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Densely Packed, Ultra Small SnO Nanoparticles for Enhanced A ctivity
and Selectivity in Electrochemical CO, Reduction

Jun Gu, Florent Héroguel, Jeremy Luterbacher, and Xile Hu*

Abstract: Controlling the selectivity in electrochemical CO,
reduction is an unsolved challenge. While tin (Sn) has emerged
as a promising non-precious catalyst for CO, electroreduction,
most Sn-based catalysts produce formate as the major product,
which is less desirable than CO in terms of separation and
further use. Tin monoxide (SnO) nanoparticles supported on
carbon black were synthesized and assembled and their
application in CO, reduction was studied. Remarkably high
selectivity and partial current densities for CO formation were
obtained using these SnO nanoparticles compared to other Sn
catalysts. The high activity is attributed to the ultra-small size of
the nanoparticles (2.6 nm), while the high selectivity is
attributed to a local pH effect arising from the dense packing
of nanoparticles in the conductive carbon black matrix.

Electrochemical reduction of CO, to form carbon-based
fuels and chemicals has been widely proposed for the storage
and utilization of intermittent renewable energies such as
solar and wind.'! However, two major deficiencies have
prevented CO, electroreduction from becoming a viable
technology: energy inefficiency owing to large overpotentials,
and poor selectivity leading to separation issues. Therefore,
there is tremendous interest in developing active and selective
electrocatalysts for CO, reduction. In terms of electrochem-
ical activity, noble-metal catalysts rank the best.”) Among
non-noble metal catalysts, Sn-based catalysts stand out.**
However, the major CO, reduction product using Sn catalysts
is formate (HCOO™), and CO is generated only in a small
amount.”! Unlike its acidic form, formic acid which is a high-
value chemical, formate has no obvious usage and is difficult
to separate and convert into other high-value products
without adding costly processes. CO, on the other hand, is
a highly desirable product as it is a gas that can be easily
separated and further converted into fuels and bulk chemicals
at a large scale through existing chemical technologies.
Achieving high activity and selectivity for CO formation on
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a non-precious catalyst such as Sn is therefore a notable goal
with practical relevance.

The CO, electroreduction performance of Sn based
catalysts developed recent years is summarized in the
Supporting Information, Figure S4. Modulation of size,
shape, and composition (metal, oxide, or sulfide) of mono-
metallic Sn catalysts is effective to achieve high formate
formation activity, but these approaches cannot improve CO
formation performance.’*? Until now, cooperative promo-
tion is required to enhance CO formation on Sn-based
catalysts. For example, Cu-Sn bimetallic catalysts are reported
to favor CO formation;® however, Cu also acts as possible
catalytic sites. Herein we report a new strategy that leads to
unprecedented activity and selectivity for CO formation
among monometallic Sn catalysts. Key to this performance
are the ultra-small size of catalyst nanoparticles and their
dense packing in a conductive matrix, which lead to a high
density of active site and a local pH effect that favors the
formation of CO over formate.

To prepare densely packed ultra-small Sn nanoparticles,
we considered to derive them from a suitable tin oxide. Sn is
a low melting-point metal, and thus many synthetic methods
for nanoparticles that involve thermal treatments are more
adapted for tin oxides than for Sn."" Moreover, previous work
showed that oxide-derived metal catalysts can have higher
roughness and surface areas, which is beneficial for CO,
reduction.’®! We chose SnO because unlike SnO,, it has not
been explored as precursors for catalysts for CO, electro-
reduction. Figure 1a shows the synthetic strategy of carbon-
black-supported SnO (SnO/C) as the precatalyst. A compo-
site of carbon black and Sn" oxalate (SnC,0,/C; Supporting
Information, Figure S5) was first prepared by co-precipita-
tion. Pyrolysis of SnC,0,/C at 400°C in an N, atmosphere
then yielded SnO/C. For comparison purpose, precatalysts
based on SnO, (SnO,/C) and Sn nanoparticles (Sn/C) were
also fabricated. SnO,/C was prepared similarly to SnO/C,
except that the pyrolysis was conducted in air (Figure 1a). Sn/
C was prepared by reducing SnCl, with NaBH, in the
presence of carbon black.

