of the RAPTOR predicted Te profile with respect to Thomson measure-

ments is accomplished with a χ2 test. Parameter χ2
tk is calculated at the every time step on

the RAPTOR time grid between measured and simulated Te in the “stiff” region and then is

averaged over the simulation time to get χ2. These parameters are defined in the following

way:

χ2
tk =

1

Nρ̂

Nρ̂∑
i=1

(TRP
e (ρ̂i , tk )−TTH

e (ρ̂i , tk ))2

σ2
Te

(ρ̂i , tk )
(3.1)

χ2 = 1

Ntk

Ntk∑
tk=1

χ2
tk (3.2)

where Nρ̂ and Ntk are the number of radial and time points, TRP
e and TTH

e are RAPTOR and

Thomson profiles for the electron temperature, σ2
Te

(ρ̂i , tk ) denotes the standard deviation of

Thomson measurements. According to λTe (L) in Table 3.1, λTe is fixed at 3.2 for TCV L-mode

plasmas. Note that χ2 presented in the table are averaged over time. The RMS error increases

up to 50%. It can be seen from Fig. 3.1 that profiles with χ2
tk ≈ 0.4 have been obtained with

λTe (L) = 3.2. Profiles with much higher χ2
tk ≈ 10 can be obtained too, but in the case presented

in Fig. 3.1, some Thomson measurements have very small error bars. Since they are used in

Eq. 3.1, it can increase χ2 value.

The plasma current time trace is shown in Fig. 3.2 with red dots, which correspond to time

instants of the LIUQE equilibria. To validate RAPTOR simulation results, we check the time

and radial evolution of various physical quantities calculated by RAPTOR with signals provided

by the database. In Fig. 3.2 we demonstrate time traces of the safety factor q and the electron

temperature Te at various radial positions, the internal inductance li (3) and the He factor.
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Figure 3.2: Prescribed time traces for the TCV shot #55520: the plasma current Ip ; the
electron density ne provided by Thomson measurements and fitted data used by RAPTOR
ρtor = [0.1, 0.8]. Predicted parameters for the TCV shot #55520: the safety factor q(ρ) at
ρtor = [0.01, 0.4, 0.8, 0.95] for LIUQE (dots) and RAPTOR (solid); the electron temperature Te
provided by Thomson (dots) and RAPTOR (solid) ρtor = [0.1, 0.5, 0.8]; the internal inductance
li (3) from LIUQE (dots) and RAPTOR (solid); experimental (dots), reference (dashed) and
RAPTOR (solid) He-factor.

Figure 3.3: Electron temperature Te profiles at t = [0.31, 0.41, 0.71] s for the TCV shot #55520
provided by Thomson measurements (dots) and predicted by RAPTOR (solid) with fixed
He = 0.35 and λTe = 3.2.
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From Fig. 3.2 it can be seen that the time evolution of the safety factor q simulated by RAPTOR

shows a good agreement with the results of the equilibrium reconstruction code LIUQE. The

simulated plasma internal inductance li (3) follows the experimental one very well at the flat-

top phase and during the ramp-down phase. When they are different, they still follow the same

trends. The LIUQE code uses only the magnetic measurements to solve the Grad–Shafranov

equilibrium equation. The disadvantage of such an approach for simulation of dynamic

phases of a plasma discharge is the lack of information about resistive diffusion of the current

density profile which RAPTOR does compute. This can be a reason for the difference between

the internal inductance simulated with RAPTOR and the one provided by LIUQE.

Radial profiles of the electron temperature Te(ρ, t ) from RAPTOR follow Thomson measure-

ments very well as demonstrated in Fig. 3.2. There is a transient slightly improved confinement

phase, between 0.2 s and 0.5 s, where the experimental He factor, based on Thomson mea-

surements of Te and ne , increases up to 0.41. The central electron temperature simulated

with RAPTOR does not match the experimental measurements, whereas at ρ = 0.5 and ρ = 0.8

it follows them very well over the entire plasma discharge. Since many plasma parameters

are changing (the plasma current Ip , plasma shape, the electron density ne), it is difficult to

determine the main factor which leads to improved confinement. At least, there is a clear

influence of the decrease in the plasma current Ip , which leads to the decrease in ohmic power

and the growth in the He factor. Looking closer to Te profiles in Fig. 3.3, we can conclude that

the predicted gradients in the “stiff” region stay in a very good agreement with experimental

measurements during the phase of the improved confinement (at 0.31 and 0.41 s) and after

it (at 0.71 s). Thus, with RAPTOR predictions the information about Te is missed from the

central region only. Adjusting of ρinv , i.e. making an artificial prolongation of the “stiff” region

inside the q = 1 surface, will increase Te profiles at ρ = 0.2.

Predicted simulations of the electron density

We continue simulations of the TCV L-mode shot #55520 with predictions of the electron

density ne in addition to the poloidal flux ψ and the electron temperature Te . For the gradient-

based transport model, the line-averaged density nel has to be prescribed. Here we smooth the

line-averaged density provided by the integrated FIR measurements with LIUQE equilibrium

mapping. After testing several constant gradients for the “stiff” region to predict ne profiles

and using the same procedure as for λTe (see Table 3.1), λne = 2.0.

Simulation results, demonstrated in Fig. 3.4, are similar to the previous modelling with

prescribed ne profiles. Also ne profiles predicted by RAPTOR are in a good agreement with

Thomson measurements, as shown in Fig. 3.5. Note that at this stage we do not predict the

particle flux, assuming it to be equal to zero. In this particular case, during the phase of the

improved confinement and high nel , i.e. at t = 0.43 s in Fig. 3.5, ne profiles are more peaked

than after it. There is a difference between predicted and measured ne profiles in the central

region at t = 0.43 s, but later measured as well as predicted ne profiles are flat. Transport

parameters λTe ,ne = 3.2/2.0 and He = 0.35 have been tested on several other TCV L-mode shots
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Figure 3.4: Prescribed time traces for the TCV shot #55520: the line-averaged density nel from
experimental signals (dots), reference (dashed) and RAPTOR (solid). Parameters predicted by
RAPTOR: the safety factor q(ρ) at ρtor = [0.01, 0.4, 0.8, 0.95] for LIUQE (dots) and RAPTOR
(solid); the electron temperature Te and density ne provided by Thomson (dots) and RAPTOR
(solid); the internal inductance li (3) from LIUQE (dots) and RAPTOR (solid); experimental
(dots), reference (dashed) and RAPTOR (solid) He-factor.

Figure 3.5: Electron temperature Te and density ne profiles at t = [0.43, 0.6, 0.8] s for the TCV
shot #55520 provided by Thomson measurements (dots) and predicted by RAPTOR (solid)
with fixed He = 0.35 and λTe ,ne = 3.2/2.0.
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as well, where we have found a good agreement with Thomson measurements.

3.2.2 An entire shot simulations in case of H-mode plasma

We continue RAPTOR simulations of TCV plasmas with modelling of the shot #56693. The

main difference with the previous shot is the presence of NBI heating, which leads to the

generation of an H-mode. The NBI power is defined as an additional actuator, and time

evolution of the total input power, obtained from the TCV database, is prescribed for the

following simulations. Radial profiles of the power density are approximated by Gaussian

curves with central deposition at ρdep = 0. and width wNBI = 0.5 to get a broad profile. The

NBI beam is switched on in the middle of the flattop and kept at 1 MW (with the beam energy

25 keV) up to the end of the discharge, as it is shown in Fig. 3.6. Maximum effective power

absorbed by electrons is 0.7 MW, estimated from typical TCV measurements. However, the

NBI module for the ASTRA code [Polevoi et al.(1997)] can provide more accurate information

about the absorbed power.

Transitions from L- to H-mode and H- to L-mode are fixed at 0.7 s and 0.925 s according

to the Hα signal and duration of transition phases equals to 50 ms. Transport parame-

ters λTe and He for L-mode have the same values as in previous subsection, i.e. 3.2 and

0.35. In H-mode we expect to have flatter Te profiles and higher He-factor, and accord-

ing to λTe (H) values from Table 3.1 we use values 3.0 and 0.45 for λTe and He . From ex-

perimental measurements [Urano(2014), Pitzschke et al.(2012)] and numerical predictions

[Merle et al.(2017), Snyder et al.(2011)], an H-mode generally is characterized by a narrow

pedestal, therefore ρped is equal to 0.9 for the H-mode phase (Subsec. 2.6.5).

Prediction of plasma state based on the poloidal flux and the electron temperature

As in the previous subsection, the plasma current Ip (t ) and the electron density profilesne (ρ, t )

have to be prescribed to solve the diffusion equations for the poloidal flux ψ and the electron

temperature Te . Their time traces are presented in Fig. 3.6.

We have a good agreement between RAPTOR and LIUQE simulation results for the safety factor

q(ρ, t) and the internal inductance li (t). For the transition from L- to H-mode, a decrease

in the internal inductance is observed, as we expect: since the electron temperature and

density profiles are more flat in H-mode, the current density is less peaked, also because of the

edge bootstrap current in H-mode, and therefore, the internal inductance reduces. Transition

from H- to L-mode happens during the plasma current ramp-down. With a decrease in the

edge current due to the ramp-down induced by a lower edge loop voltage, we observe a fast

growth in the internal inductance, and in this case there is no significant impact from the H-L

transition on the li trajectory.

Simulated temperature profiles Te(ρ, t) stay very close to Thomson measurements. We can

clearly see the growth of the electron temperature at the pedestal area ρ = 0.8 during the

L-H transition. He-factor calculated with predicted Te profiles follows the experimental one
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Figure 3.6: Prescribed time traces for the TCV shot #56693: the plasma current Ip and NBI
heating power PNBI ; the electron density ne provided by Thomson measurements and fitted
data used by RAPTOR ρtor = [0.1, 0.8].Predicted parameters: the safety factor q(ρ) time traces
for LIUQE (dots) and RAPTOR (solid); the electron temperature Te provided by Thomson (dots)
and RAPTOR (solid) ρtor = [0.1, 0.5, 0.8]; the internal inductance li (3) from LIUQE (dots) and
RAPTOR (solid); experimental (dots), reference (dashed) and RAPTOR (solid) He-factor.

Figure 3.7: Te profiles from Thomson measurements for TCV shot #56693 and RAPTOR simu-
lation results at t = [0.5, 0.77, 0.88, 0.98] s.
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during almost entire discharge as it has been requested by its reference. However, after 0.8 s

there is a strong decrease in He experimental value. Magnetic measurements show that an

NTM was generated and led to the plasma confinement degradation. This can be clearly seen

from Te radial profiles. As it is shown in Fig. 3.7, RAPTOR Te profiles are in a close agreement

with Thomson measurements in L-mode (t = 0.5 s) and H-mode (t = 0.77 s) plasma. The 2/1

NTM island, generated at the q = 2 position around ρtor = 0.7, leads to a flattering of the Te
profile, that is clearly seen from Thomson measurements. Here we do not simulate NTMs with

RAPTOR, and therefore there is no effect on simulated Te profiles which follow the prescribed

He-factor.

It should be mentioned that the “quality” of Te profiles also depends on the prescribed ne pro-

files. In particular, the formula for the electron energy confinement time, used for calculation

of the heat diffusivity χe (Eq. 2.56), includes time derivative of the total plasma energy dW /dt .

This parameter is calculated in RAPTOR at every time iteration, therefore it is very sensitive to

the shape and time evolution of Te and ne profiles. Also, the sawtooth crashes are simulated

only for Te profiles, whereas ne profiles stay as they were prescribed. For this simulation, fitted

profiles for the electron density ne(ρ, t ), based on measurements of the Thomson scattering

system, are affected by sawtooth crashes and presence of the NTM island. These profiles are

fitted in the radial direction but not in time, which can lead to inaccurate prediction of the

sawtooth period as in Fig. 3.6.

Test of NBI power density profiles

The simulation presented above uses NBI power density profiles approximated by Gaussian

curves with fixed width w and radial deposition ρdep . We can test the sensitivity of Te profiles

to prescribed parameters w and ρdep . In Fig. 3.8 Te profiles (on a “log” scale) at t = 0.8 s

(H-mode) simulated with various w and ρdep are shown. In the first row ρdep equals to 0. In

the second row w is fixed at 0.5. Profiles for the electron heat diffusivity χe are automatically

adjusted in the way to give the same gradient λTe in the “stiff” region of Te .

This low sensitivity to the Gaussian shape parameters w and ρdep can be considered as

another advantage of the transport model, since even not accurate prediction of the shape

of power density profiles do not affect the simulation results. Of course it is also a limitation

if internal transport barriers are generated in plasmas or lower λTe are expected because of

off-axis heating. However, these are unusual scenarios and can be treated specifically. Note

that in case of prediction of the electron density with a particle source associated with NBI

beam, the deposition location might be important.
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Figure 3.8: Profiles for the electron temperature Te , the electron heat diffusivity χe and NBI
power density pNBI for the TCV shot #56693 at t = 0.8 s (H-mode). The first row corresponds
to pNBI profiles defined as Gaussian curves with various widths w = [0.1, 0.3, 0.5, 0.7]. In
the second row, plasma profiles obtained in case of various radial depositions of pNBI are
demonstrated for ρdep = [0.0, 0.2, 0.5, 0.7]. Thanks to χe sensitivity to the heat flux, Te profiles
show the same gradients in the “stiff” region for different pNBI . Figures in the first column are
on a “log” scale.

Simulations with the electron density

To have time and radial consistency between the electron temperature Te and density ne , the

diffusion equation for the electron density (Eq. 2.38) has been solved in addition to transport

equations for the poloidal flux ψ (Eq. 2.36) and the electron temperature Te (Eq. 2.37). As well

as for L-mode simulations, here we prescribe the line-averaged density nel from the integrated

experimental measurements.

As it can been seen from Fig. 3.9, there is almost no change in time and radial evolution of the

safety factor q and the internal inductance li . Thanks to consistency of Te and ne profiles, we

have more regular sawtooth crashes. The sawtooth period increases as the plasma transits

to H-mode following the crashes observed with the soft X-ray detector DMPX, described in

Subsec. 1.2.3.

Note that the transport model for the pinch velocityVp , defined in Eq. 2.61, requires the radial-

dependent source of particles Γe . In this simulation we do not include the source of electrons

which comes from NBI. It can be seen from ne profiles presented in Fig. 3.10, that the source

is localized in the central area. Profiles for ne simulated with RAPTOR have flat central region.

Thanks to the controlled μne , the predicted pedestal height follows the experimental one very

well and the resulted line-averaged density is close to the prescribed one in the absence of the

NTM mode (Fig. 3.10 at t = 0.5 s and t = 0.77 s). Thus, the absence of the particle source in
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Figure 3.9: Predictive simulation of ψ, Te , ne for the TCV shot #56693 with prescribed line-
averaged electron density nel and He-factor. RAPTOR simulation results are validated with
Thomson measurements for the electron temperature density ne and Te , with LIUQE output
for the safety factor q and the internal inductance li .
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Figure 3.10: Comparison of Thomson measurements for TCV shot #56693 and RAPTOR simu-
lation results for the electron temperature Te and density ne at t = [0.5, 0.77, 0.88, 0.98] s.

the transport equation results in an inaccuracy of ne profiles shape prediction in the central

region only but there is no strong effect on the global particle and heat confinement. From

ASTRA predictions of the particle flux for this shot, we can see that the source of particles is

concentrated mainly at the plasma edge, slowly penetrating to the core region. For further

development of the simple models for particle sources and sinks, ASTRA predictions can be

used as a reference. At this moment, the particle sources are included to the diffusion equation

implicitly, since the electron density profiles are constructed with μTe which is determined

by the controller to match the prescribed nel . However, the integrated value of the electron

density does not provide an information on its local distribution.

In contrast to previous simulations with prescribed electron density profiles, here simulated

ne profiles are not affected by the presence of the NTM mode (Fig. 3.10 at t = 0.88 s and

t = 0.98 s) which leads to different behavior of the electron density ne and temperature Te
with He-factor the same as before. However, the pedestal height of ne profiles decrease with

nel , which is affected by the presence of NTMs.

3.2.3 Simulation in case of off-axis heating

For the simulations discussed above, we use typical L- and H-modes He values obtained

after analysis of various TCV discharges with dominant central heating or ohmic plasmas.

However, there is a well known effect of the energy confinement degradation in case of

a strong off-axis heating, in particular ECRH [Pochelon et al.(1998), Henderson et al.(2001),

Sauter et al.(2001), Sauter et al.(2010)], due to a decrease of the central heat flux as has been
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Figure 3.11: Simulation of the TCV shot #41175 with scaled He-factor. With prescribed plasma
current Ip , ECR heating power PICR and radial deposition ρdep , He-factor and the electron
density ne fitted from Thomson measurements the RAPROR code predicts time evolution of
the electron temperature Te and the safety factor q validated with Thomson measurements
and LIUQE output correspondingly.

