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Abstract

A shaper is a system that stores incoming bits in a bu�er and delivers them as early as possible, while
forcing the output to be constrained with a given arrival curve. A shaper is time invariant if the tra�c
constraint is de�ned by a �xed arrival curve; it is time varying if the condition on the output is given
by a time varying tra�c contract. This occurs, for example, with renegotiable variable bit rate (RVBR)
services. We focus on the class of time varying shapers called time varying leaky bucket shapers; such
shapers are de�ned by a �xed numbers of leaky buckets, whose parameters (rate and bucket size) are
changed at speci�c transition moments. We assume that the bucket levels are kept unchanged at those
transition moments (\no reset" assumption). Our main �nding is an input-output characterisation for
this class of time varying shapers. Then we apply it to the tradeo� in optimising the RVBR service,
assuming that a perfect prediction of future tra�c can be made. We provide two algorithms that solve
the problem of �nding, at any renegotiation, the parameters for a RVBR service, respectively when the
knowledge of the input tra�c is limited to the next interval (local optimisation problem) and when we
dispose of the complete input tra�c description (global optimisation problem). We compare, by means
of simulation, the two resulting algorithms to study the validity of the local approach. We illustrate
the impact of the \no-reset" assumption by analyzing on some examples the losses that occur when
the source chooses the opposite approach, namely, the \reset" approach. Furthermore we simulate the
RVBR service versus the renegotiable constant bit rate (RCBR) service and illustrate that the RVBR
approach can provide substantial bene�ts. Finally, we discuss the impact of the size of the renegotiation
interval on the e�ciency of the RVBR service.

1 Introduction

We consider the Renegotiated Variable Bit Rate (RVBR) service, de�ned as a variable bit rate (VBR)
service whose parameters are changed at periodic renegotiation moments. An example for this service is
the Integrated Service of the IETF with the Resource reSerVation Protocol (RSVP), where the negotiated
contract may be modi�ed periodically [1]. A ow using the VBR service is constrained by two leaky
buckets: one de�nes the peak rate, the other de�nes the sustainable rate and the burst tolerance. This
creates a tradeo� between the various parameters of the two leaky buckets. For example, one may choose
a larger burst tolerance and a smaller sustainable rate, or vice versa, depending on the predicted tra�c
ow and on the cost of the service. This is in contrast with the renegotiated constant bit rate (CBR)
service, where only one rate has to be chosen. Using VBR shaping may be advantageous in all cases
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where the input tra�c is bursty and the network is able to achieve a statistical multiplexing gain on
many such input ows [2].

The RVBR service is still constrained by two leaky buckets, as for the VBR service. But in this case,
the leaky-buckets parameters are renegotiated periodically; at every renegotiation, there is the tradeo�
between the various parameters, which de�ne the two leaky buckets in the next interval. Our primary
goal in this paper is to analyse this tradeo�. In particular, we propose a method to select, for the next
interval, the parameters that minimise a given linear cost function. We call this problem the RVBR
optimisation problem.

In this paper, we consider a basic scenario where a fresh input tra�c is shaped in order to satisfy
the leaky bucket constraints. Shaping is assumed to be done using an optimal shaper, with a limited
bu�er size X [3]. The input tra�c may be generated by one source, or it may be an aggregate of
sources, in which case the shaper models a service multiplexer. This scenario is completely solved by the
introduction of the time vary leaky bucket shaper, as described below. The charcterization of the leaky
bucket shaper with non-zero initial conditions (Theorem 1) and of the time vary leaky bucket shaper
(Theorem 2) are relevant contributions to the network calculus theory.

Time Varying Shapers

We describe and analyse the RVBR service using a special class of time varying shaper systems, which
we call the time varying leaky-bucket shapers. A time varying leaky-bucket shaper is de�ned by a �xed
number J of leaky bucket speci�cations with bucket rate rj and bucket depth bj , where j = 1; : : : ; J
and a shaping bu�er of �xed capacity X . At speci�ed time instants ti, i = 0; 1; 2; ::, the parameters of
the leaky buckets are modi�ed.

The observation time is thus divided into intervals and Ii = (ti; ti+1] represents the i-th interval.
For each t � 0 there exists an i 2 N such that t 2 Ii. The time instants ti are given, but the length
of the intervals can be variable as, for example, in the case where it is estimated by means of some
measurement.

Inside each interval the system does not change. The parameters of the j-th leaky buckets valid in
the interval Ii are indicated by (rji ; b

j
i ). The combination of those parameters takes the form of the

shaping function �i in Ii, de�ned as

�i(u) = min
1�j�J

f�ji (u)g = min
1�j�J

frji � u+ b
j
ig

A time varying leaky-bucket shaper is completely de�ned by:

� the number J of leaky buckets

� the time instants ti at which the parameters changes

� the buckets parameters (rji ; b
j
i ), for each j and each interval Ii

� the �xed shaping bu�er capacity X

This is presented in Figure 1, where we show the shaping of the tra�c R(t) done at source according
to the service curve �i valid in Ii. A service curve � (as de�ned in [4], and further re�ned in [5]) is the
service o�ered to a ow R(t) if and only if for all t � 0, there exists some t0 � 0, with t0 � t, such that

R�(t)�R(t0) � �(t� t0)

where R�(t) represents the output function [6].
We call input tra�c function the function R(t) : R+ ! R

+ that represents the amount of tra�c that
has entered in the system in time interval [0; t]. R is the tra�c before the shaping. R�(t) is the output
function that represents the number of bytes seen on the output ow in time interval [0; t]. R� is the
tra�c after the shaping. We assume to know the input tra�c R(t) expected in the future either because
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shaping buffer = X

output R*input R

Figure 1: Reference Model for a time varying leaky-bucket shaper. The tra�c shaping at time t 2 Ii is done at
source according to the service curve �i valid in Ii.

pre-recorded or by means of an exact prediction function. However the tra�c prediction is not the focus
of this paper. We further assume that at time t0 = 0 the system is idle (R(0) = 0).