The X-ray diffraction (XRD) patterns confirm the
crystallographic phase of SnO/C (Figure 1b), SnO,/C and
Sn/C (Supporting Information, Figure S6), and the broad
diffraction peaks of SnO/C and SnO,/C indicate the nanosized
features of SnO and SnO,. The loadings of SnO, SnO,, and Sn
in the composites determined by thermal gravity analysis
(TGA) in air were 46.0%, 49.2%, and 49.3 %, respectively
(Supporting Information, Figure S7). X-ray photoelectron
spectroscopy (XPS) analyses (Supporting Information, Fig-
ure S8 and Table S2) show that the surfaces of Sn and SnO
were partially oxidized to form SnO, species when exposed to
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ﬂ:\—\\ high dispersity, and single-crystalline nature as their SnO
S"C'{*jg' i precursors (Figure 1e; Supporting Information, Figure S12).
7 snC,0,/C Although ultra-small Sn nanoparticles should be easily
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Figure 1. a) Synthetic strategies of SnO/C and SnO,/C. b),d) XRD
patterns and c),e) HAADF-STEM images of SnO/C before (b,c) and
after (d,e) electrolysis at —0.66 V vs. RHE in CO, saturated 0.5 M
KHCO; electrolyte for 1800 s. Vertical lines in (b) and (d) are standard
diffraction patterns of tetragonal SnO (JCPDS no. 06-0395) and
tetragonal Sn (JCPDS no. 04-0673), respectively.

air. The high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) images of SnO/C are
shown in the Figure 1c and the Supporting Information,
Figure S9a. These images reveal ultra-small SnO nanoparti-
cles as bright dots with an average size of 2.6+0.4 nm,
homogeneously dispersed on the carbon black substrate,
which appears as a gray background. The interparticle
distance is about 4 nm. High-resolution transmission electron
microscopy (HRTEM) image reveals the single-crystalline
nature of SnO nanoparticles (Supporting Information, Fig-
ure S9b). On the other hand, SnO, nanoparticles in SnO,/C
(Supporting Information, Figure S10) have an average size of
5.0£0.9 nm, twice as large as SnO, and aggregation occurs to
some degree. Sn particles in Sn/C have a wide size distribution
of 30 to 200 nm (Supporting Information, Figure S11).

The post-catalytic characterizations of SnO/C after elec-
trolysis at —0.66 V versus reversible hydrogen electrode
(RHE) in CO, saturated 0.5M KHCO; electrolyte for 1800 s
are shown in Figure 1d,e. The applied potential is much more
negative than the reduction potential of SnO and SnO,, that is
—0.10V and —0.09 V vs. RHE, respectively.”! The XRD
pattern of SnO/C after electrolysis indeed only shows the
peaks of metallic Sn. However, peaks of SnO, still exist with
those of metallic Sn in the XRD pattern of SnO,/C after
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oxidized when exposed to air, the Nafion binder in the
catalyst seems to prevent this oxidation. In contrast, SnO,-
derived nanoparticles after electrolysis have a much larger
size (8.3 4+ 1.8 nm), polycrystalline nature, and suffer from
aggregation (Supporting Information, Figure S13b,c).

The catalytic activity and selectivity of SnO/C, SnO,/C,
and Sn/C in CO, electroreduction were tested in CO,
saturated 0.5m KHCO; electrolyte. H,, CO, and formate
were the only products detected by gas chromatography and
'H NMR spectroscopy. SnO/C showed the highest current
density in both linear sweep voltammetry (LSV) curves
(Supporting Information, Figure S14) and chronoamperom-
etry (CA) curves (Supporting Information, Figure S15). An
induction period was observed for every pre-catalyst in the
CA curves, which is most likely attributed to the reduction of
tin oxides to Sn. SnO/C showed good stability in a 1-day CA
test at —0.66 V vs. RHE (Supporting Information, Fig-
ure S16), with a stable current density about 13 mAcm >
and the Faraday efficiency of CO constantly between 30 %
and 40 %. The Faraday efficiency of formate of the one-day
electrolysis was 36 %.

The potential-dependent Faraday efficiency (Figure 2 a—c)
and partial current density (Figure 2d-e) for CO and formate
formation of the SnO/C, SnO,/C and Sn/C pre-catalysts were
then determined. SnO/C shows the highest Faraday efficiency
to CO, reduction, and more importantly, to CO formation at
all applied potentials, which keeps above 20% and has the
maximum of 37% at —0.66 V vs. RHE. The partial current
density for CO formation of SnO/C is about an order of
magnitude higher than that of SnO,/C and Sn/C. At —0.66 V
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Figure 2. a)—c) Faraday efficiencies of CO (gray), formate (hashed),
and H, (white) of a) SnO/C, b) SnO,/C, and c) Sn/C at different
applied potentials. d),e) Partial current densities of d) CO and e) for-

mate of SnO/C (solid), SnO,/C (dotted), and Sn/C (dashed) at
different applied potentials.
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and —0.86 V vs. RHE, the current density was 4.7 and
8.5mAcm 2 respectively. The partial current density for
formate formation of SnO/C is higher than SnO,/C and Sn/C
as well. As shown in the Supporting Information, Figure S4,
the Faraday efficiency and partial current density of CO
formation of SnO/C were substantially higher than those of
other Sn based catalysts in previous reports.”] The partial
current density of formate formation of SnO/C is also among
the highest in Sn-based catalysts.!