Figure 3.12: Te profiles from Thomson measurements for TCV shot #41175 and RAPTOR
simulation results at t = [0.46, 0.71, 1.55] s.
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shown for TCV [Camenen et al.(2005)] and AUG plasmas [Ryter et al.(2003)]. Simulation of a

TCV plasma with standard transport model parameters will lead to an overestimation of the

stored energy. Thus, an analytical function is required to relate the radial deposition of ECR

beams (or any other heating source) and He-factor to take into account a reduction of the

He-factor in case of off-axis heating. This is due to the fact that the confinement scaling laws,

like the H98,y,2 scaling law [ITER Physics Expert Groups(1999a)], are based on central heating

scenario (best plasma performance).

A good example of a such plasma behavior is the TCV shot #41175 [Kirneva et al.(2012)], where

the ECR launcher is slowly moving from outer region of the plasma (ρdep = 0.75 on the toroidal

normalized grid) to the plasma central region (ρdep = 0.07) with almost constant flat-top

plasma current, as shown in Fig. 3.11.a+c. For the following simulation of the electron temper-

ature and the poloidal flux, we use prescribed profiles for the electron density ne(ρ, t ) fitted

from Thomson measurements (Fig. 3.11.b). The ECR power density profiles are approximated

by Gaussian curves with a fixed width 0.2.

To simulate the confinement degradation because of strong off-axis ECR heating, a scaling

parameter se for the He-factor is defined in the similar way as described in [Kim(2015)]:

se = 1−0.25

⎛
⎝1−exp

⎛
⎝−4 ·

(
ρ3
dep −ρ3

inv

0.03

)2⎞⎠
⎞
⎠ ·H(ρdep −ρinv ); (3.3)

where ρdep is the radial coordinate of the maximum of EC power density, ρinv is the inverse

radius used for calculation of transport coefficients, H is the Heaviside function. The scaling

factor se equals to 1 if the ECR launcher is located inside ρinv and reduces down to 0.75

if ρdep is far from the center. Parameters 0.25 and 0.03 are chosen for this particular case

to match time evolution of experimental He-factor calculated with the H98,y,2 scaling law

[ITER Physics Expert Groups(1999a)]. The first one corresponds to 75% drop in He observed

in the experiment. The second one is defined by the rate of change in the ρdep , which is rather

small in this particular case.

Thus, the reference Hre f
e -factor for the χe transport model in Eq. 2.57 in this L-mode plasma

is defined as:

Hre f
e = se ·Hre f

e (L) = se ·0.35 (3.4)

Experimental and reference He-factors are presented in Fig. 3.11.e). There is a drop in the

energy confinement as soon as the off-axis ECRH is switched on at 0.5 s. The He-factor stays

close to 0.26 (with se=0.75) up to 1 s. As the launcher radial position comes closer to ρinv = 0.3

the scaling factor se increases from 0.75 to 1. We have very good agreement between prescribed

and simulated He-factors and Te profiles are presented in Fig. 3.11.f).

It is clearly seen that the energy confinement improves while the launcher becomes more

centrally localized, whereas we fix He at 0.35. Te profiles are simulated with λTe = 3.2 and are
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close to Thomson measurements at t=0.46 s (ohmic) and t=0.71 s (ECRH) as shown in Fig. 3.12.

However with central ECR heating at t=1.55 s, an improved confinement leads to increased λTe
which is 4 from Thomson measurements instead of 3.2. This actually means that the inverse

scale length R/LTe depends on the ECR radial deposition, increasing while it becomes more

centrally located [Camenen et al.(2005), Ryter et al.(2003)], but the effect is not significant.

Instead of using constant λTe , i.e. averaged TCV value 3.2 for L-mode, it can be recalculated

according to ρdep of ECR and corresponding radial profiles of heat fluxes. However, a more

careful study of relations between λTe and the heat flux inside ρinv is required.

3.3 ASDEX Upgrade plasma modelling

We continue demonstrating the RAPTOR code capabilities as a reliable plasma simulator

with various ASDEX Upgrade plasma discharges. On the AUG tokamak, the equilibrium code

CLISTE is used for calculation of MHD equilibrium and the toroidal current density profile

[Schneider et al.(2000)]. Also the integrated data analysis (IDA) [Fischer et al.(2003)] provides

information about plasma equilibrium and profiles. The equilibrium data generated with

the experimental codes are re-processed with the CHEASE code in the format required by

RAPTOR.

3.3.1 Standard H-mode discharge

Here we consider a plasma discharge with two NBI beams. At the beginning of the flat-top

phase, the plasma switches to H-mode (at 1.5 s) and stays in this state until switching off the

NBI beams at 6.4 s.

Prescribed data set

A set of 14 equilibria is used for the description of the plasma geometry evolution. We start

simulation with RAPTOR from the middle of ramp-up, with the first available equilibria at 0.5

s, and continue to the last available equilibria at 7.5 s reaching low plasma current 0.15 MA

as presented in Fig. 3.13.a. Here, we assume that half of the total NBI power is absorbed by

electrons, and their distribution profiles are approximated with Gaussian radial profiles of

widths 0.5 with central deposition. A 10 ms time step is chosen and a simulation of the AUG

plasma duration 7 s takes 1.5 min on a standard PC.

Transitions between L- and H-modes are specified from Hα measurements and fixed at 1.5 s

and 6.4 s respectively. After analyzing a set of AUG discharges, the He-factor has been fixed

at 0.2/0.35 for L-/H-mode. Similar to TCV simulations, the line-averaged density nel is a

prescribed parameter for the transport model of the electron density. Smoothed experimental

signal of nel is the reference for the feedback controller of the model (Fig. 3.13.b). From Table

3.2, obtained with the χ2 test as for TCV simulations, the transport parameter λTe has been

fixed at 3.0 for L-mode and 2.3 for H-mode and λne is fixed at 1.0 and 0.5 for L- and H-modes
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λTe (L) 2.4 2.6 3.0 3.4 3.6
χ2 10.5 8.6 6.7 7.3 8.5

λne (L) 0.4 0.6 1.0 1.4 1.6
χ2 5.7 4.8 3.7 3.9 4.5

λTe (H) 1.7 1.9 2.3 2.7 2.9
χ2 8.7 7.4 7.0 10.0 12.1

λne (H) 0.3 0.4 0.5 0.7 0.9
χ2 5.3 4.5 4.1 4.8 7.2

Table 3.2: The χ2 tests for various AUG λTe ,ne to define the goodness of the fit between RAPTOR
simulated and Thomson measured Te and ne profiles.

correspondingly. For the RAPTOR sawtooth model, the critical shear is fixed at 0.3, typical

value used for AUG plasmas simulations in RAPTOR to have sufficient time for recovery of the

q profile and to match the experimental Te crashes.

Predicted parameters

As it can be seen from Fig. 3.13.c, the time evolution of the RAPTOR q profile shows a good

agreement with the simulation results of the equilibrium reconstruction code CLISTE at

various radial coordinates. In addition to q profiles checked at radial coordinates [0.01, 0.4, 0.8]

on the RAPTOR toroidal normalized grid ρ̂, we consider the safety factor q at Φ/Φb = 0.95,

which represents the safety factor at the flux surface which contains 95% of the toroidal flux Φ,

instead of verifying the parameter q95. The CHEASE code (and therefore, the equilibrium data

provided to RAPTOR) does not consider the X-point configuration and, thus, assumes that the

plasma is limited and the safety factor q has finite value at the edge.

The simulated plasma internal inductance li (3) follows the experimental one very well for most

of the plasma discharge (Fig. 3.13.e). We verify the time evolution of the internal inductance

provided by RAPTOR comparing it with CLISTE output and a discrete set of li values obtained

from CHEASE equilibrium data. Transition from L- to H-mode at 1.5 s is accompanied by

a drop in the internal inductance li and is simulated both by RAPTOR and CLISTE. At the

flat-top and up to half of the ramp-down phase, li from RAPTOR and CLISTE/CHEASE are

very close to each other, showing similar values and trends. After 6.4 s we observe strong

difference between RAPTOR and CLISTE/CHEASE internal inductance. The CLISTE code

uses only the magnetic measurements to solve the Grad–Shafranov equilibrium equation. As

in the case of LIUQE for TCV, the current density profile resistive diffusion is not taken into

account. It might explain the difference in li evolution from 6.4 to 6.6.s where, after switching

off the NBI beam, redistribution of the current density happens. Also, at 6.6 s the plasma

is diverted with the plasma boundary elongation κb ≈ 1.5, whereas at 6.8 s it is limited with

κb ≈ 1.3. It is known that in case of solving the Grad–Shafranov equilibrium equation for a

near-circular plasma, the accuracy of the reconstructed poloidal beta βp and the internal

inductance li values strongly depends on the plasma elongation decreasing if plasma becomes

closer to circular [Hofmann et al.(1988), Lao et al.(1985b), Cooper and Wootton(1982)]. Thus,
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Figure 3.13: Prescribed time traces for the AUG shot #33589: the plasma current Ip and the
NBI power PNBI ; the line-averaged density nel and the He-factor. Predicted parameters: the
safety factor q(ρ) and the internal inductance li validated with CLISTE output; the electron
density ne and temperature Te checked with Thomson measurements.

Figure 3.14: Electron temperaure Te and density ne profiles from Thomson measurements for
the AUG shot #33589 and RAPTOR simulation results at t = [0.75, 4.0, 6.8] s.
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the internal inductance li provided by the CLISTE code for the time period from 6.6 s to 6.8 s

might be estimated inaccurately.

From Fig. 3.13.d+f it can be seen that the electron density ne and temperature Te simulated

with RAPTOR are within the experimental error bars. We check their time evolution at two

radial coordinates: close to the center ρ̂ = 0.1 and around the pedestal ρ̂ = 0.8. Duration of

transition phases between L- and H-modes is equal to 0.1 s. This value is suitable both for the

electron density and temperature time evolution. The radial profiles for Te and ne at several

time instants are demonstrated in Fig. 3.14. The pedestal can be easily recognized in H-mode

at 4 s.

3.3.2 AUG H-mode discharge with time-varying transport gradients

For further development of the model, predictive simulations for ψ and Te have been per-

formed for the AUG shot #32546. Here in addition to NBI, we have ECRH heating. ECRH power

density profiles are approximated with Gaussian curves with central deposition and widths

0.04, forming narrow profiles. As in the previous AUG simulation, we assume that electrons

absorbed half of NBI and total ECRH heating power. Electron density profiles are fitted from

Thomson measurements. The transport parameter λTe is fixed at 3.0/2.3 for L-/H-mode, and

He is equal to 0.2/0.35 for L-/H-mode, as in the previous section. Transition from L- to H-mode

is fixed at 0.7 s according to the Hα signal. In the ramp-down phase, due to W accumulation

and to match the experimental drop in electron temperature Te , the He factor is changed from

0.35 to 0.2 at 8.1 s instead of 8.55 s, when H-L transition is observed with the Hα signal. Also to

mimic the flattening of the electron temperature profiles in the time period [8.1 8.55] s, λTe
takes a value of 1.2. These changes are not “predicted” within the RAPTOR model at this stage,

one would need an advanced impurity and ELM control model. However, it would be rapidly

observed in real-time and therefore can be adapted easily in real-time.

With this predictive simulation, which results are presented in Fig. 3.15, we have obtained a

very good agreement with the safety factor and the internal inductance, provided by CLISTE

and CHEASE codes. The electron temperature from RAPTOR at ρ̂ = 0.1 is slightly lower than

Thomson measurements, whereas at ρ̂ = 0.8 they are very close during the entire discharge. If

we look closer to Te profiles presented in Fig. 3.16.a) , it is clear that some profiles are more

peaked in the very central region, whereas in the “stiff” region (between ρ̂ ≈ 0.2 and ρ̂ ≈ 0.8)

electron temperature profiles from RAPTOR follow Thomson measurements very well both in

L- and H-mode. As it has been demonstrated also with the TCV shot #41175, the presence of

ECRH might lead to centrally peaked Te profiles.

This shot is also interesting because of impurity accumulation in the ramp-down phase, which

leads to flattening in Te profiles and sudden drop in li . To get the Te profiles evolution similar

to experimental measurements, we need to reduce λTe from 2.3 up to 1.2 after 8.0 s. In Fig.

3.16.b) we demonstrate Te profiles predicted by RAPTOR, which are very close to Thomson

measurements. For this simulation, we prescribe the time evolution of λTe based on the
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Figure 3.15: Prescribed time traces for the AUG shot #32546: the plasma current Ip , NBI
PNBI and ECRH PECRH heating powers ; the He-factor; the electron density ne fitted from
Thomson measurements. Predicted parameters: the safety factor q(ρ) and the internal induc-
tance li validated with CLISTE output; the electron temperature Te checked with Thomson
measurements.

Figure 3.16: Electron temperature Te profiles from Thomson measurements for the AUG
shot #32546 and RAPTOR simulation results a) at t = [0.6, 4, 7] s with λTe = 3.0/2.3/2.3 for
L-/H-/H-modes and b) at t = [8.1, 8.3, 8.7] s with λTe = 1.2/1.2/3.0 for Te profiles flattening.
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experimental measurements. However, as a further step of the model development, λTe can be

defined as a function of the electron heat flux [Ryter et al.(2003)]. Thus, if a strong reduction is

observed from experiment (or predicted by a simulation), λTe will be automatically decreased.

We will also show a capability of the RAPTOR code to simulate hollow temperature profiles

with modelling of JET plasmas in Subec. 3.4.2.

3.4 JET plasma modelling

This section is dedicated to simulations of JET plasma discharges. Since ASDEX Upgrade and

JET tokamaks have similar aspect ratio and collisionality, we expect that the same transport

model parameters will be appropriate for JET plasma modelling too. There are two main

external heating sources for JET: NBI beams and ICRH waves. For JET discharges with central

ICRH we expect to have rather long sawtooth period, much longer than the heat confinement

time, because of fast ions stabilization with the NBI and ICR core heating [Angioni et al.(2002)].

For the following JET simulations, the critical shear is fixed at 0.4 to have a few big sawtooth

crashes. The equilibrium data required by RAPTOR are provided by the equilibrium recon-

struction code EFIT [Lao et al.(1985a)] and re-processed by the CHEASE code in the same way

as for TCV and AUG.

3.4.1 An entire shot simulation

Here we present the simulation of the JET shot #92207 with long ramp-up and -down phases

with dominant NBH and ICRH.

Prescribed parameters

A set of 19 EFIT equilibria is used to describe the discharge from 42 s to 62 s (Fig. 3.17.a).

We approximate power density profiles for NBH with broad Gaussian curves with width

wd = 0.4 and central deposition. Power density profiles for ICRH have central deposition

and width 0.15. For JET the PENCIL code [Stubberfield and Watkins(1987)] is used for calcu-

lation of NBI heating profiles and its absorption by various plasma species, and the PION

code [Eriksson et al.(1998)] is used for ICRH. According to experimental signals stored in JET

database, electrons absorb, on average, half of the total input power. Transitions from L-

to H-mode and back are fixed at 47 s and 52 s correspondingly with duration 1 s to stay in

agreement with the Hα signal. Simulation of the JET plasma with a 10 ms time step takes 4

min on a standard PC.

The transport parameters λTe and λne are equal to 3.0/2.3 and 1.0/0.5 for L-/H-mode as for

AUG simulations. The He-factor from the experimental databases is rather close to L-/H-

values used for AUG discharges too. However, H-mode is characterized by two values: 0.35

(as for AUG H-mode) for maximum NBI power and 0.25 after 50.5 s with a half of the NBI

power Fig. 3.17.b. It might be related to the power redistribution between electrons and ions
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Figure 3.17: Prescribed time traces for the JET shot #92207: the plasma current Ip , the NBI
power PNBI and the ICR power PICR ; the line-averaged density nel and the He-factor. Pre-
dicted parameters: the safety factor q(ρ) and the internal inductance li validated with EFIT
output; the electron density ne and temperature Te checked with Thomson measurements at
ρ = 0.1 and around the pedestal area ρ = 0.8.

Figure 3.18: Electron temperautre Te and density ne from Thomson measurements for JET
shot #92207 and RAPTOR simulation results at t = [45, 50, 52, 60] s.
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after a huge drop in the NBI power. According to PENCIL calculations, after the NBI drop

60% of absorbed power goes to electrons, but it would be worth analysing in more details. In

particular, electron and ion heating can be estimated with analytical formulas which include

dependence on the beam energy and the electron temperature [Wesson(2004)] (and references

therein related to the chapter focused on NBH), thus helping to get a correct fractions of the

absorbed power. The absorbed power ratio can be written as:

Pi
Pe

∼ T 3/2
e

wb
(3.5)

where wb is the beam energy. Thus, with higher electron temperature more NBH power is

absorbed by ions.