To de�ne the time varying leaky-bucket shapers at the transient times between two adjacent intervals
we could take two opposite approaches: either we reset all the buckets and restart in the next interval
from zero initial conditions (\reset" approach), or we keep the level of the buckets and restart from
that level at the next interval (\no reset" approach). If we take the �rst approach, the time varying
leaky-bucket shaper can be reduced to a sequence of independent shapers and studied as in [7], [8]. Here
we adopt the second approach. There are two reasons for this. First, in the special case where the
time varying leaky-bucket is constant, we should �nd a system identical to the ordinary, time invariant,
leaky bucket shaper [7], [8]. In other words, this is true only with the second approach. Second, the
\no reset" approach is in line with the Dynamic Generic Cell Rate Algorithm (DGCRA) used to specify
conformance at the UNI for the available bit rate (ABR) service of ATM [9], [10]. We examine later in
the paper the practical implication of the \no-reset" approach (Section 4.4).

Our class of time varying shapers is a special case of the general concept of time varying shapers,
de�ned in [11]. A general time varying shaper can be de�ned as follows. Given a function of two time
variables W (s; t), the time varying shaper forces the output R�(t) to satisfy the condition

R�(t) � R�(s) +W (s; t)

for all s � t, possibly at the expense of bu�ering some data. This condition can be expressed using the
min-plus linear operator associated to W and de�ned as the mapping S ! S �W with (S �W )(t) =
infsfS(s) +W (s; t)g. The shaper is an optimal shaper if it maximises its output among all possible
shapers [11]. A time invariant shaper is a special case; it corresponds to W (s; t) = �(t � s), where � is
the shaping curve1.

General results of min-plus algebra say that the input-output characterisation of a time-varying
shaper is given by

R� = R � �W

where function R is the input, R� the output and �W is the sub-additive closure of W [12, 13]. Another,
equivalent, formulation is:

R�(t) = inffR(t); (R �W )(t); (R �W �W )(t); (R �W �W �W )(t); : : : g (1)

1A simple example of time invariant shaper is a system with service curve

�(u) = r � u+ b

that forces an input ow R(t) to have an output

R�(t) = (� �R)(t)
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Our class of time varying shapers �ts in that general framework. It can be easily shown that a time
varying leaky bucket shaper corresponds to

W (s; t) = min
1�j�J

f

Z t

s

rj(u)du + bj(t)g (2)

with rj(t) and bj(t) de�ned as the instantaneous bucket rate and depth at time t, namely rj(t) = rij
and bj(t) = bij for the index i such that ti < t � ti+1.

In this paper, we want to obtain the input-output characterisation of the time varying leaky bucket
shapers. This is equivalent to computing �W , when W is given by Equation (2). We could try to obtain
�W from a direct application of Equation (1), however this is not a very practical approach. Instead, we
obtain �W from a number of intermediate steps, which provide representations that can easily be applied
to a practical computation and give some insights about the system.

To this aim, we �rst study a shaper system de�ned by J unchanging leaky buckets, but whose initial
conditions (initial bucket levels and initial bu�er content) are not zero. We call this model a leaky
bucket shaper with non-zero initial conditions. We �nd the input-output characterisation of this model;
for this we use min-plus algebra ([4], [14], [8], [13]). Then we apply this iteratively to derive the input
characterisation of a time varying leaky bucket shaper (Section 2).

The RVBR Service and its application to RSVP

We derive the input-output characterisation of the RVBR service as a special case of the time varying
leaky bucket shaper. An RVBR source sends tra�c conform to a time varying leaky-bucket shaper
composed by two renegotiableleaky buckets (J = 2); one with rate ri and depth bi and the second with
rate pi and depth always equal to zero, plus a bu�er of �xed size X . In real life, examples of this service
are tra�c shaping done at source sending over VBR connections as de�ned in [15] and Internet tra�c
that takes the form of IntServ speci�cation with RSVP reservation [16], [17]. Indeed, we show that the
RVBR service can be used to renegotiate resource reservation for Internet tra�c with RSVP. In RSVP
the sender sends a PATH message with a Tspec (Tra�c SPECi�cation [16]) object which characterises
the tra�c it is willing to send. If we consider a network that provides a service as speci�ed for the
Controlled Load service (CL) [18], the Tspec takes the form of a double bucket speci�cation [19] as given
by the RVBR service. There is a peak rate p and a leaky bucket speci�cation with rate r and bucket
size b. Additionally there is a minimum policed unit m and a maximum packet size M . We ignore m
and M , which are assumed to be �xed. With RSVP as reservation protocol, the reservation has to be
periodically refreshed. The suggested period is 30 seconds. Therefore p, r and b need to be reissued at
each renegotiation time. There is no additional signaling cost in applying a Tspec renegotiation at that
point, even if there is some computational overhead due to the computation of the new parameters, or
to the call admission control, etc. It is important to note here that, contrary to the negotiation of a new
connection, with the renegotiation the service is never interrupted.