Since post-catalytic characterization data indicate that
SnO and SnO, precursors were transformed into metallic Sn
during electrolysis, the superior activity and selectivity of
SnO/C warrants additional analysis. Compared to SnO,/C and
Sn/C, the Sn nanoparticles derived from SnO/C has a signifi-
cantly smaller size. As a result, SnO/C possessed a higher
surface area, as indicated by the measurements of double-
layer capacitances (Supporting Information, Figure S17) and
Brunauer-Emmett-Teller (BET) analysis (Supporting Infor-
mation, Figure S18 and Table S3). However, the less than
two-fold increase in surface area cannot account for the more
than 10 times higher partial current densities of CO formation
on SnO/C.

Nanoparticles with smaller size expose a higher propor-
tion of step and corner sites, which might bind adsorbates
stronger than terrace sites. As indicated by the anodic LSV
curves in N, saturated 0.1m KOH electrolyte (Supporting
Information, Figure S19), the potential for oxidative adsorp-
tion of OH™ on SnO/C was more negative than that of the
other two samples, revealing a stronger binding to OH group.
OH has been considered as a surrogate of CO,~, while the
adsorption energy of CO," is a descriptor of the activity of
CO, reduction.”™*1 This result implies Sn nanoparticles
derived from SnO/C adsorb CO,” stronger than those
derived from SnO,/C and Sn/C. The better stabilization of
CO," intermediate, probably attributed to the ultra-small
particle size, is likely the origin of the higher activity of SnO/
C.

However, the size effect cannot explain the high selectiv-
ity of SnO/C towards CO formation. In our SnO/C sample,
nanoparticles of the SnO pre-catalyst, and the actual Sn
catalyst, are densely distributed in the carbon matrix. We
hypothesized that this dense distribution might affect micro-
scopic diffusion, and thus, influence the CO, reduction
selectivity.'"!' To probe the effect of SnO density, we
synthesized another sample of carbon black supported SnO
nanoparticles with a lower weight fraction (8.4%) of SnO
(denoted as 1-SnO/C). The average size of SnO nanoparticles
was 3.0+ 0.8 nm (Supporting Information, Figure S20), sim-
ilar to that of SnO/C. As indicated by the averaged nano-
particle-centered radial distribution diagrams of particle
density (Supporting Information, Figure S3), the particle
density within a short radius of one SnO nanoparticle of
SnO/C is significantly higher than that of I-SnO/C. Figure 3a
and 3b compare the Faraday efficiencies and partial current
densities of CO and formate formation on SnO/C and 1-SnO/
C, at a similar loading of SnO. Compared to SnO/C, 1-SnO/C
has a much lower selectivity towards CO formation while
favoring formate formation. As the particle sizes of SnO/C
and 1-SnO/C were similar, the particle density in the carbon
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Figure 3. a) Faraday efficiencies and b) partial current densities of CO
(solid curves) and formate (dashed curves) of SnO/C (black) and I-
SnO/C (gray) at different applied potentials.

black matrix seems to be the main factor affecting the
selectivity.

It has been observed in previous work®®< that on tin-
based catalysts, by applying larger bias, an increase of current
density was accompanied by an increase of the Faraday
efficiency of CO. High current density, namely higher
consuming rate of proton source, leads to a significant raise
in local pH value near the catalytic sites, which might be the
origin of the increased CO selectivity. In 0.5M KHCO;
electrolyte, the proton donor was HCO; (pka=10.3)."
The simulation™?! showed that in the electrolyte containing
0.5M KHCO;, the local pH value at a flat electrode is about 2
pH units higher than that in bulk electrolyte when the current
density is 5 mA cm 2, and this difference increase significantly
as the current density increases. We consider that in the
catalyst composed of more densely packed nanoparticles, in
this case, the SnO/C sample, the local current density around
one nanoparticle at a given overpotential is higher, and the
local pH value should be higher. If the formation rates of CO
and formate show different dependence on the concentration
of proton donor, this local pH effect will lead to the variation
of the selectivity between CO and formate.