Predicted parameters

Firstly, as for TCV and AUG, we check the time evolution of the safety factor q at various radial

coordinates and li . As it can be seen from Fig. 3.17, up to the middle of the ramp-down phase

there is good agreement between RAPTOR and EFIT simulation results. However, starting

from 56 s, q from RAPTOR increases much faster than the one from EFIT. Further analysis is

required to understand the main reasons, leading to the strong change in slope of q profiles

provided by EFIT and to check the input parameters assumed for EFIT late phase.

With Thomson measurements we can verify the time evolution of the electron temperature

Te and density ne profiles presented in Fig. 3.18. The prescribed shapes and pedestal posi-

tion corresponds to experimental observations. We also see that RAPTOR provides a good

prediction for the profiles at the very edge where we lack experimental measurements.

Influence of ρinv definition

Note that as well as for TCV and AUG plasmas modelling, the inversion radius ρinv is defined

as a radial coordinate of q = 1 surface before a sawtooth crash. Thus transport between

ρinv and ρ = 0 is defined by a constant electron heat diffusivity χST equal to 5 [m2/s] for JET

plasmas. We have a few big sawtooth crashes and it takes around 0.5 s for the shear to reach

its critical value 0.4. For this simulation ρinv is around 0.35. In Fig. 3.18 it can be mentioned

that Te profiles simulated with RAPTOR within ρinv are more flat than profiles observed with

the Thomson scattering system.

If we fix the inverse radius at ρinv = 0.2, i.e. assume that ρinv < ρq=1 the electron heat diffusiv-

ity χe is partly defined with the logarithmic gradient λTe inside the sawtooth affected area (the

reconnection radius), obtained temperature profiles match the experimental measurements

much better in time and space as shown in Fig. 3.19. The transport model can be extended for

this case with a special radial-dependent λTe for the region inside ρinv to vary the Te profile

gradually from λTe to a flat profile. Note that a more detailed study with coherent averaging of

profiles just before and right after the sawtooth crashes should be performed.
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Figure 3.19: Electron temperature time traces and profiles simulated with RAPTOR in case
of time-varying ρinv (red in the top plot and black in the bottom plots) and fixed ρinv = 0.2
(green) for the JET shot #92207. Experimental Thomson measurements are marked by dots
(blue in the top plot and other colors in the bottom plots).

Figure 3.20: Electron temperature profiles for the JET shot #92215 simulated with RAPTOR
with extra central radiated power for the time period 52-53 s. Thomson measurements are
marked in blue dots. Normalized profile for the radiated power density Prad is marked in
dashed black line.

70



3.5. Summary

3.4.2 Simulation of hollow profiles for the electron temperature

Another important issue for profiles modelling, and JET plasmas in particular, is the generation

of hollow electron temperature profiles. Such profiles are usually formed in case of strong

central radiation following impurity accumulation, thus cooling of the plasma core which may

lead to a plasma disruption [De Vries et al.(2014)]. Since in the RAPTOR code we do not have a

proper model for impurity transport and accumulation, the radiated power is modeled mainly

with the Bremsstrahlung model. We can add manually an external source of the radiated

power to simulate increased radiation for electrons because of impurity accumulation.

In Fig. 3.20, predictive simulation of hollow profiles for the JET shot #92215 is presented. A

constant source of radiated power (4.5 MW in total) is added in the plasma center. According to

the JET experimental signals, integrated Bremsstrahlung radiation at 52-53 s is around 0.2 MW,

close to the values obtained with RAPTOR. Total radiated power measured by bolometers is

around 8 MW. For simulation we use 4.5 MW, assuming that half of radiated power is generated

by electrons through interaction with heavier plasma species. More accurate estimation of

distribution of the radiated power between plasma compounds requires profiles of impurities.

Since for the Te diffusion equation Prad is a sink, negative heat flux is generated in the plasma

center. For L-mode plasma simulation we use λTe = 2.0 instead of 3.0 to match experimental

profiles. It can be explained by a reduction of the heat flux because of a strong sink in the

center.

3.5 Summary

In this chapter we demonstrate the capabilities of the RAPTOR code to predict the evolution

of the poloidal flux and the electron temperature and density in space and time. Thanks to the

code upgrades, presented in Chapter 2, the influence of the plasma equilibrium and geometry

on plasma profiles is taken into account during simulations of entire plasma discharges, i.e.

from ramp-up to ramp-down. The gradient-based transport model, described in Sec. 2.6,

enable fast simulations of a plasma in low (L) and high (H) confinement modes with a small

set of prescribed parameters, most of them a constant over the entire discharge. With the

simulations presented in this chapter, we are aiming to reach several goals: validation of the

new transport models implemented into the RAPTOR code; determination of typical ranges

for transport parameters for realistic simulations of TCV, AUG and JET plasma profiles; analysis

of special cases for which they do not match.

With the transport coefficients, described in Sec. 2.6, the shape of the plasma profiles for

electrons in the “stiff” region is characterized by a constant logarithmic gradient. Since there

are no scaling laws to estimate the height of the pedestal for Te and ne profiles, it is defined

with integrated parameters prescribed from experiments: the confinement factor for electron

energy He for Te profiles and the line-averaged density nel for ne profiles. Assuming that there

is no local improvement or degradation in electron energy confinement, we can fix He for L-

71



Chapter 3. Entire shot simulations with the RAPTOR code

and H-mode separately. But for nel full time evolution is required.

Starting with TCV simulations, presented in Sec. 3.2, we validate transport models for

Te and ne , since initially they have been developed for TCV plasmas [Sauter et al.(2014),

Kim et al.(2016)]. Typical gradients λTe ,ne for the “stiff” region have been defined and success-

fully tested in L- and H-mode plasmas. We have found that λTe = 3.2/2.3 and λne = 2.0/1.0 for

L-/H-mode give the best match with Thomson measurements. Also He factor has been fixed

at 0.35 and 0.45 for L- and H-mode correspondingly. RAPTOR simulation results have been

validated with LIUQE output and Thomson measurements, showing very good agreement for

various plasma parameters and heating conditions. With similar approach, for AUG plasmas

we have defined typical values of λTe ,ne , where λTe = 3.0/2.3 and λne = 1.0/0.5 for L-/H-mode.

The values of λTe obtained for AUG are very similar as for TCV, as expected, while the values

of λne a factor of two smaller, both in L- and H-modes. The latter might be explained by the

fact that the ratio Te/Ti is lower for AUG than for TCV and the critical R/Lne is lower as well. A

more detailed analysis would be worth while but is out of scope of this work. It is important to

note that the model works equally well on AUG as on TCV, for entire discharges. This is the

case for JET as well. For AUG simulations, He is fixed at 0.2/0.35 for L-/H-modes, while for

JET is it 0.2 for L-mode and 0.35/0.25 for H-mode. The last variation comes from NBI heating,

which higher level leads to higher He , what might be related to the energy exchange between

electrons and ions. This effect can be included into RAPTOR simulations at a later stage using

Eq. 3.5 for the absorbed power ratio. For JET simulations, the same values of λTe ,ne as for

AUG have been obtained, confirming the validity of this new model. With the few parameters,

RAPTOR simulation results match the experimental profiles very well (from center to the very

edge) in ramp-up, flat-top and ramp-down phases, for TCV, ASDEX Upgrade and JET L- and

H-modes and transition phases.

In this chapter, we have also discussed several special cases when the set of parameters de-

scribed above is not valid. NTMs can change locally Te and ne profiles, leading to heat and

particle confinement degradation. Here we do not simulate NTMs by RAPTOR, therefore

profiles of the transport coefficients are not affected by their presence. It results in some

difference in Te and ne profiles shape predicted by RAPTOR and measured by the Thomson

diagnostic, as it has been shown with TCV H-mode simulations in Subsec. 3.2.2. This problem

can be solved by consistent simulations of NTMs and plasma kinetic profiles (under devel-

opment). Off-axis heating leads to heat confinement degradation (as compared to scaling

laws), thus an option to have He factor depending on the radial deposition of ECRH has been

added, as described in Subsec. 3.2.3. In case of strong impurity accumulation, Te and ne
profiles can become flat or even hollow, as it has been shown for AUG and JET shots in Subsec.

3.3.2 and 3.4.2. We can reproduce shape of Te profiles by adjusting λTe . Profiles flattening is

caused by a reduction of the heat flux in the “stiff” region, thus, the heat flux can be used as

an indicator defining periods of reduced λTe . Of course this could be coupled to the neural

network transport models like QuaLiKiz [Bourdelle et al.(2016)] which is providing expected

heat flux.
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Thus, we conclude that with the obtained λTe ,ne , realistic shape for Te and ne profiles can be

predicted for TCV, AUG and JET plasmas including the pedestal regions. Future upgrades of the

model are related to proper NTMs simulation and implementation of the radial-dependent

λTe ,ne to take into account strong changes in the heat flux. To define the pedestal height,

parameters based on experiments, He and nel , are required. However, if the μTe ,ne is known

from a simulation, and there is an experiment with similar density evolution, then for mod-

elling of this experiment, known μTe ,ne can be used. Thus we can save CPU time, required for

calculations, since the PI controller to estimate μTe ,ne is not needed anymore. One could also

use, in H-modes, information about the expected pedestal height and width from EPED-like

models [Snyder et al.(2011), Meneghini et al.(2017)].
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Development of non-disruptive operational scenarios is an important issue for future ma-

chines like ITER. Because of the large amount of energy stored in burning plasmas, significant

heat fluxes to the first wall of a machine are expected during disruptions and can lead to

serious damages of the first wall. Moreover, the vacuum vessel can experience critical elec-

tromagnetic forces produced by large poloidal currents generated in the machine structures

[Wesson(2004), ITER Physics Expert Groups(1999b)]. Since the construction of future toka-

maks allows only a very limited amount of disruptions at the full plasma current Ip , one of

the most important research directions for existing machines is the development of specific

techniques for disruption avoidance and plasma control. Design of feedback controllers

and their integration into tokamaks magnetic and kinetic control systems is an essential

part of ongoing experimental plasma research [Humphreys et al.(2015), Moreau et al.(2011),

Barton et al.(2015)]. For a successful operation of a tokamak, a plasma must be well controlled

during all stages of the discharge: ramp-up, flat-top and ramp-down. Stabilization of the

plasma shape and position and a proper kinetic pressure/power balance have to be reached

during the initial stage of a plasma discharge while the plasma thermal energy increases with

plasma current. Various problems, like ensuring of MHD stability and sufficient growth of

the plasma density, have to be solved to bring a plasma to a desired state at the end of this

stage and, thus, at the beginning of the flat-top phase. Scenario development for most existing

tokamaks is focusing on flat-top, the high performance phase of a plasma discharge, where

the main plasma characteristics like MHD stability and particle and heat confinement are

investigated. For ITER, the burning plasma will be developed during the flat-top phase, thus

specific techniques for the plasma burning start and termination have to be determined. The

main goal of the last stage of a plasma discharge is a safe plasma shut-down, which includes

the termination from the burning phase in case of presence of fusion during the main phase.

This thesis contributes to the development of termination scenarios for TCV, AUG and JET

tokamaks.

Plasma disruptions are the most undesirable events during the ramp-down phase. Therefore

the main goal of the development of termination scenarios is to find a route to ramp down si-
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multaneously the plasma current Ip , thermal energy and particle density while keeping plasma

position and shape well controlled and avoiding any disruptions. The forces, acting on the vac-

uum vessel, are proportional to I 2
p in case of disruptions which is why the plasma current has to

be reduced quickly [ITER Physics Expert Groups(1999b)]. Presently termination scenarios for

different tokamaks are designed with the help of experimental and numerical studies. Full dis-

charge simulations with the DINA [Khayrutdinov and Lukash(1993), Favez et al.(2002)] code

coupled with CRONOS [Basiuk et al.(2003)] and CORSICA [Crotinger et al.(1997)] have been

performed for ITER [Kim et al.(2009), Casper et al.(2014)]. Termination phase studies with the

JETTO [Cenacchi et al.(1988)] code and the JINTRAC suite of codes [Romanelli et al.(2014)]

have been obtained for JET [Nunes et al.(2011), Bizzaro et al.(2016), Koechl et al.(2017)]. For

better understanding of transport in the current ramp phases, numerical studies with the

ASTRA code [Pereverzev and Yushmanov(2002)] have been performed for the ASDEX Upgrade

tokamak (AUG) [Fable et al.(2013), Fietz et al.(2013)]. However, these numerical and experi-

mental tests have been carried out only for a few particular cases without a systematic study

of various ramp-down trajectories. Thus a trajectory, optimal in terms of the phase duration,

plasma geometry etc., can be easily missed.

This chapter is dedicated to the development and testing of an automated numerical algorithm

for an optimization of the ramp-down phase of a tokamak plasma. The goal of the present

optimization procedure is to minimize the plasma current as fast as possible while avoiding

any disruptions but staying well below technical limits specific for a machine. Note that the

goal is implemented through the minimization of a cost function. We will show that it is

relatively easy to change this cost function to match different desired goals. From theory,

scientists know about general physical issues which can lead to plasma instabilities and result

in plasma disruptions. These physical issues are common to most tokamaks. However, each

machine also has some special technical characteristics and a specific operating domain with

well controlled plasma. Thus, a combination of physical and technical characteristics, which

will be discussed in detail below in Sec. 4.1, defines an operational domain which is safe in the

sense that the plasma is non-disruptive. We will show that the RAPTOR code, with updates

presented in Chapter 2 and validated in Chapter 3, can be used for a ramp-down optimization

for the TCV, AUG and JET tokamaks. Due to its short wall-clock simulation time, the RAPTOR

code is an efficient tool for automated ramp-down optimization, since many termination

trajectories can be tested in a reasonable time (hours). Thanks to extensions in the RAPTOR

code, developed as a part of this thesis, we can predict evolution of the plasma state during the

ramp-down phase taking into account dynamics of the plasma geometry and electron heat

and particle profiles. Our numerical study of this problem shows that a fast decrease of the

plasma elongation during the current ramp-down can help in reducing the plasma internal

inductance, thus reducing the risk of developing of a plasma vertical instability. This effect

is also very important for the ITER operation in future as it was shown in the experimental

studies of the ITER demonstration discharges [Sips et al.(2009)]. An early transition from H-

to L-mode allows to reduce the drop in poloidal beta which is also important for plasma MHD

stability and control. We show how these complex nonlinear interactions can be optimized
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automatically using relevant cost functions and constraints for various tokamaks.

The chapter is organized as follows. Firstly in Sec. 4.1, we discuss the main problems during

ramp-down. Then the optimization algorithm is presented in Sec. 4.2. In particular, optimiza-

tion parameters and the cost and constraint functions are defined. Then we present results

of the numerical optimization for TCV in Sec. 4.3, AUG in Sec. 4.4 and JET in Sec. 4.5, in

addition discussing performed and possible experimental tests. Sec. 4.6 is dedicated to testing

sensitivity of the optimized trajectories to the transport model parameters and geometrical

quantities. In Sec. 4.7 the chapter summary is provided.

4.1 Overview of the ramp-down issues for a tokamak plasma

The power sources and plasma current decrease during the termination phase causing fast

changes in plasma state, supplemented by a strong coupling between physical parameters

and technical requirements. One of the difficulties is the control of the plasma position. While

the plasma current decreases, the internal inductance increases leading to a smaller efficiency

of the vertical control system. If the internal inductance increases too quickly, so that the

vertical control system can no longer stabilize the vertical instability, then the plasma will

disrupt, typically with a vertical displacement event (VDE). VDEs are characterized as the

most dangerous plasma events for ITER [Putvinski et al.(1997)]. However a proper evolution

of plasma shaping can reduce the growth of the internal inductance. Simulations of ITER

plasma [Kim et al.(2009)] and experiments on JET [Nunes et al.(2011)] have shown a strong

effect of elongation on the internal inductance behavior.

In addition to the vertical control, the radial position control has to be carefully implemented.

A rate of change in a vertical magnetic field is limited by the rate of change in currents in the

poloidal field coils. By definition from [Shafranov(1966), Wesson(2004)] the vertical magnetic

field is approximately given by

Bv = μ0IP
4πR

(
ln

(
8R

aκ0.5

)
+βp +0.5li (3)−1.5

)
(4.1)

Since it is a function of plasma current, internal inductance, elongation and βpol , radial

position control can be lost in case of rapid changes in the mentioned parameters. As a conse-

quence, plasma position and shape control systems should be developed using knowledge

of the evolution of the plasma profiles, i.e. integration of magnetic and kinetic control is

required.