If the requested tra�c speci�cation cannot be supported by the network, the old tra�c speci�cation
is restored and the network may not be able to accommodate the next tra�c. Mechanisms to prevent
this failure from occurring are still under study. Here we assume that the Tspec is accepted all over the
network as well as at the destination, such that the source can transmit conforming to its desired tra�c
speci�cation.

To apply the RVBR service in this scenario we assume that at any time ti = 30 � i the application
knows (because pre-recorded or predicted) the tra�c for the next 30 seconds. We further assume to
know the cost to the network of the Tspecs (indicated by the cost function u �r+b) and the upper bound
to the bucket size bmax and to the bucket rate rmax. The backlog w(ti) in the bu�er X and the bucket
level q(ti) can be measured in any node of the network. Then, with the RVBR service, we compute
the Tspec that the sender will send at the next renegotiation time. The basic architecture of the sender
node is described in Figure 2. In this context we do not consider delay issues (delay incorporation, as
well as the extension to Guaranteed Service [20], is matter of further study).
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Figure 2: A basic architecture to support the usage of the local scheme for RSVP with CL service
reservation: each 30 seconds R(t) is predicted and used to compute the optimal p, r and b to generate
the new Tspec.

Previous results and work breakdown

Recent research has introduced an output characterisation of shaper systems in terms of the network
calculus theory [5] and [13]. This was used in several papers to characterise the VBR service [14] and
[8]. The optimisation problem for the VBR service was studied in [7], [8].

Renegotiation was �rst speci�ed in ATM networks for CBR class service [21] and only very recently
to VBR class service [15]. In the reservation protocol for Integrated Services Internet networks, namely
RSVP, a source is requested to refresh the reservation at given times. However, this is not intended
as a mechanism for modifying the reservation parameters only, but rather as the general approach for
managing the reservation state in routers and hosts [16].

Renegotiable VBR services are also studied in [22],[23],[24]; there the focus is on describing a given
tra�c with as few leaky buckets as possible, and thus applies to the optimization of a network o�ering
the RVBR service. In contrast, our approach focuses on the customer side of the RVBR service, and
provides an analysis of the various tradeo�s that can be made. This work di�ers in our approach,
which uses network calculus. This results in simple algorithms that can easily be implemented in real
applications.

As already mentioned, the parameters optimisation for the RVBR service is not a trivial problem.
For example some input tra�c could be speci�ed from a large ri and a small bi, as well as from a
small ri and a large bi. This problem can be reduced to an optimisation problem by introducing a cost
function that associates a cost to each feasible choice of �i. We can approach this optimisation problem
in di�erent ways. We can minimise the cost of �i at each interval Ii given the status of the system at
ti and the input function R(t) in Ii. Alternately, we can minimise the cost of the global sequence of
�i given the complete input function R(t). We call the �rst version of the optimisation problem the
local optimisation problem, or simply local problem, and the other one the global optimisation problem,
or global problem. The solution of the local problem is a sequence of local optimal �i. The result of
the global problem is the optimal sequence of �i. The latter can be seen as a theoretical limit to the
previous one.

In certain other work video tra�c is carried by networks using Renegotiated CBR service [25], [26].
Contrary to RCBR, with RVBR at any renegotiation time the sources must select three parameters and
not just a peak rate. However, the VBR speci�cation better matches the intrinsic characteristics of
video sources without requesting high bu�ering delay [27]. In RCBR service the selection of parameters,
limited to one single parameter, can still lead to very poor resources usage. Assume, for example, that
a source not-tolerant to large delays or losses is expected to transmit very bursty tra�c. With a simple
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peak speci�cation, the only option is to request a large peak rate.
In the next section, as our �rst �nding, we describe the leaky-bucket shaper system with non-zero

initial conditions in terms of its input-output functions. Second, we de�ne the bucket level and the
backlog in the shaping bu�er for the time varying leaky-bucket shaper. Hence, by combining these
results, we describe the time varying leaky-bucket shaper in a recursive way. Finally, by using the
previous results, we introduce the RVBR service.

In Section 3, we extend the previous work on the VBR shaper [7], [8] for solving the local problem
and the global problem. For the local problem we propose two versions: one when the cost function is
represented by a linear cost function and the second when we compare two solutions in terms of the
number of connections with those parameters which would be accepted on a link with capacity C and
physical bu�er B. For the two versions of local problem and for the global problem we are able to
provide an algorithm.

As the main application of the RVBR service is the Tspec renegotiation, we simulate RVBR in the
RSVP with CL service case. We evaluate the e�ectiveness of the RVBR algorithm for linear cost function
(localOptimum1) in terms of cost and backlog. We also compare the output of this algorithm with the
solution obtained when resetting the buckets at each transient time.

Then we compare the local and global schemes. In this case we use the second version of the local
problem (localOptimum2). The comparison is done in terms of the backlog of the shaping bu�er and the
number of connections that we can admit over a trunk with �xed capacity C and an associated bu�er
of �xed size B. For the scenarios under analysis we observe that the algorithm we use for the local
problem gives a result that is close to the theoretical limit represented by the optimal sequence for the
global problem.

In Section 4.2, we test the bene�t of the RVBR versus RCBR service. For the cases we studied, we
observe a substantial advantage for the RVBR service.