The local pH effect is expected to be more pronounced in
electrolytes with weaker buffer capacities.*!*l The product
distribution of CO, reduction on SnO/C in three different
electrolytes (0.5m K,HPO,, 0.5M KHCO;, and 0.5m KCl) is
compared in the Supporting Information, Figure S21. As the
buffer capacity of electrolyte decreases from K,HPO, to
KHCO; to KCI, the Faraday efficiency of CO increases
gradually. This result supports that a higher local pH effect
enhances CO selectivity.

The possible pathways of CO and formate formation on
Sn are shown in Figure 4a.>®! For each pathway, if the first
step, the single electron transfer to CO,, is the rate determin-
ing step (RDS), the Tafel slop should be 118 mV dec ™. If this
step is reversible, followed by a rate-limiting proton transfer
from HCO,~, the Tafel slop should be 59 mV dec .['I As
indicated by the Tafel plots of SnO/C (Figure 4b), the Tafel
slopes of formate formation is 64 mVdec, close to
59 mVdec™', similar to that reported for other Sn-based
catalysts,*>*! suggesting that the RDS is the protonation of
the adsorbed CO, . Meanwhile, the Tafel slope of CO
formation is 94 mVdec™', close to 118 mVdec™, suggesting
that the formation rate of CO is more limited by the first
single electron transfer step. The Tafel analysis suggests that
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Figure 4. a) Proposed reaction pathways of CO and formate formation
on Sn. b) Tafel plots of CO (black) and formate (gray) formation on
SnO/C. c),d) Partial current densities of CO (black) and formate (gray)
depending on the concentration of HCO,™ for I-SnO/C (c) and SnO/
C (d) at —0.66 V vs. RHE.

the change of local pH will largely change the rate of formate
formation, but not CO formation.

To provide further support to the above Tafel analysis, the
apparent reaction orders of HCO;™ in CO and formate
formation for 1-SnO/C and SnO/C were measured (Fig-
ure 4c,d). The reaction order of HCO;™ in formate formation
was about 0.8, which is close to first order. This result agrees
with the previous report on nanosized SnO,/C" and supports
that the protonation of adsorbed CO,~ is the RDS for
formate formation. The rate orders of HCO; for CO
formation was much smaller, being 0.19 for 1-SnO/C and
0.35 for SnO/C. This result agrees with previous studies on
Aul™ and Agl where the rate order of HCO;~ for CO
formation was close to zero. It is consistent with the reduction
of CO, to CO,~ being the RDS for CO formation. Based on
the reaction orders, a 10-fold increase of the concentration of
HCO;™ will lead to a 4-fold increase in the selectivity of CO
over formate. These results indicate that formate formation is
greatly disfavored over CO formation when the concentration
of proton source is decreased, consistent with the local pH
effect proposed above.

Because CO formation also involves protonation (Fig-
ure 4a), when the concentration of HCOj;™ is low enough, the
protonation step will be slowed down sufficiently to have
a comparable rate to the reduction of CO, to CO, . This
analysis gives a possible explanation for the non-zero order of
HCO; in CO formation. The higher order of our optimized
catalyst, SnO/C than 1-SnO/C (which has a lower packing
density than SnO/C) suggests that the local concentration of
HCO;™ around SnO/C is lower than around 1-SnO/C, again
consistent with a higher local pH effect for the more densely
packed particles.

In summary, a simple synthetic method has been devel-
oped for ultra-small (2.6 nm) SnO nanoparticles densely
dispersed in carbon black. These SnO nanoparticles are
completely reduced to Sn nanoparticles of similar size and
dispersion under conditions employed for CO, electroreduc-
tion. Compared to other Sn-based catalysts, the SnO/C
derived catalyst exhibits remarkably high selectivity and
partial current density of CO formation, as well as one of the
highest partial current densities of formate formation. The
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high activity originates from its ultra-small particle size, which
enhances CO,"~ absorption, and the high selectivity for CO
formation is attributed to a local pH effect arising from the
high density of nanoparticles in the conductive carbon black
matrix. Local pH increase suppresses formate formation
while shows less influence on the formation rate of CO. The
tuning of the distribution of nanocatalysts in a conductive
matrix might be further exploited as a design strategy for the
development of selective CO, reduction electrocatalysts.
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