For a good performance, plasmas are generally operated in a high confinement mode (H-

mode). During the termination phase, with the reduction in the plasma current and mostly

auxiliary power, it comes back to a low confinement mode (L-mode). Because of the transition

from H- to L-mode, the plasma experiences a fast decrease of energy and pressure. In par-

ticular, it can lead to a significant drop in βpol , faster than can be compensated by reducing

the vertical field and the plasma can make contact with the inner wall [Lister et al.(2013)]. In
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[Leonov et al.(2010)] two scenarios of ITER plasma termination were demonstrated: with H-L

transition and in pure H-mode. It was shown that the internal inductance in the first case stays

lower, whereas the drop in βpol was smaller in the second case. Therefore the moment of the

H-L transition is quite important for a plasma position control and for a safe termination and

it has to be specifically defined as will be shown in Sec 4.4. It should be mentioned that a fast

growth of radiated power can also lead to H-L transition [ITER Physics Expert Groups(1999a)].

During the plasma current ramp-down, the electron density has to be decreased to avoid

disruptions caused by reaching the Greenwald density limit which depends on the plasma

current. At the same time, the power load on the divertor has to be controlled. The dependence

of the SOL and divertor parameters, like divertor power load, normalized neutral pressure

and divertor neutral pressure, on the fueling scenario was shown in [Imbeaux et al.(2011)].

The core density can be controlled by pellets injection, whereas edge density is influenced by

neutral gas puffing. In particular during the termination of an ITER plasma, transition from a

regime with 80% of gas puff and 20% of core fueling to one with only pellet injection allows

plasmas to stay attached with the normalized neutral pressure lower than one. However the

control of density and its simulation is left for future studies. At this stage we assume that

the density control system can provide the required line-averaged density. We only enforce

a constraint such that it does not violate the Greenwald density limit or a fraction of it for

safety margin. Note that this would lead to a constraint on the Ip ramp rate since the particle

confinement time is relatively long up to 5-10 times greater than the energy confinement time

[Becker(1988)].

Efficient tools for a systematic analysis of plasma disruptions have been developed in re-

cent years. Multi-machine disruption database collect the information through analysing

experimental data [De Vries et al.(2012), De Vries et al.(2014)] and provided by automated al-

gorithms of disruptions detection and prediction [Pau et al.(2017)]. This approach allows

to extend our knowledge on physical processes of disruptions and to define special issues,

which are common for existing machines and might be used for the non-disruptive scenario

development on future devices. In particular for the ramp-down phase, i.e. in case of fast

changes in the plasma shape and equilibrium, machine operational limits can be extracted

from the disruption database.

We are also interested in a proper control of plasma instabilities to avoid such unfavorable

events for a plasma performance and a machine, like strong heat and particle confinement

degradation because of the impurity accumulation or a massive power exhaust to the divertor

plates. The latter can be controlled with a gas puff or pellet injection, changing ELMs frequency

[Horton et al.(2004)]. Also the efficiency of a fast vertical plasma motion (vertical kicks) in

ELMs frequency control has been demonstrated on JET [De la Luna et al.(2016)]. The sawtooth

destabilization by proper heating scenarios may prevent an impurity accumulation in the

plasma core [Nave et al.(2003)].
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Figure 4.1: The scheme of the nonlinear procedure for the actuator trajectories optimization.
Reproduced from [Felici(2011)].

4.2 Formulation of the optimization problem

An optimization of the plasma discharge can be defined as the determination of an optimal

time evolution of the plasma parameters to lead a plasma to a desired state keeping it within

the specific limits: physical ones (to avoid appearance of physical events which can lead to

instabilities and then to disruptions) and technical ones (to be able to use the results of the

optimization on a real machine). The parameters to optimize are related to those controllable

inputs that have the capability of significantly changing the plasma state. Such actuators can

act on a plasma either from inside (like the power of auxiliary heating and the noninductive

current drive, particle injection) or from outside (like a gas flux, plasma shaping parameters).

The profile of the poloidal flux ψ is strongly influenced by the plasma current density (for

which the ohmic part depends on T 3/2
e through the plasma conductivity), whereas the electron

temperature profile Te depends mainly on power density profiles, impurity accumulation and

geometrical quantities. Here we define the optimization goal through the minimization of

a cost function. The latter can include a wide range of plasma parameters: plasma current,

plasma elongation, EC, NBI heating or current drive power, electron density, etc.

An optimization of the ramp-up phase of the plasma discharge with plasma current and EC

heating as actuators has already been carried out with the RAPTOR code [Felici et al.(2012)].

In particular, the simulation showed that a plasma current overshoot with early heating allows

to get a Vloop radial profile close to stationary state and a safety factor profile appropriate for a

hybrid scenario operation. In the present work for the ramp-down optimization, we use the

same method as in [Felici et al.(2012)].

In Fig. 4.1 a scheme of the optimization procedure is presented. Input trajectories are the

parameters for which we need to find an optimal time evolution, so they can also be called

optimization parameters. Various plasma actuators (like the plasma current Ip , input powers,

geometrical quantities) used by RAPTOR as prescribed parameters can be included to the

set of optimization parameters. These parameters are sent to the “Tokamak profile simula-

tor”, it is the RAPTOR code in our case. As a result, the simulator provides the plasma state

trajectories. For RAPTOR, solving the diffusion equations Eq. 2.36-2.40, we can obtain the

poloidal flux ψ(ρ, t), the electron and ion temperatures Te,i (ρ, t) and densities ne,i (ρ, t ) and
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calculate various plasma parameters, like the internal inductance li (ρ, t ) and normalized pres-

sure βN (ρ, t ), based on these quantities. Then there is an optimization box, where MATLAB

intrinsic optimization algorithms are applied to the proposed plasma state.

Firstly, a specific cost function has to be defined to represent the goal of the optimization. The

optimization algorithm minimizes the cost function value to reach a specific plasma state. For

the optimization of the ramp-up phase for example, it can be a specific profile for the safety

factor q at the end of ramp-up. Thus, the cost function value reflects how close the q profile

from RAPTOR is to the reference profile. The constraint function shows if the plasma with

provided state trajectories is within the required limits or not. The optimization algorithm

calculates cost and constraint functions for the current plasma state and also their derivatives

over optimization parameters to define the optimization direction. And as a result it gives

updated values for the optimization parameters which will provide the lowest value for the

cost function to have plasma within the required constraints. This optimization procedure

can be applied for any part of the discharge, in this work we focus on the optimization of the

ramp-down phase.

4.2.1 Optimization parameters

First, a set of parameters to be optimized has to be defined. In this work, we focus on three

plasma parameters: the plasma current Ip , the plasma boundary elongation κb and the time

instant of the transition from H- to L-mode tHL .

Typically, in case of a ramp-up optimization, we are interested in reaching a specific plasma

state, in particular characterized by the safety factor q profile [Felici et al.(2012), Xu et al.(2013)].

Global and local heat and particle confinement are defined by the plasma state at the begin-

ning of the flat-top phase, thus it is very sensitive to the q profile shape [Challis et al.(2002)].

During the ramp-up phase, the safety factor q profile evolves under the influence of the

ramp-up rate of the plasma current and various current drive sources. In contrast to ramp-up,

during the ramp-down phase we are not necessarily interested in a specific shape of q-profile.

It is more important to avoid rational surfaces at high currents (q95 ≈ 3) to avoid generation of

MHD instabilities. The main goal for ramp-down to find an optimal trajectory is to decrease

the plasma current. Thus, for the optimization we use the total plasma current Ip but not a

profile as an optimization parameter.

As it was mentioned above in Sec. 4.1, growth of the plasma internal inductance can be well

controlled with an appropriate plasma shaping. Therefore, geometrical quantities like the

elongation κ, the triangularity δ, the minor radius a are essential parameters for the ramp-

down optimization. As it was discussed in Sec. 2.2, RAPTOR uses prescribed equilibrium data

generated by an external equilibrium-reconstruction code. To test ramp-down trajectories

with various plasma shapes, the optimization algorithm has to update these equilibrium

data automatically. Thus, we need analytical relations to described connections between

geometrical quantities and the equilibrium parameters required by RAPTOR. Because of strong
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nonlinear relations between these parameters, analytical formulas are difficult to develop,

and an independent study, similar to the numerical analysis described in [Sauter(2016)], is

required but it is out of scope of this work. To simplify the optimization procedure, the

plasma boundary elongation κb is the only geometrical optimization parameter, whereas the

plasma triangularity and the minor radius are assumed to be fixed at the reference values

during the optimization. The reference values for the geometrical quantities used in Eqs.

2.36-2.40 are defined according to provided CHEASE equilibrium data. These profiles are

scaled proportionally to the plasma boundary elongation κb during the optimization of its

trajectory. We can verify the optimized trajectory when we recompute the geometrical profiles

with CHEASE solution using the optimized elongation and the RAPTOR pressure and current

density profiles. Note that a strong reduction in the plasma elongation with fixed plasma

triangularity and minor radius are hardly achievable in real experiments. At this stage, the

optimization algorithm does not allow variation in these parameters, but it should be included

at the next step allowing more realistic prediction of the plasma shape evolution.

A plasma state is rather sensitive to the transition from H- to L-mode, and a time instant of this

transition has to be carefully defined, especially for big devices like ITER [Imbeaux et al.(2011),

Leonov et al.(2010)]. Therefore, tHL has been chosen as an extra optimization parameter in

case of the current ramp-down in H-mode. We define the H- to L-mode transition as a time

instant when the input power Pin ≤ PLH where PLH represents a threshold power for L-H

transition, calculated according to the scaling law, presented in Eq. 2.59. This law does not

take into account the plasma energy hysteresis during the H-L transition [Hinton(1991)]. In

this work, we simulate the H-L transition with the Pin drop from 1.1PLH to 0.9PLH . The time

evolution of plasma profiles from H- to L-modes is described on time scales used for TCV,

AUG and JET simulations described in Chapter 3. Prescribed power trajectories are updated

with tHL during the optimization in the way to have the input power higher than PLH before

the transition and lower than PLH after it.

In the optimization algorithm, the input vector of the time-dependent actuator trajectories

[Ip (t), κb(t), tHL] is parametrized by a vector containing a discrete set of scalar parameters.

The trajectory ui (t ) for the i th actuator is written as

ui (t ) =
ni∑
j
Pi j (t )pi , j (4.2)

where Pi j (t ) is a scalar function of time (piecewise linear or piecewise constant function with

a finite support and maximum Pi j (t) = 1), the scalar pi , j gives the weight of the associated

function, ni is the number of parameters which define the i th actuator trajectory. For example,

we need to find an optimal trajectory for the Ip (t) 2 s ramp-down from its flattop value (≈ 1

MA) to much lower value (≈ 100 kA). The ramp down phase is discretized in time by nIp points

and defined time instants tknot . The vector pIp contains nIp elements which correspond to

Ip values at time instants tknot . The optimization algorithm starts from pIp with Ip reference

values. Using Pi j (t ), the time-dependent trajectory Ip (t ) is constructed from pIp . More details
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can be found in [Felici et al.(2012)].

4.2.2 The cost function

Depending on a problem, different cost functions can be used. Here it is defined as a sum of

the time integrals of the total plasma current Ip , the total input power Ptot and the boundary

elongation κ with weights νIp , νPtot , νκb :

J = νIp

∫tend
tRD

Ip (t )dt∫tend
tRD

I re fp (t )dt
+νPtot

∫tend
tRD

Ptot (t )dt∫tend
tRD

Pre f
tot (t )dt

+νκb

∫tend
tRD

κb(t )dt∫tend
tRD

κ
re f
b (t )dt

(4.3)

Here the optimization parameters have different scales. A typical scale for Ip and Ptot is 106,

whereas for κb it is 100. Therefore terms in Eq. 4.3 are normalized with their corresponding

reference values, and J = 1 at the first iteration of the optimization algorithm when choosing

νIp , νPtot and νκb such that their sum is 1.

In this particular task, we integrate over the ramp-down phase, i.e. from the start of the Ip
ramp-down tRD to the end of a plasma shot tend . The optimization goal is to decrease the

plasma current and/or input power and/or the plasma elongation as fast as possible to reduce

the amount of energy stored in the plasma and forces, related to Ip and the shape, in order to

reduce the risks related to a disruption during the ramp-down phase [Sugihara et al.(2007),

Lehnen et al.(2013)]. Variation in the weights νIp , νPtot , νκb can change the search direction of

the optimal solution and, thus, lead to different optimized trajectories.

Other options can be easily added to the cost function. For the ramp-down optimization, the

terms like a time integral of the plasma thermal energy or I 2
p or the magnetic field B0 can be

tested. The latter will be important for tokamaks working with variation in the magnetic field

B0 during a plasma discharge.

4.2.3 The constraint function and other optimization limits

As it was mentioned in Sec. 4.1, there are plenty of physical and technical issues important

for a safe termination. At this stage, it is not possible to take all of them into account in the

present optimization. We have to define a set of the most crucial parameters which RAPTOR

can predict. The constraints used in this work can be divided into physical and technical ones:

Physical constraints:

• The line-averaged electron density nel lower than 90% of nGR = Ip (t )/πa2 (Greenwald

density limit [Greenwald(2002)]).

The Greenwald density limit nGR depends on the optimization parameter Ip , therefore

it is updated at each iteration within the cycle presented in Fig. 4.1. The electron
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density ne(ρ, t) has to be updated with the line-averaged density nel to keep it within

the required level 0.9nGR . There are two options to take this constraint into account.

If RAPTOR, i.e. the “Tokamak profile simulator” block in Fig. 4.1, solves diffusion

equations for the poloidal flux ψ and the electron temperature Te and uses a prescribed

electron density ne (ρ, t ), then these prescribed profiles are scaled proportionally to nel .

If the electron density is a predicted parameter, the transport coefficients for electrons,

described in Subsec. 2.6.2, are constructed using the updated nel as a reference.

• The safety factor q95 greater than q95 at the beginning of the ramp-down phase to ensure

that the plasma shape (elongation) does not change faster than the plasma current Ip .

• The normalized pressure βN below a certain limit (MHD limit).

• Any other constraints based on the physical quantities simulated by RAPTOR can be

added.

Technical constraints:

• The ramp-down rate of the plasma current dIp/dt .

RAPTOR is not a full tokamak plasma solver, like DINA [Khayrutdinov and Lukash(1993),

Favez et al.(2002)], therefore we do not consider currents in the external coils which

define the capability of a machine to control plasmas. Here we define a constraint on

dIp/dt , i.e. a complex parameter reflecting collective limitations on the machine coils

system. Thus, typical dIp/dt values for a machine can be estimated from experimental

databases. Also dIp/dt maximum can be computed from the characteristics of the coil

systems and passive conductors.

• The ramp-down rate of the plasma boundary elongation dκb/dt .

The plasma shape control is limited by poloidal coils installed on a machine. Again as

for Ip , here we set a constraint on the rate of change in the plasma boundary elongation

κb to represent constraints on the shaping coils.

• Limit plasma internal inductance li (3) for vertical position control;

One could compute the ideal growth rate [Hofmann et al.(1997)] and limit its maximum

value. This can also be done as a part of the post-shot analysis of the experimental data.

• Limit the maximum rate of change of the vertical magnetic field dBv/dt for radial

position control;

• Other technical constraints specific for a machine.

Further extension of the constraints set can be continued with the help of collected

disruption statistics on the existing machines, in particular for JET [De Vries et al.(2014)]

and AUG [Pautasso et al.(2007)].
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Here upper and lower boundaries for the elements of the vector p (Eq. (4.2)) as well as limits

on ramp rates for Ip and κ are specified through linear inequality constraints:

Aineqp ≤ bineq (4.4)

A constraint on the highest/lowest value of any other parameter (βN (t), li (3)(ρ, t), etc) can

be specified in the same way as it has been described in [Felici et al.(2012)], where integral

constraints are formulated [Teo et al.(1991)]. In this case the i th state a constraint of the form

ci (t ,x(t )) ≤ 0, where x denotes an optimization parameter, is rewritten as

Ci =
(∫ti

t f
(max[0,ci (t ,x(t ))])2dt −ε

)
≤ 0 (4.5)

where a relaxation ε≈ 10−6 is defined to ensure that ∂Ci
∂x �= 0, which is a required property for a

well-posed optimization problem [Nocedal and Wright(2006)].

4.2.4 Summary for the optimization algorithm

Just as in [Felici et al.(2012)], we use the MATLAB function called �������, based on the

method of Sequential Quadratic Programming (SQP) [Nocedal and Wright(2006)], to solve the

nonlinear constrained optimization problem.

To define the search direction of the optimal solution, the SQP algorithm requires an estimate

of the local gradient of the cost and constraint functions over a current plasma state. In the

presented algorithm, the MATLAB optimization solver uses numerical gradients calculated

by finite differences. This is the main difference with the method used in [Felici et al.(2012)],

where the analytical gradients of the cost function have been calculated for this purpose. The

reason is in the difficulty of an analytical description of the plasma state gradients in terms of

plasma geometry and confinement state. In [Felici et al.(2012)] the plasma actuators, like the

plasma current Ip (t) and input powers Pin(t), have been used as optimization parameters.