Another factor that a�ects the renegotiation is the size of the intervals that we renegotiate, that we
call the renegotiation period. To select the appropriate renegotiation period for the current tra�c can
sensibly improve the network resource usage. We discuss the impact of the renegotiation period to the
cost and to the bu�er occupation in the RVBR service. We �nd that the tradeo� between them is not
universal and depends on the input tra�c.

2 Input-Output Characterisation of the Time Varying Leaky

Bucket Shaper

In this section, we model the time varying leaky-bucket shaper, we solve this model and then we deduce
the input-output characterisation of the RVBR service. In Section 2.1 we study a leaky-bucket shaper
with non-zero initial conditions. This system has the advantage that can easily be studied with network
calculus. We derive its input-output characterisation, which can be expressed in terms of the shaping
function � and the initial conditions. Then, in Section 2.2, we provide the characterisation of the time
varying leaky-bucket shaper. We �rst de�ne the bucket level2 qj(t) and the backlog w(t). Then we
combine the results and we solve the time varying leaky-bucket shaper model. The deriving input-
output characterisation is recursive: at each time t 2 Ii we can compute the output R�(t) with the
de�nition of the system in Ii and the condition at time ti. At the end of the section, we give the input-
output characterisation of the RVBR service as special case of the time varying leaky-bucket shaper.
The RVBR input-output characterisation will be used in the rest of the paper.

2We assume that the bucket size(s) bj
i
are always greater than the corresponding bucket level qj(ti). This is not a loss

of generality, because we consider the lossless case, where, either it is possible to accomodate the tra�c R(t) with the

existing resources (i.e. the bucket size bj
i
) or the tra�c cannot be accomodate, because there will be losses.
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Figure 3: Reference Model for a leaky bucket. The tra�c S is leaky bucket compliant i� the buckets
does not overow.

2.1 Leaky-Bucket Shaper with Non-Zero Initial Conditions

The main result in this section is the characterisation of the leaky-bucket shaper with non-zero initial
conditions given in Theorem 1. With non-zero initial conditions we refer to the fact that both the
bu�er and the buckets present an initial level di�erent from zero. We solve these two cases separately
and combine them at the end. The �rst step is to characterise a shaper system with non-zero initial
bu�er level. Then we study the case of a shaper system de�ned by a �xed number J of leaky bucket
speci�cations (rj ; bj) and that at time t = 0 the buckets are non empty. The initial bucket level for
the j-th bucket is indicated with q

j
0. We call this system a leaky-bucket shaper system with non-zero

initial conditions. When a bit enters the system it is put into the bucket, which is drained at rate rj ,
as illustrated in Figure 3. A given ow S is conform to a leaky bucket speci�cation when the bucket
does not overow. If we denote with q(t) the bucket level of the bucket at time t, we recall the following
characterisation. A ow S is compliant to a leaky bucket with a leaky bucket speci�cation (r; b) when
q(t) � b 8t � 0.

We �rst present a result that is valid for generic shaper systems.

Proposition 1 (Shaper with non-zero initial bu�er) Consider a shaper system with shaping curve
�. Assume that � is sub-additive and �(0) = 0. Assume the initial bu�er content of the shaping bu�er
is given by w0. Then the output R� for a given input R is

R�(t) = �(t) ^ inf
0�s�t

f(R)(s) + w0 + �(t� s)g 8t � 0 (3)

The condition that � is sub-additive and �(0) = 0 is a technical assumption which is not limiting
in practice, since any shaping curve can be replaced by a function satisfying the condition [3, 5]. In
particular, the shaping functions associated with leaky buckets do satisfy these assumptions.
Proof:
First we derive the constraints on the output of the shaper. � is the shaping function thus, for all
t � s � 0

R�(t) � R�(s) + �(t � s)

and given that the bucket at time zero is not empty, for any t � 0, we have that

R�(t) � R(t) + w0

At time s = 0, no data has left the system and this can be expressed with the burst delay function �0
de�ned as follow

�0(t) =

�
0 t � 0
+1 t > 0

Thus, for all t � 0
R�(t) � �0(t)

The output is thus constrained by

R� � � 
R� ^R+ w0 ^ �0
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Figure 4: Flow R� compliance is assured at all J leaky buckets.

where 
 is the min-plus convolution operation, de�ned by (f 
 g)(t) = infs f(s) + g(t � s). Since the
shaper is an optimal shaper, the output is the maximum function satisfying this inequality. We know
from min-plus algebra [3, 12] that the solution is given by

R� = � 
 [(R+ w0) ^ �0]
= [� 
 (R+ w0)] ^ [� 
 �0]
= [� 
 (R+ w0)] ^ �

which after some expansion gives the formula in the proposition. 2

In practice this proposition says that, whenever a bu�er contains some tra�c, this has to be considered
as a peak arriving at time t = 0. The e�ect of the peak is the factor �(t) in the representation of the
output. An easy derivation is the following corollary (see also the de�nition of backlog given in [4]).

Corollary 1 (Backlog for a shaper with non-zero initial bu�er) The backlog of a ow S into a
bu�er drained at rate r with initial level equal to L0 is given by

L(t) = max

"
sup

0<s�t
fS(t)� S(s)� r � (t� s)g

[S(t)� r � t+ L0]

#
t � 0 (4)

De�nition 1 A given tra�c S is compliant to the speci�cation of a leaky-bucket shaper system with
non-zero initial conditions if it is compliant to all J leaky buckets.

From Corollary 1 this results in the following corollary.

Corollary 2 (Compliance to J leaky buckets with non-zero initial bucket levels) A ow S is
compliant to J leaky buckets with leaky bucket speci�cations (rj ; bj), j = 1; 2 : : : J and initial bucket level
q
j
0 i�

S(t)� S(s) � min
1�j�J

[rj � (t� s) + bj ] 80 < s � t

S(t) � min
1�j�J

[rj � t+ bj � q
j
0] 8t � 0

Now we proceed to characterise a leaky-bucket shaper system with non-zero initial bucket levels.

Proposition 2 (Leaky-Bucket Shaper with non-zero initial bucket levels) Consider a shaper sys-
tem de�ned by J leaky buckets (rj ; bj), with j = 1; 2 : : : J (leaky-bucket shapers). Assume that the initial
bucket level of the j-th bucket is given by qj0. The initial level of the shaping bu�er is equal to zero. The
output R� for a given input R is

R�(t) = min[�0(t); (� 
R)(t)] 8t � 0 (5)
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where � is the shaping function

�(u) = min
1�j�J

f�j(u)g = min
1�j�J

frj � u+ bjg

and �0 is de�ned as
�0(u) = min

1�j�J
frj � u+ bj � q

j
0g

Proof:
The output is compliant to all the J leaky buckets. From Corollary 2, this is

R�(t)�R�(s) � �(t� s) 80 < s � t

R�(t) � �0(t) 8t � 0

Considering that �0(u) � �(u) we have that we can extend the validity of the �rst equation to s = 0.
Additionally the system is conservative

R�(t) � R(t) 8t � 0

Thus we have the following constraints:

R�(t) � R(t) 8t � 0
R�(t)�R�(s) � �(t� s) 80 � s � t

R�(t) � �0(t) 8t � 0

Given that the system is a shaper, R�(�) is the maximal solution satisfying those constraints. Using the
same min-plus result as in Proposition 1, we obtain:

R�(t) � [(� 
R�) ^ (R ^ �0)](t)

It derives that R� is given by

R�(t) = [� 
 (R ^ �0)](t)
as � is sub-additive 3

= � 
 (R ^ �0)(t)
= [� 
 �0](t) ^ [� 
R](t)

as �0(u) � �(u), this is
= [�0 ^ (� 
R)](t)

2

Finally we derive the characterisation of a leaky-bucket shaper that starts with non-zero initial condi-
tions.

Theorem 1 (Leaky-Bucket Shaper with non-zero initial conditions) Consider a shaper system
de�ned by J leaky buckets (rj ; bj), with j = 1; 2 : : : J (leaky-bucket shaper). Assume that the initial bu�er
level of the shaping bu�er is given by w0 and the initial bucket level of the j-th bucket is given by q

j
0.

The output R� for a given input R is

R�(t) = minf�0(t); w0 + inf
u>0

fR(u) + �(t� u)gg 8t � 0 (6)

with
�0(u) = min

1�j�J
(rj � u+ bj � q

j
0)
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Figure 5: Functions � and �0 resulting from LB1, LB2 and LB3 leaky bucket speci�cation and the initial
conditions.

Proof:
The proof comes directly from Propositions 1 and 2. 2

An intuitive interpretation that generalises Equation (6) is to say that any shaper system starting with
non-zero initial conditions o�ers a service that is either the service o�ered by an ordinary leaky-bucket
shaper, taking into account the initial level of the bu�er, or, if smaller, a service imposed by the initial
conditions, independently from the input. For the class of the leaky-bucket shaper with non-zero initial
conditions, we are also able to de�ne the service imposed by the initial conditions as function of the
buckets level. We can also compute the maximum delay D introduced by this leaky-bucket shaper with
non-zero initial conditions as [6] [28]

D = sups�0finf � : � � 0andR(s) � R�(s+�)g

= sups�0fmax1�j�Jf
R(s)�(rj �s+bj�qj

0
)

rj
;
R(s)�(w0+ inf

u>0
fR(u) + rj � (s� u) + bjg

rj
gg

Example Assume to have a leaky-bucket shaper with non-zero initial conditions de�ned by 3 leaky
buckets

� leaky bucket LB1 with (r1 = 2; b1 = 0)

� leaky bucket LB2 with (r2 = 1; b2 = 1)

� leaky bucket LB3 with (r3 =
1
2 ; b3 = 3)

and a shaping bu�er of capacity X = 4. Assume the initial conditions are as follows:

� the level of the bucket LB1 is zero

� the level of the bucket LB2 is equal to 1
2

� the level of the bucket LB3 is equal to 1

� the initial level of the shaping bu�er is w0 = 2

The shaping function � and the function �0 are illustrated in Figure 5. Then we analyse the cases of
input ows S1 and S2.

10



0σ
S1* =

S1

σ S1) + w

(

0

(a) Output of S1

σ0

S2

S2*
σ( S2) + w0

(b) Output of S2

Figure 6: Output S1� and S2� of a shaper system with non-zero initial conditions for S1 and S2.

Case 1: In the beginning the amount of tra�c issued with S1 is not very large and the buckets can handle
it without using the bu�er anymore, regardless of the initial bucket levels and the initial level of
the bu�er. Indeed, the quantity of input is smaller than the output, thus the bu�er empties. At
time t = 3 the ow S1 arrives with a large amount of tra�c. For this reason, after this time, the
buckets cannot handle all the tra�c and the bu�er starts to �ll again. At time t = 6 the bu�er is
full. Every time the output coincides with the function �0. This case is illustrated in Figure 6(a).
With respect to Equation (6), S1� is computed as �0(t) for any t. This means that the constraint
imposed by the initial conditions is always more strong than the action of the shaping function on
S1.