Derivatives of the plasma state profiles ψ(ρ, t ) and Te (ρ, t ) on Ip (t ) and Pin(t ) can be derived

analytically, thus one could obtain these gradients as a by-product of the implicit time-solver

of the PDE. However here, we require gradients with respect to geometric terms such as

g2(ρ, t), g3(ρ, t) etc. (described in Appendix A), which are not calculated by the PDE solver.

Thus the gradients are calculated with the help of the MATLAB optimization toolbox. The

main disadvantage of finite differences usage is an increase of the CPU time required for an

optimal solution search. Nevertheless the optimization procedure still can be finished within

a reasonable amount of time (couple of hours) thanks to the high speed of the RAPTOR solver.

Note that in general there is a finite probability that the solution found by the SQP algorithm

is a local optimum but not a global one. A proper choice of initial conditions, optimization

parameters and constraints may help to avoid his problem. Also other optimization algo-

rithms, constructed specifically with a low risk of missing a global optimum (like a genetic
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algorithm [Goldberg(1989)]), can be tried but generally they are more time-consuming. In

our particular case, an optimization of the ramp-down phase is complicated by a huge set of

various constraints of plasma parameters which strongly limits a searching area of the optimal

solution. Therefore any improvement in the reference trajectories obtained with the help of

the optimization algorithm is very useful for a plasma ramp-down scenario development.

4.2.5 Simple 2D optimization

In order to illustrate the optimization problem, a simple example with two optimization pa-

rameters is presented: an optimization of the plasma current Ip and the boundary elongation

κb at one time instant. In Fig. 4.2 a ramp-down optimization for an AUG-like plasma is demon-

strated. Plasma parameters Ip and κb are fixed at t = 0 s and t = 1.5 s and optimized at t = 0.5

s. The cost function JIp is a time integral of the plasma current Ip , i.e weights in Eq. 4.3 are

defined as follows: νIp = 1, νPtot = 0 and νκb = 0. Constraints are imposed on the ramp-down

rate of the plasma current (dIp/dt ≥−1.9 [MA/s]), normalized beta (βN ≤ 2.7) and the plasma

internal inductance (li (3) ≤ 1.2). Maximum and minimum values for the optimization param-

eters are fixed at 0.1/1.0 MA for Ip and 1.0/1.9 for κb . The reference trajectories of the plasma

current Ip and boundary elongation κ to be optimized and for other parameters are marked

in black in Fig. 4.2. The black dot on the first contour plot corresponds to reference values

of Ip and κb at t = 0.5 s, i.e. an initial state of the input vector of optimization parameters

p = [Ip (t = 0.5) κb(t = 0.5)] = [1.0 1.8].

In case of unconstrained optimization, Ip and κb take the lowest allowed values at t = 0.5 s

(dark yellow line/dot in Fig. 4.2), thus the cost function is minimized. To keep Ip lower than

reference while adding the constraint on βN (blue line/dot), the plasma elongation has to

be increased in comparison to the reference case. The yellow area in the third contour plot

corresponds to Ip and κb values at t = 0.5 s which full trajectories lead to βN higher than 2.8.

The optimization with additional constraint on li (3) significantly reduces an area of Ip and

κb available values. In case of optimization with constraints on βN and li (3) a fast current

ramp-down can be reached with faster decrease in the plasma elongation κb (red line). As it

can be seen from the last contour plot, the constraint on the internal plasma inductance is

the most stringent one. We have a very limited set of [Ip (t = 0.5), κb(t = 0.5)] to have li within

the required limit, since its behavior strongly depends on the combination of Ip (t = 0.5) and

κb(t = 0.5).

Here, we present the optimization of two parameters [Ip (t = 0.5), κb(t = 0.5)] as a simple

example, whereas a set of optimization points has to be used to obtain an optimal trajectory

which leads to a true minimum of the cost function within the required constraints.
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Figure 4.2: A simple ramp-down optimization for AUG-like plasma. Time evolution of the
plasma current Ip , the plasma boundary elongation κb , normalized beta βN and the plasma
internal inductance li (3) are demonstrated for the reference case (black), unconstrained
optimization (dark yellow), optimization with the constraint on βN (blue), on βN and li (3)
(red). The contours for the cost function JIp are shown with the colored circles corresponding
to Ip and κb values at t = 0.5 s. JIp increases with the plasma current. An area where a
constrained parameter violates the constraint is yellow-marked.

86



4.3. Ramp-down optimization for TCV

Figure 4.3: Ramp-down optimization for the TCV shot #55520. Time traces for plasma current
Ip , plasma boundary elongation κ, rate of change in vertical magnetic field dBv/dt and
plasma internal inductance li (3) are presented for the reference case (blue dashed) and
various optimized trajectories (colorful solid) with the optimization points (black dots) on the
optimal trajectory.

4.3 Ramp-down optimization for TCV

We start with an optimization of the ramp-down phase of TCV plasmas. On TCV we are limited

in the radial position control. Therefore for the optimization of a TCV plasma, a constraint on

the rate of change in the vertical magnetic field dBv/dt is the main technical constraint in

addition to constraints on the ramp-down rates of the plasma current dIp/dt and the plasma

boundary elongation dκb/dt . The exact values of the technical limits have been obtained

after analyzing several TCV termination trajectories and have been set in the following way:

dBv/dt ≤ 0.6 [T/s], dIp/dt ≥−1.9 [MA/s] and dκb/dt ≥−10 s−1.

4.3.1 Numerical optimization

Reference trajectories for the ramp-down phase have been obtained with the RAPTOR simula-

tion of the TCV shot #55520, discussed in Subsec. 3.2.1, and are demonstrated for the plasma

current Ip , the boundary elongation κb , the rate of change in the magnetic field dBv/dt and

the internal inductance li in Fig. 4.3 in dashed blue line. For RAPTOR simulation the poloidal

flux ψ and the electron temperature Te have been predicted, whereas the electron density ne is

a prescribed parameter and ions profiles are scaled from electrons. It is an ohmic L-mode shot,

therefore the transport parameters λTe and He are fixed at the L-mode values, 3.2 and 0.35

correspondingly. The optimization parameters are the plasma current Ip and the boundary

elongation κb . The cost function is defined according to Eq. 4.3 with νIp = 1, νPtot = 0 and
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νκb = 0. The physical constraint is imposed on the safety factor q95 ≥ 3.3 (minimum value

for the reference case). We do not consider constraints on the electron density, since in the

L-mode plasma the line-averaged density is far from the Greenwald density limit. Shot #55520

has been terminated down to Ip = 40 kA and κb = 1.1, thus the final point for Ip and κb

trajectories is fixed at the reference values which also define minimal allowed values for Ip
and κb .

Plasma current and elongation trajectories have been optimized in series of 10 points: starting

from the reference trajectories, Ip and κ have been optimized first at t = 1.01 s, then starting

from the last optimized trajectory Ip and κb have been optimized at t = [1.01, 1.02] s and so

on up to the final set of 10 optimization points. The reference and optimized (with number of

optimization points varied from 1 to 10) trajectories of Ip , κb , dBv/dt and li (3) are shown in

Fig. 4.3. This optimization shows that faster ramp-down in Ip can be performed while keeping

dBv/dt at the safe level with proper plasma shaping forced by a faster than reference decrease

in κb . A faster growth in the internal inductance li is generated with the optimized trajectory

but TCV plasmas can be stable for much higher li .

Note that increasing the number of optimization points will not decrease the cost function

anymore and the set of 5 optimization points t = [1.01, 1.04, 1.05, 1.07, 1.08] s is sufficient to

get the same optimized trajectory. To avoid possible local mimima, we have checked that the

optimized trajectory is the same if the sequence of optimization points is taken in a different

order.

4.3.2 An experimental test

A next step for validation of the optimization procedure is a test of the optimized trajectories

on a machine. The optimized trajectories from Subsec. 4.3.1 have been tested on TCV in the

shot #55672. The waveforms for the plasma current Ip and the plasma boundary elongation κb

have been programmed according to these trajectories. To compare the optimized trajectories,

we simulate the TCV shot #55672 with the same transport model for the RAPTOR code.

In Fig. 4.4 optimized trajectories for the TCV shot #55520 (dashed blue - reference, solid red -

optimized trajectories) and RAPTOR simulations for the TCV shot #55672 (black dashed) are

presented. For the internal inductance li and the boundary elongation κb LIUQE experimental

time traces (blue circles) are plotted too. In #55672 a non-disruptive termination has been

obtained with a faster ramp-down in Ip and a slightly slower decrease in κ than requested.

The difference in the optimized and experimentally obtained plasma elongation can be a

consequence of the assumption of fixed triangularity and minor radius in the optimization

algorithm, since in the experiment these parameters have been slightly reduced with the

decrease of the plasma elongation. Note that the predicted (from the optimization) and the

simulated time evolution of li and dBv/dt are very similar. Moreover LIUQE output for li
is very close to RAPTOR simulations. The constraint parameter dBv/dt , obtained in the

experiment, stays mostly within the required limit with a few sawtooth crashes violating it.
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Figure 4.4: Time traces of Ip , κb , li (3) and Te(ρ = 0.1) for the reference (dashed blue) and
optimized TCV shot #55520 (solid red), from the experimental data base for the TCV shot
#55672 (blue circles) and RAPTOR simulation of #55672 (dot-dashed black).

We can conclude that a fast ramp-down of both Ip and κb has been successfully tested on the

TCV tokamak for L-mode plasmas, following the presented simulations with the RAPTOR code.

Further experimental tests are required to check capabilities of the shaping control system.

4.4 Ramp-down optimization for ASDEX Upgrade

Here we discuss an optimization of the ramp-down phase for the ASDEX Upgrade tokamak.

After analyzing of several ramp-down trajectories for AUG plasmas, the maximum plasma

current ramp-down rate is set to 0.7 [MA/s]. However according to more systematic analy-

sis of the ramp-down phase presented in [Pau et al.(2017)], a bit faster Ip ramp-down with

max(dIp/dt ) = 0.8 [MA/s] can be accepted by the control system.

4.4.1 Numerical optimization

As a reference for the optimization procedure, we consider the ramp-down phase of the AUG

shot #33589. RAPTOR simulation with predicted ψ and Te and prescribed ne provides refer-

ence trajectories for various physical quantities presented in Fig. 4.5 (blue dot-dashed). The

transport parameters λTe and He are fixed at typical H-/L-mode values for AUG, 2.3/3.0 and

0.2/0.4 correspondingly. For the numerical optimization, the additional physical constraints

have been imposed on the internal plasma inductance li (3) ≤ 1.4 (maximum value for the

reference case), normalized beta βN ≤ 1.1 (maximum value for the reference case), safety

factor q95 ≥ 4.4 (minimum value for the reference case) and on the line-averaged electron
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Figure 4.5: Ramp-down optimization for the AUG shot #33589. There are presented the
reference trajectories (blue dot-dashed), results of the optimization of Ip and κb only (green
dashed) and with tHL as an additional optimization parameter (red solid). Time traces for
the following parameters are shown: the plasma current Ip , the boundary elongation κb ,
NBI power PNBI , plasma internal inductance li (3) and 1.4 limit, the safety factor q95 and 4.4
limit, normalized beta βN and 1.1 limit, poloidal beta βpol , the rate of change in the vertical
magnetic filed dBv/dt . Optimization points are marked by the black dots (optimization of Ip
and κb) and asterisks (optimization of Ip , κb and tHL).
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density nel to keep it within the Greenwald density limit.

Ip and κb optimization

First, the plasma current Ip and the plasma boundary elongation κ have been optimized with

13 points with νIp = 1 and νPtot = νκb = 0 for the cost function defined in Eq. 4.3 (dashed

green lines on Fig. 4.5). The input power and time instant of the H-L transition is kept as

in the reference. The optimal solution shows that with a proper reduction of the plasma

elongation κb , the plasma current Ip ramp-down can be performed faster than the reference

while keeping the internal plasma inductance li at a safe level and other parameters within

the required limits.

Ip , κb and tHL optimization

Then the instant of the H- to L-mode transition tHL has been added to the set of the opti-

mization parameters. In this optimization example, the cost function is defined as Eq. 4.3

with νIp = 0.5, νκb = 0 and νPtot = 0.5, i.e. the goal of the optimization is to minimize both

the plasma current and the input power. Since the prescribed input power does not include

the ohmic power, which is calculated by RAPTOR itself, Ptot is equal to the input NBI power.

To simulate the transition form H- to L-mode, Ptot is updated at each iteration of the opti-

mization loop to have it higher than the threshold PLH before tHL and lower after tHL . For

this optimization at tHL , PNBI power level drops to PLH (tHL) and linearly decreases to 0.9PLH
assuming that there might be 10% fraction from the ohmic power.

The reference tHL is 6.26 s, the optimized value is 6.05 s. Slightly different time evolution of

κb and an early drop of the input power give the same time evolution for the plasma current

(which is limited by the allowed ramp-down rate) and keep the plasma inductance li within

the required limit. Also, the early H-L transition case yields a smaller drop in poloidal beta βpol

than in the reference case, which can be important for MHD stability and the radial position

control. It also helps to decrease the density faster and to avoid density limit while decreasing

Ip . The set of the optimization points can be limited by the first 7 points (from 6.1 s to 6.7 s)

and the last one (7.4 s) to get the same optimized trajectories for Ip , κb and tHL .

There is no limit on the rate of change in vertical magnetic field dBv/dt and as can be seen

from Fig. 4.5, an earlier drop in NBI power produces higher peaking of dBv/dt . Further

analysis of experimental data and the machine characteristics is required for understanding

and specifying a relevant limit for dBv/dt (i.e if there are disruptions caused by loss of radial

position control for AUG simulations). In particular, limit on the rate of change in the plasmas

shape, i.e. dκ/dt in our case, has to be defined from the experimental database.

4.4.2 Experimental tests

The Discharge Control System (DCS) for the ASDEX Upgrade tokamak, based on feedback

control algorithms, processes raw signals from plasma diagnostics to reconstruct various
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plasma quantities like the plasma geometry and fluxes distribution in space and time, plasma

kinetic profiles and heat fluxes, etc. [Treutterer et al.(2014)]. DCS command outputs are

confined by strict limits preventing damages of the machine. For example, currents in the

AUG divertor coilsOH2u andOH2o have upper and lower limits which are defined by coils

suppression forces. Specific limits can be related to changes in the plasma energy, heating and

other dynamic plasma characteristics.

AUG standard ramp-down segment

For the plasma ramp-down, a programmed soft-landing procedure has been developed

[Treutterer et al.(2014)]. During this procedure, the plasma current is decreased with the

plasma shape slowly changing from diverted (and high elongated) to a circular one and a

staged shutdown of the additional heating . However, there is a common problem with plasma

disruptions in H-modes. In Fig. 4.6 several ramp-down trajectories are demonstrated. It can

be seen that plasmas in H-mode stay highly elongated much longer that plasmas in L-mode

and disrupts much earlier. Therefore, for the improvement of the AUG ramp-down standard

procedure, the optimized ramp-down trajectories, developed as part of this thesis, have been

started to be tested on the machine.

Experimental tests of the optimized trajectories

In Fig. 4.7, results of experimental tests with programmed ramp-down are demonstrated.

The AUG shot #34450 has a standard ramp-down (the DCS segment programmed for “soft-

landing”). Shots #34449, #34489, #34490 have programmed Ip , κb and powers different than

in the standard ramp-down. Shots #34450 and #34449 have termination in L-mode, whereas

#34489 and #34490 have stayed in H-mode during the ramp-down phase until the disruption.

As it is shown in Fig. 4.7, shots #34450 (blue) and #34449 (red) have similar Ip ramp-down

rates. However, the second one has a faster decrease in the plasma elongation leading to a

slower increase in the plasma internal inductance li . Also some compensation in the li growth

might come from NBI heating which starts at 0.07 s. Shots #34489 (green) and #34490 (yellow)

have different ramp-down rates in Ip , but li and κb trajectories are very similar. With lower

NBI heating (4 MW instead of 6 MW) a faster Ip ramp-down with same li is possible.

However, because of the technical machine requirements, it was not possible to run exper-

iments with programmed trajectories with the ramp-down phase longer than 0.5÷ 0.7 s.

Currents in the coils the OH2u and OH2o have reached their limits at 0.5 s for #34449 and

at 0.7 s for #34489/#34490. After that DCS has switched automatically to the standard ramp-

down procedure. Nevertheless, from these tests we can see a positive effect on the li evolution

coming from the proper decrease in the plasma elongation and heating power. Note that all

our programmed ramp-down cases so far have been limited only by these coils limit due to

the way the shape is controlled during the ramp-down. A better programmed shape evolution,

to be design using the predicted plasma parameters evolution during the ramp-down phase,

would allow to avoid these problems and test further the termination strategies.
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Figure 4.6: AUG ramp-down trajectories for plasmas in L- (dashed) and H-mode (solid) at the
end of flat-top. Experimental signals are provided by the CLISTE code.