Case 2: The ow S2 presents always a quantity of tra�c that can be absorbed by the leaky buckets
without using the bu�er, even considering the initial conditions. The output coincides with �0 in
the beginning and with the ow (S2
 �) +w0 for t > 11 to the end. For t 2 [4; 11], S2� = (�0)(t)
for t � 5. The shaping bu�er empties at time t = 4, varies for 4 � t � 11, empties again at t = 11
and remains empty after that time. Figure 6(b) shows S2 and S2�. This is an example of a case
where the shaping done by � is sometimes more relevant than the constraint imposed by the initial
conditions.

2.2 Time Varying Leaky-Bucket Shaper Model

As introduced in Section 1, the time varying leaky-bucket shaper is de�ned by a �xed number J of leaky
buckets and a shaping bu�er of �xed capacity X . The parameters of the leaky buckets are not constant,
but change at time instants ti. Consequently the shaping function of this system depends on the time
interval and, for each interval Ii, is given by

�i(u) = min
0�j�J

(rji � u+ b
j
i )

As also mentioned in the introduction, the buckets are not reset and we take into account the tra�c
present at the transient periods. At the time instant ti, where the leaky bucket parameters are changed,
we keep the leaky bucket level qj(ti) unchanged.

qj(t) can be seen as the backlog of a bu�er with a variable rate rji , therefore can be computed from

Corollary 4, in terms of the output R�(s) for all ti � s � t, the rate of the shaper rji (�) in the interval
of t and the bucket level qj(ti) at the beginning of this interval.

11



Proposition 3 (Bucket Level) Consider a time varying leaky-bucket shaper. The bucket level qj(t)
of the j-th bucket is

qj(t) = max

2
4 sup

ti<s�t

fR�(t)�R�(s)� r
j
i � (t� s)g;h

R�(t)�R�(ti)� r
j
i � (t� ti) + qj(ti)

i
3
5 t 2 Ii (7)

Proof:
This is a direct application of Proposition 1 after a shift in time. Let us introduce the following notation

� for t 2 Ii let � = t� ti

� for s 2 Ii, s � t let s0 = s� ti

� x�(t� ti) = R�(t)�R�(ti) is the amount of tra�c that enters the bucket in [ti; t].

With this notation we recast qj(t) as the backlog of a ow x� into a bu�er drained at rate rji with initial
level equal to qj(ti). Thus, from Proposition 1 we have

L(�) = max

2
4 sup

0<s0��
fx�(�) � x�(s0)� r

j
i � (� � s0)gh

x�(�) � r
j
i � � + qj(ti)

i
3
5 � � 0

Hence, reintroducing the original notation, we obtain

qj(t) = max

2
4 sup

0<s�t
fR�(t)�R�(ti) +R�(ti)�R�(s)� r

j
i � (t� ti + ti � s)gh

R�(t)�R�(ti)� r
j
i � (t� ti) + qj(ti)

i
3
5 t � 0

that gives Equation (8). 2

We can now characterise a time varying leaky-bucket shaper in the interval Ii by using the input-output
characterisation given for a leaky-bucket shaper with non-zero initial conditions. The initial conditions
are represented by qj(ti) and w(ti), which are respectively the bucket level and the backlog that are
found by the tra�c arriving in the interval Ii. Consequently, we also derive the backlog at any time
t 2 Ii in terms of the input R(s) for all ti � s � t, the shaping function �i(�),the bucket level and the
backlog at the beginning of this interval Ii, q

j(ti) and w(ti), respectively.

Theorem 2 (Time Varying Leaky-Bucket Shapers) Consider a time varying leaky-bucket shaper
with shaping curve �i in the interval Ii. The output R� for a given input R is

R�(t) = min

�
�0i (t� ti) +R�(ti); inf

ti<s�t
f�i(t� s) +R(s)g

�
(8)

where �0i is de�ned as

�0i (u) = min
1�j�J

h
r
j
i � u+ b

j
i � qj(ti)

i
The backlog at time t is

w(t) = max

"
sup

ti<s�t

fR(t)�R(s)� �i(t� s)g;

R(t)�R(ti)� �0i (t� ti) + w(ti)

#
t 2 Ii (9)

Proof:
To demonstrate it we recall the time shift (� = t� ti) with the notation used in Proposition 3 and we
add

12



� x(t� ti) = R(t)�R(ti) that is the amount of tra�c that entered in the system in [ti; t].

With this notation we recast the time varying leaky-bucket shaper as a leaky-bucket shaper with non-
zero initial conditions. In this case the initial bucket level of the j-th bucket is equal to qj(ti) as given
in Equation (7) and the bu�er level is equal to w(ti). The input-output characterisation of this system
is given by Equation (6), thus

x�(�) = �0i (�) ^ [�i 
 x0](�)

where

x0(�) =

�
x(�) + w(ti) � > 0
x(�) � � 0

Hence, reintroducing the original notation, we obtain

R�(t)�R�(ti) =

�
�0i (t� ti) ^ inf

ti<s�t
f�i(t� s) +R(s)�R(ti) + w(ti)g

�

thus

R�(t) =

�
[�0i (t� ti) +R�(ti)] ^ [ inf

ti<s�t
f�i(t� s) +R(s)�R(ti) + w(ti)g+R�(ti)]

�

that gives Equation (8).
Consequently, the backlog at time t results

w(t) = R(t)�R�(t) t � 0

= R(t)�min

�
�0i (t� ti) +R�(ti); inf

ti<s�t
f�i(t� s) +R(s)g

�

= max

"
sup

ti<s�t

fR(t)�R(s)� � � (t� s)g�
R(t)�R�(ti)� �0 � (t� ti)

�
#

t � 0

that is Equation (9). 2

In practice, for the class of time varying leaky-bucket shapers, this theorem gives the closure of W
discussed in the introduction. Even this result has an intuitive interpretation that can be generalised for
the class of time varying shapers. The output of a time varying shaper in any interval is either driven by
�0 as combination of the shaping function and the past history, or is computed by taking into account
the level of the shaping bu�er at the beginning of the interval. This de�nition is evidently recursive
because it depends on the output and on the past history, which are themselves computed with the same
formulas. A lower bound on output R� in Theorem 2 can be obtained by minimizing over all intervals
ti for i > 0 assuming t0 = 0. Speci�cally, we de�ne, �min

�min(u) = min
i:i>0

f min
0�j�J

(rji � u+ bji )g

Then, in terms of Okino's re�ned adaptive service guarantee (Page 15 of [28]), we have the network ele-
ment adaptively guarantees (�0i ; �

min). The advantage of this bound being that it can be predetermined
for a �xed number of shapers J . For a discussion on linear time varying shapers see [29].

As done in the previous section, we can compute the maximum delay D introduced by this time
varying leaky-bucket shaper. Speci�cally, in the interval Ii, the maximum delay Di

Di = sups�0fmax1�j�Jf
R(s)�(R�(ti)+r

j

i
�s+bj

i
�qj(ti))

r
j

i

;
R(s)�( inf

u>0
fR(u) + r

j
i � (s� u) + b

j
ig

r
j

i

gg

and the maximum delay D is obtained as the maximum Di, for all the intervals Ii.
The de�nition of the RVBR service comes straightforward as a special case of time varying leaky-

bucket shapers, where J = 2. Therefore, in the Equations (8) and (9), �i and �0i are given by

�i(u) = min(pi � u+ b1i ; ri � u+ b2i ) (10)
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�0i (u) = min(pi � u+ b1i � q1(ti); ri � u+ b2i � q2(ti)) (11)

In conclusion of this section, we recall that the DGCRA is an example of time varying leaky-bucket
shapers. We only mention that the output of a node regulated by the DGCRA is equivalent to the
output of a time varying leaky-bucket shaper with J = 2. The easy proof is left to the reader.

3 RVBR Service: the Optimisation Problems

So far we have assumed that at each interval the bucket speci�cations are given. In this section, we
analyse the problem of computing leaky bucket parameters for the RVBR service, because we want to
use RVBR service for RSVP with CL service scenario. Therefore, we study the case of a source that
wants to reserve the resources for the next interval. For the RVBR service, this is equivalent to the
problem of computing the RVBR parameters for the next interval.

As we mentioned in the introduction, this problem can be approached in two di�erent ways. We can
focus on optimising pi, ri and bi

4 for the next interval and thus build the complete sequence of �i as
sequence of local optima (local problem). Otherwise we can decide to optimise the complete sequence
(global problem). The local optimisation problem and the global optimisation problem require di�erent
information. In one case we only need the information related to the next interval and for special cost
functions, we can provide mathematical formulas to solve it.

The global optimisation problem requires the knowledge of the whole tra�c pro�le and an approach
similar to the one used for the local optimisation problem is prohibitive. Hence, we develop a Viterbi-like
method to solve it.

For the �rst version of the local problem we show the application of the local scheme to tra�c
conforming to the CL service with RSVP reservation protocol.

3.1 Local Optimisation Problem

We consider the problem of computing the bucket speci�cations for the next interval. In particular,
referring to the Equations (10) and (11), b1i is assumed to be �xed and in order to simplify the notation,
equal to zero. Therefore we indicate the RVBR parameters at the interval Ii with pi, ri and bi.

General results

From the previous section, we know that we can formalise this problem in terms of the system conditions
at time ti and the input in the interval Ii, namely:

� the output R�(ti)

� the bucket level q(ti)

� the input R(ti)

� the input R(t) for t 2 Ii

We want to �nd the shaping function �i(u). We also assume that qj(t) � bi for t 2 Ii holds and that
we guarantee the service, namely w(t) � X . From Equation (9) of Proposition 2, we obtain

R(t)�R(s) � �i(t� s) +X t 2 Ii; ti < s � t

R(t)�R(ti) � �0i (t� ti)� w(ti) +X t 2 Ii

4Thereafter, we assume that b1
i
= 0 and we consider only b2

i
, that we simply indicate with bi. Consequently q1

i
= 0, so

we put q2
i
= qi.

14



That can be rewritten as

pi(t� s) +X � R(t)�R(s) t 2 Ii; ti < s � t

pi(t� ti) +X � w(ti) � R(t)�R(ti) t 2 Ii
ri(t� s) + bi +X � R(t)�R(s) t 2 Ii; ti < s � t

ri(t� ti) + bi +X � w(ti)� q(ti) � R(t)�R(ti) t 2 Ii

The equations give a necessary and su�cient condition for a minimum pi

pi = max

�
sup
t;s2Ii

R(t)�R(s)�X

t� s
; sup
t2Ii

R(t)�R(ti)�X + w(ti)

t� ti

�
(12)

In analogy to the work in [8] this can be seen as the e�ective bandwidth of the arrival stream in Ii taking
in account the backlog at time ti.