Figure 4.7: Ramp-down trajectories for the plasma current Ip , the boundary elongation κb ,
the plasma internal inductance li and auxiliary heating powers, PNBI (solid) and PIC (dashed)
for AUG shots; #34450 (standard ramp-down) and #34449, #34489, #34490 (programmed
ramp-down). Experimental signals are provided by the CLISTE code.
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Figure 4.8: Ramp-down optimization for the JET shot #92207. The reference trajectories are in
the blue color, the optimized trajectories are in red. Results of the optimization of Ip and κb
at optimization points (black dots) tknot = [52, 54, 55, 56, 58, 60] s (and 62 s for κb only) are
shown. Time traces for the following parameters are presented: the plasma current Ip , the
boundary elongation κb , plasma internal inductance li (3) and 1.6 limit, normalized beta βN
and 2.0 limit.

4.5 Ramp-down optimization for JET

In order to continue testing the optimization algorithm, an optimization of the JET #92207

ramp-down phase has been performed. This shot has early H-L transition (at 52 s), therefore

here we do not consider tHL as an optimization parameter. This ramp-down phase has almost

constant plasma elongation κb , and it is interesting to see an influence of the κb decrease on

the plasma state evolution. The cost function is defined according to Eq. 4.3 with νIp =0.9,

νPtot = 0, νκb = 0.1. We set technical constraints on maximum ramp-down rates in Ip and

κb similar to [Nunes et al.(2011)]: dIp/dt ≥−0.7 [MA/s] and dκb/dt ≥−0.1 s−1. Additional

constraints are imposed on the plasma internal inductance li ≤ 1.6 (close to maximum li
values reached in JET ramp-downs in [Nunes et al.(2011)]) and βN ≤ 2.0 (maximum reached at

the end of the flat-top phase). Optimization points are fixed at tknot = [52, 54, 55, 56, 58, 60]

s. Since we need to allow the optimization algorithm to reduce κb , the final point in the

ramp-down trajectory at 62 s is also an optimization point for κb , but Ip (t = 62 s) is fixed at

the reference value. The low limit for κb equals to 1.2.

With the optimization results presented in Fig. 4.8, we can conclude that reducing κb allows

to have a faster ramp-down in Ip with similar li and βN evolution. However, for further

JET ramp-down optimizations, we need to include more parameters and specify the set of

constraints more precisely. The heating scenario during the ramp-down phase can change the
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evolution of the internal inductance, for example additional NBI heating will slow down an

increase in li [Nunes et al.(2011)]. The low limit in κb , considered here, might be rather low

for JET plasmas, forcing it to the limiter state. Further analysis of the experimental trajectories

with the help of the disruption databases [De Vries et al.(2014), Pau et al.(2017)] will help to

improve the optimization task. It should be mentioned that even if JET plasmas are not limited

by VDEs related to high li values, keeping a small li evolution during the ramp-down allows to

stay further away from ideal limits, which is in general favorable. In addition, reducing the

plasma shaping (the plasma elongation κ and triangularity δ), will rapidly reduce the forces in

case of disruption during the termination phase.

4.6 Ramp-down trajectories sensitivity

4.6.1 Trajectories sensitivity to transport parameters

TCV and AUG demonstration cases in Subsec. 4.3.1 and 4.4.1 show that there is a room for

optimizing plasma ramp-down scenarios and that the dynamic dependencies make it difficult

to “guess” the best trajectory. Note that if a specific safe (q95, li ) domain should be prescribed,

it can easily be added to the constraints. On the other hand, optimizing the trajectories as

proposed here allow to easily get the correct balance between Ip reduction, κb reduction and

H-L transition to control li , dBv/dt and βpol . For example the first part can be understood

since decreasing Ip at the same rate as the plasma surface will tend to keep the q profile self-

similar, hence will not increase li significantly. Of course, the resulting optimized trajectory

can be tested in more complex codes like DINA-CRONOS. In this way an overall accurate

optimization can be obtained faster.

Another important issue requiring a careful study is related to the sensitivity of the optimized

trajectories to the transport model parameters. In particular, increased core gradient λTe
and/or He factor lead to higher internal inductance li because the electron temperature

profile and, as a consequence, the current density profile becomes more peaked. If li is used

as a constraint for the Ip optimization then the plasma current Ip optimized with higher

λTe will decrease slower to keep li within the required limit. For the sensitivity test, a set

of optimizations on the plasma current Ip and the plasma boundary elongation κ for the

AUG shot #33589 with varied transport model parameters has been performed (Fig. 4.9).

To compare with the reference transport model used in Sec. 4.4 with λTe = 2.3/3.0 and

He = 0.2/0.4 for the H- and L-modes respectively, we vary λTe and He by ±20%. To analyze the

influence on the plasma elongation κb in a meaningful way it has also been included into the

cost function with 0.2 weight, i.e. according to Eq. 4.3:

J = 0.8

∫tend
tRD

Ip (t )dt∫tend
tRD

I re fp (t )dt
+0.2

∫tend
tRD

κb(t )dt∫tend
tRD

κ
re f
b (t )dt

(4.6)

The optimization points are defined on the interval from 6.1 to 7.4 with 0.1 s step, i.e. 14
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Figure 4.9: Test of the sensitivity of the Ip and κ optimized trajectories to the transport model
parameters λTe and He . The optimized trajectories are obtained with the reference transport
model (black solid) from Sec. 4.4, λTe +20% (red dashed), λTe −20% (green dashed), He +20%
(blue dot-dashed) and He −20% (magenta dot-dashed). The optimization points are marked
by the black dots.

Figure 4.10: Testing the sensitivity of the optimized trajectories on CHEASE equilibria. Opti-
mized trajectories obtained with reference (red) and CHEASE equilibria reconstructed with
RAPTOR plasma profiles (green) are demonstrated for the plasma current Ip , the boundary
elongation κb , dBv/dt and the internal inductance li .
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points in total. Only two constraints are defined for this test: dIp/dt ≥ −0.9 [MA/s] and

li (3) ≤ 1.5. As it can be seen from Fig. 4.9, increased transport parameters λTe and He lead

to slower current ramp-down as it was expected. Whereas in case of decreased λTe and He

the optimized trajectories for Ip are constrained mainly by the limit on dIp/dt . Fig. 4.9

shows that the optimized trajectory is not too sensitive to the transport model. There is

also no big difference in the optimized trajectories for κb . However, it should be mentioned

that additional constraints can better demonstrate effects of transport model parameters on

the optimized plasma elongation. For example, βN is proportional to the volume averaged

pressure, therefore it depends on the plasma energy and plasma volume. Increased λTe leads

to higher thermal energy and, to keep βN within the required limit, the optimization algorithm

can ask for a higher volume, i.e. higher kappa. Such sensitivity study can be very useful for

real-time control and preparation of discharges, providing not just a trajectory for a plasma

actuator but an area where a plasma is known to be within the physical/technical limits for a

wide range of transport parameters.

4.6.2 Trajectories sensitivity to the geometry interpolation

In this work, since RAPTOR does not have an equilibrium solver, the geometrical terms have to

be updated at every optimization iteration, as it has been mentioned in Subsec. 4.2.1. To check

the sensitivity of the optimized trajectories on this assumption, we rerun the CHEASE code

with profiles provided by RAPTOR to get new equilibria. Pressure and current density profiles,

simulated by RAPTOR after optimization in Ip and κb in Subec. 4.3.1, are used by CHEASE to

reconstruct new equilibria with optimized Ip and κb . Then we rerun the optimization with

the same parameters as in Subec. 4.3.1 but with new geometrical quantities. Also reference

trajectories for Ip and κb in this case are the same as the optimized trajectories obtained with

old CHEASE equilibria in Subsec. 4.2.1. New optimized trajectories are demonstrated in Fig.

4.10. Ip and κ stay similar, confirming the minimum found in Subec. 4.3.1. There are some

differences in li and dBv/dt trajectories obtained with initial and reconstructed CHEASE

equilibria. However, globally they follow the same directions and stay within the required

limits.

For further improvement of the optimization procedure, instead of the simple interpolation of

the geometrical quantities, equilibrium reconstruction can be included at every iteration of the

optimization loop. Using optimized Ip and κb trajectories and pressure and current density

profiles simulated by RAPTOR, new equilibria can be calculated by CHEASE. It probably will

slow down the optimization process, but will improve consistency between plasma geometry

and dynamics.

4.7 Summary

In this chapter we have introduced the automatic optimization algorithm and demonstrated

its applications for an optimization of the ramp-down phase of a plasma discharge. It has been
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developed in [Felici(2011), Felici et al.(2012)] and extended with new cost and constraint terms

during this work. The algorithm by itself can be applied to any phase of a plasma discharge.

In [Felici(2011), Felici et al.(2012)] it has been used for an optimization of the ramp up phase,

where the optimization goal has been defined as reaching the specific plasma state at the end of

the phase. For the ramp-down optimization, it is more important to define a full trajectory for

plasma actuators, described in Subsec. 4.2.1, guiding plasma from the high energetic state at

the end of the flat top phase to the low dense and colder plasma. Therefore, cost terms related

to plasma integrated quantities (the plasma current, the input power, the plasma elongation),

defined in Subsec. 4.2.2, have been implemented to the algorithm. During the ramp-down

phase, because of rapid simultaneous changes in the plasma equilibrium, density and heat

confinement, plasma stability limits can be easily violated. Moreover technical requirements

for a machine, explained by safety reasons and control capabilities of the external magnetic

coils, impose additional restrictions on the plasma ramp-down trajectories. It is not possible

to take into account all physical and technical limits, described in Sec. 4.1. We concentrated

on a few of them, related to the main stability limits and know technical limits for TCV, AUG

and JET tokamaks, described in details in Subsec. 4.2.3.

The numerical optimization of the ramp-down phase for TCV L-mode plasmas in Sec. 4.3 has

shown that a faster decrease in the plasma current is possible with a simultaneous reduction in

the plasma elongation. The following experimental test confirmed that trajectories obtained

with the help of the optimization algorithm bring the plasma to the low temperature and

density state faster than the reference case and without disruptions. In addition, the time

evolution of the plasma state during this fast ramp-down followed very well the predicted

trajectory, validating RAPTOR simulations and the optimization procedure. The numerical

optimization of the AUG ramp-down phase in Sec. 4.4 has been complemented by searching

an optimal time instant of the H-L transition. The plasma internal inductance stays low even

in case of a fast current ramp-down with the corresponding decrease in the plasma elongation.

Also, it was found that with an earlier reduction in the input power, thus with an earlier H-

L transition, βpol experiences a smaller drop, which might be important for plasma MHD

stability. Experimental tests on AUG have been complicated because of technical limits of the

machine, nevertheless we have observed a positive effect of the plasma shaping. Preliminary

numerical optimization for JET plasmas in Sec. 4.5 have been carried out in similar way as for

TCV and AUG tokamaks but requires further development of the set of physical and technical

constraints.

The future research directions on the ramp-down optimization are related to adding new

physical and technical constraints. In the presented optimizations the electron density ne has

been considered as a prescribed (TCV, AUG) or predicted (JET) parameter. The Greenwald

density limit has been the upper constraint for the line averaged electron density, thus for ne
too. However, there were no technical limits related directly to the density control. A constraint

related to dne/dt , determined by plasma properties and allowed by a machine control system,

will be an additional limit on ne by itself, and therefore on the Ip ramp-down trajectory.

Developing the impurity model in the RAPTOR code will allow to include physical constraints
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on the radiated power, to avoid the generation of strong hollow temperature profiles which

can lead to the plasma radiative collapse and the following plasma disruption. Further study

of optimal trajectories sensitivity to the transport model parameters is required. As it has

been shown in Subec. 4.6.1, that optimal trajectories are somewhat sensitive to the chosen

set of the transport model parameters. Tests of the trajectories provided by RAPTOR with

more sophisticated code, like ASTRA [Pereverzev and Yushmanov(2002)], are also required

to verify dynamics of the plasma state. Since RAPTOR focuses on simulations of the plasma

state evolution, the optimization algorithm uses plasma physical parameters only. Testing the

optimized trajectories with full tokamak codes, like DINA [Khayrutdinov and Lukash(1993)],

will allow to check their consistency with a machine technical requirements. Ramp-down

specifications for ITER can be defined with the help of multi-machine analysis and numerical

simulations [De Vries et al.(2018)]. However the results and proof-of-principle presented here

demonstrate the capabilities of the present method and show already interesting directions

for imposing termination strategies.
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5 Conclusion

In this thesis we focus on the improvement of the RAPTOR code to extend its predictive

capabilities, allowing for realistic simulations of plasma profiles on global time scales, and to

contribute to the development of plasma termination scenarios.

5.1 Summary on the RAPTOR code updates

In order to develop a fast plasma simulator compatible with real-time plasma control, a new

rapid transport simulator RAPTOR has been introduced in [Felici(2011), Felici et al.(2011)]. It

has been developed for off-line and real-time predictions of coupled evolution of the poloidal

flux and the electron temperature. To save calculation time, the code does not reconstruct

the plasma equilibrium by itself but requires prescribed equilibria. Also it has simplified

models for calculation of the transport coefficients and description of the heating profiles. In

[Felici(2011), Felici et al.(2011)], transport equations have been determined in case of a fixed

plasma equilibrium. This condition may lead to inaccurate prediction of the evolution of

plasma profiles in case of rapid changes in plasma equilibrium and geometry, which naturally

take place during the phases of current ramp-up and ramp-down. In Chapter 2, we have given

a brief overview on the main features of the code and its upgrades related to the extension of

the predictive capabilities of the code.

In particular, the RAPTOR transport model has been supplemented with new diffusion equa-

tions. At this moment, it includes diffusion equations for the poloidal flux, electron and

ion temperatures, and density of various plasma species, allowing coupled simulations for

all plasma species, presented in Sec 2.3. The diffusion equations have been extended with

time-varying terms, thus RAPTOR is able to take into account the evolution of the plasma

geometry and equilibrium. A special procedure for processing the equilibrium data has

been developed, as discussed in Sec. 2.2. An equilibrium data file in EQDSK/EXPEQ for-

mat, provided by an equilibrium reconstruction code (like LIUQE [Hofmann et al.(1988)]

for TCV, CLISTE [Schneider et al.(2000)] for AUG or EFIT [Lao et al.(1985a)] and EQUINOX

[Mazon et al.(2010)] for JET), can be used by the CHEASE code to construct a data set in the

101



Chapter 5. Conclusion

format, compatible with the RAPTOR code. If equilibrium data files are provided for several

time instants, we assume a linear time evolution of the plasma quantities between them. In

addition to CHEASE data files, this preparation procedure of the equilibrium data can also use

ASTRA [Pereverzev and Yushmanov(2002)] data files. In real-time, there is an option to get an

output of a real-time equilibrium reconstruction code like RT-LIUQE [Moret et al.(2015)] for

TCV. Predictive simulations of the diffusion of the plasma current are coupled with plasma

kinetic profiles for self-consistent simulations of the time evolution of the plasma state. We

have proved the validity of the code upgrades with several verification tests. In Sec. 2.4, we

check RAPTOR simulations in case of time-varying geometry with the help of the ASTRA code.

In Sec. 2.5 to prove the validity of the new transport equations for plasma particles (Eq. 2.32

and ion temperature (Eq. 2.24), we have performed benchmarks versus the CRONOS code

[Artaud et al.(2010)] and ITER data for particle transport [Na et al.(2016)].

To improve predictive capabilities of the code over the entire plasma discharge, transport

models capable to simulate transitions between low (L) and high (H) confinement modes and

to simulate up to the plasma boundary (ρ̂ = 1) are required. Also these models have to be

simple and fast to keep high calculation speed. We have implemented in the RAPTOR code a

new model, based on [Kim et al.(2016)], which provides transport coefficients for the electron

temperature and density. In this model the plasma profiles are assumed to be “stiff” in the

core region (excluding ITBs), which is defined between ρinv (q = 1 radial position defining

the plasma region affected by sawtooth crashes) and ρped (radial position of the pedestal

for L- and H-modes [Sauter et al.(2014)]). Stiffness of profiles reflects their ability to resist

to changes in the heat flux [Garbet et al.(2004), Sauter et al.(2014)] and weak dependence on

the global confinement properties. However, the model developed in [Kim et al.(2016)] is not

suitable for modelling plasma experiencing fast transitions between L- and H-modes, because

some of its parameters are averaged over several confinement times. The gradient-based

transport model, described in Sec. 2.6, uses a PI controller to allow fast switching between L-

and H-modes, taking into account such characteristic changes in plasma profiles as varying

width of the pedestal and core profiles flattering. Thus heat and particle transport coefficients,

described with Eqs. 2.52, 2.60, 2.61, evolve on characteristic plasma time scales. The gradient-

based transport model requires prescribed parameters like the energy confinement factor,

effective scalelengths for temperature/density, and the line averaged density. They are usually

known from an experiment, thus can be easily checked and constrained with experimental

measurements. They are also easily known in real-time, thus the model can be adapted if

required, keeping its real-time predictive capabilities. In this work we focus on the electron

heat and particle transport, however, there is also an option for future tests on the ion heat

diffusivity, described in Subsec. 2.6.3.

The developed gradient-based transport model is rather promising for off-line and real-time

plasma modelling, since it predicts well plasma profiles on long plasma time scales but still is

simple enough to keep the high calculation speed. In this work, the model is used for off-line

predictive plasma simulations. To be used in real-time, the model still has to be optimized,

since the PI controller requires additional Newton iterations for the solution convergence.
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However, useful options for its future application in real-time can already be mentioned.

Since the model describes the plasma behavior typical for a confinement mode/machine,

any deviation between predicted and measured plasma profiles can be used as an alarm

for the control system. Thus, for example, periods of degraded plasma confinement can be

determined, informing about the presence of NTMs, impurity accumulation or of failure of

some diagnostics.

Development of real-time controllers, capable of realistic prediction of the plasma behav-

ior, is an essential task for safe operation of future tokamaks. Complex codes like CRONOS

[Artaud et al.(2010)], developed for plasma integrated modelling, include many precise physi-

cal modules, which take significant processing time. With RAPTOR we are aiming to develop a

fast and reliable plasma simulator which can be used for plasma supervision and forecasting

in real-time [Humphreys et al.(2015)]. The code upgrades, implemented as part of this thesis,

improve predictive capabilities of the code in case of time-varying plasma geometry. New

diffusion equations with fast transport models open more opportunities for development of

real-time controllers. An implementation of fast transport models for plasma impurity will

be useful for off-line simulations of the plasma radiated power and development of real-time

controllers related to impurity accumulation.

5.2 Summary on realistic plasma profiles simulations with the RAP-

TOR code

To validate the gradient-based transport model, implemented in the code as part of this

thesis, we have performed simulations over the entire plasma discharge for TCV, AUG and

JET tokamaks. This model requires a few prescribed parameters, which can be defined from

experimental measurements. Thus, another goal was to define typical ranges of the transport

parameters for various machines and confinement regimes. The shape of the plasma profiles

for electrons in the “stiff” region is characterized by a constant logarithmic gradient λTe ,ne ,

which is related to the inverse scale length R/LTe ,ne . Therefore, λTe ,ne can be defined from

experimental data and verified with gyrokinetic simulations. To defined the height of the

pedestal for Te and ne we use integrated parameters like the confinement factor for electron

energy He for Te profiles and the line-averaged density nel for ne profiles, obtained from the

experimental measurements. We have defined He for L- and H-mode, assuming that there is

no local improvement or degradation in electron energy confinement.

Testing λTe ,ne for TCV and AUG plasmas with predictive simulations for ψ, Te and ne we

have determined its typical values for L- and H-modes. For TCV in Sec 3.2, λTe = 3.2/2.3 and

λne = 2.0/1.0 for L-/H-modes have given the best match with Thomson measurements over

several entire discharge simulations (that is many measurements). Whereas for AUG in Sec.

3.3, we have obtained λTe = 3.0/2.3 and λne = 1.0/0.5 for L-/H-mode. Note that λTe are similar

for TCV and AUG and stay in a good agreement with theoretical predictions of gyrokinetic

studies [Jenko et al.(2005)] and experimental observations [Ryter et al.(2001)]. Difference in
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λne can come from different Te/Ti ratio for TCV and AUG plasmas, but such a significant

difference would be worth studying in more details. For JET plasmas in Sec. 3.3, same λTe ,ne as

for AUG have been used, showing that the main differences between these two machines is well

encapsulated by the confinement scaling law and effective line-averaged density. With fixed

λTe ,ne and prescribed He and ne , we have obtained very good agreement with experimental

signals for TCV, AUG and JET. Simulations have been performed for plasmas with various

geometry and heating scenarios, confirming the wide validity of the applied transport models.

We have also shown several special cases when the obtained set of λTe ,ne is not valid. Since we

have not used coupled simulations of the plasma profiles and NTMs, their effect is not taken

into account on the profiles of the transport parameters, as has been shown in Subsec. 3.2.2.

Thus, Te and ne profiles simulated by RAPTOR are not affected by NTMs, which can lead to a

difference in predicted and measured profiles. However, if NTMs are simulated, profiles of the

transport coefficients will be locally changed, leading to modification of the plasma profiles. A

special case of ECRH heating scenario has been considered for TCV plasma in Subsec. 3.2.3,

where off-axis heating leads to heat confinement degradation. With an additional option,

allowing to modify He factor as function of the radial deposition of ECRH, we have obtained

realistic evolution of Te and ne profiles. Impurity accumulation can lead to generation of

hollow temperature and density profiles, strongly decreasing λTe ,ne . For AUG and JET plasmas

in Subsec. 3.3.2 and 3.4.2, we have reduced λTe and introduced a power density sink, related

to radiated power, to simulate flattened and hollow Te profiles. For density transport further

data analysis is required.

We have demonstrated capability of the RAPTOR code to predict time and space evolution

of Te and ne profiles for TCV, AUG and JET plasmas, including the pedestal regions, over all

discharge phases from ramp-up to ramp-down. Several directions for the transport model

development can be mentioned. Since in RAPTOR we approximate radial profiles for the

input power densities by Gaussian curves, simulations with power density profiles provided

by the codes like TRANSP [Hawryluk(1980)]/TORBEAM [Poli et al.(2001)] can help to clarify

influence of this assumption. Coupled simulations of the plasma profiles with NTMs will

be an important improvement for predictive capabilities of RAPTOR and thus prediction of

heat and particle profiles. Significant differences between the constant characteristic gradient

in the “stiff” region λTe ,ne predicted by RAPTOR and obtained in real-time can be used for

controllers/detector as an indicator of reduction in the heat flux caused by increased plasma

radiation/impurities accumulation. Also an option to adjust λTe ,ne , depending on the heat flux,

and to have it radial-dependent will allow automatically to take into account strong central

radiation, for example. Coupling with the neural network transport models like QuaLiKiz

[Bourdelle et al.(2016), Citrin et al.(2017), Felici et al.(2018)] will allow to get information on

expected heat flux, thus to check λTe ,ne . For further testing of the model in real-time, typical

values for the edge gradient μTe ,ne from TCV, AUG and JET simulations can be used. Also μTe ,ne

can be estimated with the help of special codes like EPED [Snyder et al.(2011)]. It is planned

to continue working on the model development for ions transport. Since the gradient-based

model for ion heat transport is already implement in the RAPTOR code, further analysis of the
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experimental data is required.

5.3 Summary on the numerical ramp-down optimization

As part of this thesis, an automatic optimization procedure have been developed for the

final stage of the plasma discharge, which is characterized by simultaneous decrease in the

plasma current, pressure and volume. The difficulty of the plasma termination phase is

in a limited operational range to decrease plasma energy and density in a controlled way

and without plasma disruptions. Machine operational requirements or plasma stability lim-

its can be easily reached because of rapid changes in various plasma parameters. Since

future fusion reactors, and ITER in particular, can withstand only a limited amount of dis-

ruptions, it is important to develop nondisruptive termination scenarios. In recent years,

development of appropriate termination scenarios is carried out with the help of numer-

ical [Kim et al.(2009), Casper et al.(2014), De Vries et al.(2018)] and experimental studies on

various machines [Nunes et al.(2011), Bizzaro et al.(2016)]. However, with optimization algo-

rithms, searching a termination trajectory can be performed automatically.

In [Felici(2011), Felici et al.(2012)] an automatic optimization procedure has been developed

for the ramp-up phase of a plasma discharge. Cost and constraint functions define the goal of

the optimization and the area, where an optimal solution can be found. We have extended this

algorithm in order to perform an optimization of the plasma ramp-down phase. Cost function

terms related to plasma integrated quantities (the plasma current, the input power, the plasma

elongation) are defined in Subsec. 4.2.2. Thus, the optimization goal is defined as to find a

way to ramp-down the plasma current, the plasma elongation (thus, the plasma volume) or

the input power as fast as possible, i.e. to reduce stored plasma energy and forces acting on

the vessel in case of a disruption during the ramp-down phase. From the wide set of plasma

physical constraints and machine technical limits, described in sec. 4.1, we have chosen a

few of them, concentrating on the parameters which can be taken into account or predicted

by the RAPTOR code, as discussed in Subsec. 4.2.3. Exact values of the limited parameters

depend on a machine. In this thesis we have tested the optimization procedure for TCV, AUG

and JET plasmas.

We have mainly studied an influence of the plasma current, the plasma elongation and H-L

transition on the time evolution of the plasma internal inductance and other related quantities.

In the numerical optimization of the ramp-down phase for TCV L-mode plasmas in Sec. 4.3,

we have shown that the rate of change in the vertical magnetic field can be kept low with

a faster decrease in the plasma current if there is a reduction in the plasma elongation. In

the successful experimental test of the optimized trajectories, the plasma state has evolved

similar to RAPTOR predictions, validating the optimization procedure. It is also important

to determine an appropriate scenario to ramp-down additional heating power, since plasma

might be rather sensitive to the transition from H- to L-mode. Therefore, the AUG ramp-down

phase in Sec. 4.4 is optimized in terms of the plasma current, the plasma elongation and the
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time instant of the H-L transition. We have found that faster decrease in the plasma elongation

allows for a faster ramp-down of the plasma current, while the plasma internal inductance

stays low. An earlier H-L transition leads to smaller drop in βpol , reducing risks of the growth

of a plasma MHD instability. In order to improve standard termination procedure for AUG,

we have tried to test the optimized trajectories experimentally. Because of machine technical

requirements, protecting the vessel from a fast ramp-down of the currents in the coils forming

the central solenoid, it was not possible to test full optimized trajectories. However, we have

observed that faster than usual ramp-down in the plasma current can be performed with a

proper plasma shaping and reduction of the additional heating power. Similar optimization

has been tested for the JET ramp-down phase in Sec. 4.5, however it will be worth to develop

an extended set of physical and technical constraints to specify a safe operation range for the

machine.

The optimized trajectories also depend on the model which is used for plasma simulations.

In Subec. 4.6.1, we have shown that variations in the prescribed transport parameters may

lead to slightly different evolution of the plasma state, thus providing different optimized

trajectories. An information about variations in the optimized trajectories for a wide set of

transport parameters can be used by real-time controllers to define an area where a plasma is

known to be within the physical/technical limits. Since RAPTOR does not have an equilibrium

reconstruction solver, recalculation of the plasma equilibrium by, for example, the CHEASE

code during the optimization loop will provide more accurate information about evolution

of the plasma geometrical parameters. However, even with the simple scaling on the plasma

elongation, used for this work, we have obtained a good representation of the plasma geometry,

as it has been shown in Subsec. 4.6.2.

The optimization procedure can be improved with an extended set of the physical and techni-

cal constraints. It will allow to defined an area for searching the optimal trajectory more accu-

rately for a specific machine. With further development of the RAPTOR code, physical limits

related to the impurity accumulation and an increase in the radiated power, for example, can

be taken into account. The optimized trajectories also can be tested with more complex codes,

like ASTRA [Pereverzev and Yushmanov(2002)] and DINA [Khayrutdinov and Lukash(1993)],

to verify dynamics of the plasma state and to check their consistency with the machine techni-

cal requirements. With this work, we have demonstrated the capability of the optimization

algorithm, based on RAPTOR plasma simulations, to provide reliable plasma ramp-down

trajectories.
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A Equilibrium quantities required by
RAPTOR

To solve the transport equations Eqs. 2.16-2.32, RAPTOR requires the following set of geomet-

rical parameters to be prescribed on a normalized toroidal radial grid ρ̂:

ρ̂ =√Φ/Φb

V ′
ρ̂
= ∂V

∂ρ̂

g0 = 〈∇V 〉, g1 =
〈

(∇V )2
〉

, g2 =
〈

(∇V )2

R2

〉
, g3 =

〈 1
R2

〉
.

F =RBφ

where Φ and Φb are the toroidal magnetic flux and its boundary value, V and V ′
ρ̂

denote to the

plasma volume and its radial derivative, R is the main plasma radius, F is the poloidal current

function, Bφ is the toroidal magnetic field. Information on these parameters is provided by

external equilibrium codes.

Geometric coefficients from equilibrium code quantities

Equilibrium codes like LIUQE [Hofmann et al.(1988), Moret et al.(2015)], CHEASE [Lütjens et al.(1996)]

return contour integralsCi over flux surface quantities. Here, we provide the definition of the

Ci coefficients in SI units:

{C0,C1,C2,C3,C4} =
∮{

1

R
,1,

1

R2 ,B2
p ,R2B2

p

}
dlp
Bp

(A.1)

Definitions for ∂V
∂ψ and Bp in terms of COCOS [Sauter and Medvedev(2013)]:

Bp = 1

(2π)eBp
· |∇ψ|

R
=

σBpσIp

(2π)eBp
· |∇ψ|

R
(A.2)

∂V

∂ψ
=
∮

σBpσIp ·
2πR

|∇ψ|dlp = (2π)(1−eBp )σBpσIp

∮ dlp
Bp

(A.3)
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Ci coefficients in terms of COCOS:

C0 =
∮

1

R

dlp
Bp

= (2π)eBp
∮ dlp

|∇ψ| (A.4)

C1 =
∮ dlp

Bp
= (2π)eBp

∮ Rdlp
|∇ψ| (A.5)

C2 =
∮

1

R2

dlp
Bp

= (2π)eBp
∮ dlp
R|∇ψ| (A.6)

C3 =
∮
B2
p

dlp
Bp

=
∮
Bpdlp = 1

(2π)eBp

∮ |∇ψ|
R

dlp (A.7)

C4 =
∮
R2B2

p

dlp
Bp

=
∮
R2Bpdlp = 1

(2π)eBp

∮
R|∇ψ| dlp (A.8)

If one wants to normalize with the coefficients ld for distance and lB for magnetic field, one

would get

Cnorm
0 = lB

∮
1

R

dlp
Bp

= lBC0 (A.9)

Cnorm
1 = lB

ld

∮ dlp
Bp

= lB
ld
C1 (A.10)

Cnorm
2 = ld lB

∮
1

R2

dlp
Bp

= ld lBC2 (A.11)

Cnorm
3 = 1

ld lB

∮
B2
p

dlp
Bp

= 1

ld lB (2π)2eBp

∮
(∇ψ)2

R2

dlp
Bp

= 1

ld lB
C3 (A.12)

Cnorm
4 = 1

l3
d lB

∮
R2B2

p

dlp
Bp

= 1

l3
d lB (2π)2eBp

∮
(∇ψ)2 dlp

Bp
= 1

l3
d lB

C4 (A.13)

The system (A.9)-(A.13) provides the general definition ofCnorm
0 −Cnorm

4 for any coordinate

conventions and any normalization. TheCi coefficients are obtained with ld = lB = 1.

Flux surface averaged quantities from contour integrals

We rewrite ∂V
∂ψ ,g1,g2,g3, ∂V∂ρ̂ in terms of C0 −C4, introduced in Eqs. A.4-A.8 and in terms of

Cnorm
0 −Cnorm

4 , defined in Eqs. A.9-A.13:

∂V

∂ψ
= (2π)(1−eBp )σBpσIpC1 = (2π)(1−eBp )σBpσIp

ld
lB
Cnorm

1 (A.14)
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·〈(∇ψ)2〉= (2π)2(1−eBp )
∮ dlp

Bp
·
∮

(∇ψ)2 dlp
Bp

= (2π)2(1−eBp )C1 · (2π)2eBp C4 = 4π2C1C4 = 4π2l4
d ·Cnorm

1 Cnorm
4 (A.15)
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g2 =
〈

(∇V )2

R2

〉
=
(
∂V

∂ψ

)2

·
〈

(∇ψ)2

R2

〉
= (2π)2(1−eBp )

∮ dlp
Bp

·
∮

(∇ψ)2

R2

dlp
Bp

= (2π)2(1−eBp )C1 · (2π)2eBpC3 = 4π2C1C3 = 4π2l2
d ·Cnorm

1 Cnorm
3 (A.16)

g3 =
〈

1

R2

〉
=
∮

1

R2

dlp
Bp

/
∮ dlp

Bp
= C2

C1
= 1

l2
d

Cnorm
2

Cnorm
1

(A.17)

∂V

∂ρ̂
= ∂V

∂ψ

∂ψ

∂Φ

∂Φ

∂ρ̂
= (2π)(1−eBp )σBpσIpC1 · (2π)eBp

σIpσBpFC2
·2Φb ρ̂ = 4π

C1

FC2
Φb ρ̂

= 4π
ld
lB
Cnorm

1
1

FnormCnorm
2 σB0

·Φnorm
b l2

d lBσB0 ρ̂ = 4πl3
d

Cnorm
1

FnormCnorm
2

Φnorm
b ρ̂

(A.18)

where ρ̂ =√Φ/Φb . The toroidal flux is defined in the following way:

Φ(ψ) =
∫
St

B ·eφdS = 1

2π

∫
V

B ·∇φdV = 1

2π

∫
V

F

R2dV (A.19)

Using the definition for
∫
V ,

∫
V
= (2π)(1−eBp )σBpσIp

∫
dψ

∮ dlp
Bp

(A.20)

we derive ∂Φ(ψ)/∂ψ in the following way:

∂Φ

∂ψ
= 1

(2π)eBp
σBpσIp

∮
F

R2

dlp
Bp

= 1

(2π)eBp
σBpσIp FC2 (A.21)

Thus, if an equilibrium reconstruction code provides the contour integrals in form of Ci or

Cnorm
i and its COCOS is known, then geometrical quantities required by RAPTOR can be

defined in the following way:

SI units RAPTOR in SI Normalized

∂V
∂ψ (2π)1−eBpσBpσIpC1 C1 (2π)1−eBpσBpσIp

ld
lB
Cnorm

1

g1 4π2C1C4 4π2C1C4 4π2l4
dC

norm
1 Cnorm

4

g2 4π2C1C3 4π2C1C3 4π2l2
dC

norm
1 Cnorm

3

g3 C2/C1 C2/C1
1
l2
d
Cnorm

2 /Cnorm
1

∂V
∂ρ̂ 4π C1

FC2
Φb ρ̂ 4π C1

FC2
Φb ρ̂ 4πl3

d
Cnorm

1
FnormCnorm

2
Φnorm
b ρ̂

RAPTOR hasCOCOS = 11 ld = 1, lB = 1, eBp = 1, σBp = 1, σIp = 1, σRφZ = 1 σρθφ = 1, σB0 = 1.

Contour integrals in SI units can be defined with CHEASE quantities withCOCOS = 2: ld =R0,
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Appendix A. Equilibrium quantities required by RAPTOR

lB =B0, eBp = 0, σBp = 1, σIp = 1, σρθφ = 1, σB0 = 1, where

C0 = 1

B0
CCH

0 , C1 = R0

B0
CCH

1 , C2 = 1

R0B0
CCH

2 , C3 =R0B0C
CH
3 , (A.22)

C4 =R3
0B0C

CH
4 , F =R0B0F

CH , Φb =R2
0B0Φ

CH
b (A.23)

Other plasma quantities related to magnetic flux can be defined with Ci contour integrals.

Here, we write expressions for the safety factor q and the plasma current Ip .

q =
σBpσρθφ

(2π)1−eBp
∂Φ

∂ψ
=σIpσρθφ

1

2π
FC2 =σIpσρθφσB0

1

2π
FnormCnorm

2 (A.24)

Using the Ip definition similar to the ASTRA code:

Ip =
∫
jφdSφ =

σBp

(2π)eBp−1μ0
G2

∂ψ

∂ρ
(A.25)

where

G2 = V ′

4π2

〈(∇ρ
r

)2〉
(A.26)

we can rewrite Ip in RAPTOR terms:

Ip =
σBp

(2π)eBp+2

1

2μ0Φb
F
g2g3

ρ̂

∂ψ

∂ρ̂
=

σBp

(2π)eBp+2

1

μ0

F

q
g2g3 (A.27)

and its toroidal density:

jtor = 2πR0
∂Ipl
∂V

=
σBp

(2π)eBp+2

2πR0

2μ0ΦbV ′
ρ̂

∂

∂ρ̂

[
F
g2g3

ρ̂

∂ψ

∂ρ̂

]
(A.28)

If series of contour integrals are know for several time instants, parameters ∂V
∂ψ ,g1,g2,g3, ∂V∂ρ̂

are calculated for each of them. Then to get the full time evolution, the parameters are

interpolated linearly from their own time grid to RAPTOR time grid. At this moment RAPTOR

interface allows to work with contour integrals provided by CHEASE [Lütjens et al.(1996)],

ASTRA [Pereverzev and Yushmanov(2002)] and RT-LIUQE [Moret et al.(2015)]. Other codes,

like EFIT [Lao et al.(1985a)] and CLISTE [Schneider et al.(2000)], have to provide equilibrium

data files in EQDSK/EXPEQ format firstly. Then, these data files are reprocessed by the CHEASE

code, and data files in CHEASE format are used by RAPTOR.
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B Numerical implementation of the
transport equations

In the RAPTOR code, the system of ODEs, constructed by Eqs. 2.16, 2.24 and 2.32, is solved by

using the method of finite elements [Felici et al.(2011)]. As in [Felici et al.(2011)], the solution

of an inhomogeneous equation of the form

m(ρ, t )
∂y

∂t
= ∂

∂ρ

[
g (ρ, t )

∂y

∂ρ

]
+k(ρ) j (ρ, t ) (B.1)

can be written as y(ρ, t ) ≈∑nsp
α=1 ŷα(t )Λα(ρ). Here Λα are the finite element basis functions.

In order to easily use the finite element method, the terms of Eqs. 2.16, 2.24 and 2.32 have to

be regrouped to eliminate the term in front of the second order derivative, since an integration

by part is used later.

The diffusion equation for the poloidal flux

The diffusion equation for the poloidal flux ψ Eq. 2.16 can be written in the following form:

mψ
∂ψ

∂t
= aψ

∂ψ

∂ρ̂
+ ∂

∂ρ̂
dψ

∂ψ

∂ρ̂
+ sψ (B.2)

with

mψ = 16π2μ0ρ̂
Φ2
bσ∥
F 2

aψ = 8π2μ0Φ̇bΦb
σ∥ρ̂2

F 2

dψ = g2g3

ρ̂

sψ =−8π2μ0Φb

V ′
ρ̂

F 2 〈jni ·B〉

where Φb is the toroidal flux at the plasma boundary, σ|| is the plasma conductivity, jni and

B denote to non-inductive current density and the magnetic filed, F is the poloidal current
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function; V ′
ρ̂

, g2, g3 are plasma geometrical parameters, defined in Appendix A. Note that with

respect to [Felici et al.(2012)] a new term aψ has been added to reflect the time dependence of

the toroidal enclosed flux Φ.

If we write ψ as a sum of spatial basis functions

ψ(ρ, t ) =
nsp∑
α=1

Λα(ρ̂)ŷα(t ) (B.3)

then the weak form, after projection on Λb and integration by parts can be written in the

following way:

nsp∑
α=1

dŷα(t )

dt

∫1

0
mΛβΛαdρ̂ =∑nsp

α=1 ŷα
∫1

0 aψΛβ
∂Λα

∂ρ̂ dρ̂

−
nsp∑
α=1

ŷα

∫1

0
dψ

∂Λβ

∂ρ̂

∂Λα

∂ρ̂
dρ̂ +

[
dψΛβ

∂ψ
∂ρ̂

]1

0
+∫1

0 Λβsψdρ̂ (B.4)

which gives the matrix form of Eq. B.2:

Mψ
dψ̂

dt
= (−Dψ+Aψ)ψ̂+ l+s (B.5)

The boundary term l contains only the last element

dψΛβ
∂ψ

∂ρ̂

]
ρ=1

= g2g3

ρ̂

∂ψ

∂ρ̂

]
ρ=1

= 16π3μ0Φb

F

]
ρ=1

Ip (B.6)

The diffusion equation for the plasma energy

In the same way the diffusion equation for the plasma temperature, defined in Eq. 2.24, can

be written:

mTs
∂Ts
∂t

= aTs
∂Ts
∂ρ̂

+ ∂

∂ρ̂
dTs

∂Ts
∂ρ̂

+hTsTs + sTs (B.7)
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with

mTs =
3

2
V ′
ρ̂ns (B.8)

aTs =
3

2
ρ̂nsV

′
ρ̂

Φ̇b

2Φb
(B.9)

dTs =
g1

V ′
ρ̂

nsχs (B.10)

hTs =
Φ̇b

2Φb
ρ̂ns

∂V ′
ρ̂

∂ρ̂
− 5

2
ns

∂V ′
ρ̂

∂t
− 3

2
V ′
ρ̂

∂ns
∂t

(B.11)

sTs =V ′
ρ̂Ps (B.12)

where the index “s” denotes to plasma species like electrons or ions; ns and Ts are density and

temperature of the plasma species; g1 is a geometrical quantity, defined in Appendix A; χs is

the heat diffusion coefficient.

As in the equation for the toroidal flux, the term aTs reflects changes caused by the time-

varying enclosed toroidal flux Φ̇b . Also a new term hTs has been defined to take into account

the influence of the time evolution of the electron density and plasma volume.

For the Ts equation, we write Ts as a sum of spatial basis functions

Ts(ρ̂, t ) =
nsp∑
α=1

Λα(ρ̂)ẑα(t ) (B.13)

and we obtain the weak form, after projection on Λb and integration by parts, as

nsp∑
α=1

dẑα(t )

dt

∫1

0
mTsΛβΛαdρ̂ =−

nsp∑
α=1

ẑα

∫1

0
aTs

∂Λβ

∂ρ̂
Λαdρ̂+ [aTsΛβTs

]1
0

−
nsp∑
α=1

ẑα

∫1

0
dTs

∂Λβ

∂ρ̂

∂Λα

∂ρ̂
dρ̂+

[
dTsΛβ

∂Ts
∂ρ̂

]1

0

+
nsp∑
α=1

ẑα

∫1

0
hTsΛβΛα∂ρ̂+

∫1

0
ΛβsTsdρ̂ (B.14)

which gives the matrix form

MTs
dT̂s
dt

= (−ATs −DTs +HTs )T̂s + l+s (B.15)

with the boundary term

l = aTsΛβTs
]
ρ̂=1+ dTsΛβ

∂Ts
∂ρ̂

]
ρ̂=1

=
((

3

2
ρ̂nsV

′
ρ̂

Φ̇b

2Φb
− 5

2
Γe g0

)
Ts + g1

V ′
ρ̂

nsχs
∂Ts
∂ρ̂

)]
ρ̂=1

(B.16)

Note that in the code the boundary term l is fixed at a prescribed value.
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Appendix B. Numerical implementation of the transport equations

The diffusion equation for the plasma particles

The diffusion equation for plasma particles “s” Eq. 2.32 can be written in the following way:

mns
∂ns
∂t

= ∂

∂ρ̂
(ansns)+

∂

∂ρ̂
dns

∂ns
∂ρ̂

+hnsns + sns (B.17)

with

mns =V ′
ρ̂ (B.18)

ans =
Φ̇b

2Φb
V ′
ρ̂ ρ̂−Vsg0 (B.19)

dns =
g1

V ′
ρ̂

Ds (B.20)

hns =−
∂V ′

ρ̂

∂t
(B.21)

sns =V ′
ρ̂Ss (B.22)

where Vs and Ds denote the particle pinch velocity and diffusion coefficient respectively.

Now we write ns as a sum of spatial basis functions

ns(ρ̂, t ) =
nsp∑
α=1

Λα(ρ̂)ŷα(t ) (B.23)

Then, similar to Ts , the weak form is written in the following way:

nsp∑
α=1

dŷα(t )

dt

∫1

0
mnsΛβΛαdρ̂ =−

nsp∑
α=1

ŷα

∫1

0
ans

∂Λβ

∂ρ̂
Λαdρ̂+ [ansΛβns

]1
0

−
nsp∑
α=1

ŷα

∫1

0
dns

∂Λβ

∂ρ̂

∂Λα

∂ρ̂
dρ̂+

[
dnsΛβ

∂ns
∂ρ̂

]1

0

+
nsp∑
α=1

ŷα

∫1

0
hnsΛβΛα∂ρ̂+

∫1

0
Λβsnsdρ̂ (B.24)

which gives the matrix form

Mns
dn̂s
dt

= (−Ans −Dns +Hns )n̂s + l+s (B.25)

with the boundary term

l = ansΛβns
]
ρ̂=1 + dnsΛβ

∂ns
∂ρ̂

]
ρ̂=1

=
((

Φ̇b

2Φb
V ′
ρ̂ ρ̂−Vsg0

)
ns + g1

V ′
ρ̂

Ds
∂ns
∂ρ̂

)]
ρ̂=1

(B.26)

Note that in the code, as well as for Ts , the boundary term l is fixed at a prescribed value.
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C The PI controller for the electron
transport models

A controlled edge gradient μTe , defined in Eq. 2.57, allows to get good predictive results even

with fast L-H and H-L transition. The block diagram of the controller is presented in Fig C.1.

For an error estimation as part of the PI-feedback control, the prescribed He (t ) is required. For

feedforward control, we use a simple scaling law based on prescribed plasma current Ip (t),

total input power Pin(t ) and line-averaged electron density nel (t ). The transport parameter

μTe obtained after the combination of feedforward and feedback outputs is used for χe(ρ)

calculation and to solve for the electron temperature Te(ρ) profile. The He factor, based on

this Te (ρ), is used for feedback control at the next step. A similar controller has been build for

μne , but only a feedback part is used at this moment. An error in this case is defined as the

difference between prescribed and simulated line-averaged electron densities nel (t ). Gains

Kp and Ki at this moment are defined by the user, assuming higher values of the gains in case

of larger simulation time step. Higher values of the gains increase sensitivity of the controller,

allowing it to react faster to changes in plasma heat and particle confinement properties,

however it can lead to a stronger deviation from the reference in case of large time steps. For

further improvement of the controller, these gains can be defined automatically based on the

chosen time step. In the present work, typical gains for μTe and μne PI controllers are around

Figure C.1: The block diagram for the μTe controller as a combination of PI feedback control

with an error equal to Hre f
e −He and feedforward control based on prescribed Ip (t), Pin(t)

and nel (t ).

115



Appendix C. The PI controller for the electron transport models

Figure C.2: Predictive simulations for Te and ψ for the TCV shot #55520 in case of controlled
and prescribed (smoothed) μTe . Time evolution of the gradient μTe , the electron temperature
Te at ρped and ρinv ≈ 0.15 and central safety factor q0 are presented.

1 ·103 and 5 ·1019 for small time steps (like 1ms for TCV simulations) and 5 ·103 and 5 ·1020 for

larger time steps (like 10 ms for AUG and JET simulations).

In Fig. C.2, we demonstrate that the developed controller for μTe does not disturb the phys-

ical result too much and even the frequencies of sawtooth oscillations are almost the same.

The electron temperature Te simulated with controlled μTe (blue) is very close to the values

obtained with prescribed μTe (red), defined as a smoothed μTe in the blue color. We also

can check Te gradient in the pedestal region (between 0.8 and 1.0 in this case), calculating

it directly from the Te profiles. This calculated gradient (black dashed) is very close to the

prescribed μTe , proving the correct implementation of the controller in the RAPTOR code.

The scaling law for the feed-forward controller

It is helpful if a reasonable feedforward value μ
f f
Te

can be provided. From the definition of the

inverse scalelength R/LTe (Eq. 2.51), the constant gradient for the “pedestal” region can be

written as

μTe =−dTe
dρ

=−Te (ρped )−TBC
e

ρped −ρedge
(C.1)

where Te(ρped ) is the pedestal electron temperature and TBC
e is the prescribed electron tem-

perature at the plasma edge. If an appropriate scaling law for the pedestal electron temperature

(or electron pressure) is defined then μTe can be easily found via the definition Eq. C.1.

A scaling law for the pedestal electron temperature has been defined from the central electron

temperature using the constant logarithmic gradient of the “core” region λTe :

Te(ρped ) = Te0 ·e(λTe (ρped−ρinv )) (C.2)
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while the central temperature has been estimated from the H98,y,2 scaling law for the en-

ergy confinement time [ITER Physics Expert Groups(1999a)] using typical values for the TCV

plasma geometry parameters:

TTCV
e0 = 7.5 ·103 · (Ip [MA])0.93 · (Ptot [MW ])0.3 · (nel [1019m3])−0.6 (C.3)

Inserting this into Eqs. C.2, C.1 yields the approximation for μ f f
Te

. For AUG and JET, we use the

following expressions:

T AUG
e0 = 3.3 ·103 · (Ip [MA])0.93 · (Ptot [MW ])0.3 · (nel [1019m3])−0.6 (C.4)

T JET
e0 = 4.1 ·104 · (Ip [MA])0.93 · (Ptot [MW ])0.3 · (nel [1019m3])−0.6 (C.5)
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