This means that, given that pi is computed independently from ri and bi, the problem of �nding a
complete optimal parameter set (pi; ri; bi) for the RVBR service is reduced to the problem of �nding
the optimal parameters ri and bi. This is an important aspect of RVBR service. In fact the e�ective
bandwidth pi is also the minimal peak rate selection for RCBR service. Therefore the two parameters
ri and bi can only lead to better performance.

We assume that ri and bi are limited not to exceed some maximum value that is �xed over time
(thus valid for all i), that we indicate with rmax and bmax.

We de�ne with �i a function that, for each s 2 I = [0; ti+1 � ti], computes the maximum amount of
tra�c sent over the any interval of size s, taking in account the conditions at time ti.

�i(s) = max

 
sup

0�v�ti+1�ti�s
fR(v + s)�R(v)g

R(s+ ti)�R(ti) + w(ti) + q(ti)

!

Therefore at each interval Ii, our problem is to minimise a cost function c(�) in the acceptance region
de�ned by

0 � ri � rmax

0 � bi � bmax

bi + ri � s+X � �i(s) � 0 8s 2 I

(13)

where I = [0; ti+1 � ti]. One important condition that must be respected [7, 14] is

bmax � sup
s2I

f�i(s)� rmax � s�Xg (14)

otherwise there are no feasible solutions for ri and bi and this must be true at any interval.
As stated in [14] the feasible region can be simpli�ed, in order to facilitate the computation of the

optimum. At each interval Ii we apply
x = ri
y = bi +X

with this change of variable the problem can be rewritten as

0 � x � min(rmax; pi)
0 � y �X � bmax

y � � ��i(x)
(15)

where ��i is the concave conjugate of �i

��i(x) = inf
s2I

fxs� �i(s)g
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Figure 7: Local problem version 1: the optimum is found at the intersection of regions R1 and R2

We note that �i is sub-additive because can be seen as the minimum arrival curve of the function

f(t) =

�
R(t) t 2 (ti; ti+1]
R(ti) + w(ti) + q(ti) t = ti

(16)

Additionally, if x � maxs2I
�i(s)
s

then � ��i(x) = �i(0) therefore we have that � ��i is wide-sense decreas-
ing.

Now, following the resolution scheme described in [14] we study the optimisation region de�ned by
Equation (15) as intersection of two regions R1 and R2 respectively given by

R1 =

�
0 � x � rmax

0 � y �X � bmax

�

R2 = fy � � ��i(x)g

The optimum, as illustrated in Figure 7, is found at the intersection of regions R1 and R2. If the cost
function is non decreasing in x and y the optimum is on the border of R2, given that any other point
has higher cost. Then, if we de�ne the points A and B that delimit the border of R2

A =

8<
: xA = sup

s2I;s>0

�i(s)�X � bmax

s

yA = bmax +X

and

B =

8<
: xB = sup

s2I;s>0

�i(s)�X

s

yB = X

Now to derive an optimal value for ri and bi we need to know the optimality criterion used by the
network to evaluate the costs of allocating given ri and bi. For a generic cost function c(ri; bi) we have

minimise c(x;� ��i(x)) in the region xA � x � min(xB ; rmax; pi) (17)

We apply two di�erent cost functions, obtaining two versions of this problem. The �rst one, where
we assume that the cost to the network is given by a linear cost function, is intended for applications. In
Section 3.2, we show that the resulting algorithm can be used by an application that uses RSVP as the
reservation protocol and speci�es the tra�c conforming to CL service. The second version is introduced
in order to compare the sequence of local optimal solutions that results from the local problem to the
one from the global optimisation problem. In fact this is used in Section 4.1, where we compare the
solutions to the local and the global optimisation problem.
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First Version: Linear cost function

In this �rst version we assume that the choice of the network is driven by a linear cost function. When
the cost function is linear the optimisation problem is to minimise c(ri; bi) = u � ri + bi, for �xed values
of u. Given that c(�) is linear, as stated above, the optimum is on the border of R2.

The problem of Equation (17) becomes

minimise ux� ��i(x) in the region xA � x � min(xB ; rmax; pi) (18)

In this problem if u is non-positive the minimisation function is wide-sense decreasing and in this case
the solution is given by minfxB ;min(rmax; pi)g. If u > 0 and the minimum x0 of the minimisation
function is in the interval [xA;minfxB ;min(rmax; pi)g] the optimum is for x0. In particular, if �i(�) is

concave, x0 = sup
s2I

�i(s)� �i(u)

s� u
. If x0 is not feasible for the region de�ned in Equation (18) we can

have x0 � xA and in this case the optimum is found at xA. Otherwise x0 � min(xB ;min(rmax; pi)) and
therefore the optimum is min(xB ;min(rmax; pi)).

Finally, we can summarise these results in the algorithm localOptimum1 that �nds the optimal
solution as described above. The algorithm is given for �i(�) concave. When this does not hold it is
substituted by �0i(�), which it is a concave arrival curve of f(t) as given in Equation (16).

As mentioned above, pi is independent and can be computed as the e�ective bandwidth of R(t) in
this interval.

localOptimum1(X; fR(t)gt2Ii ; bmax; rmax; u; w(ti); q(ti); ti+1) if bmax < sup
s2I

f�i(s)� rmax � s�Xg then

there is no feasible solution; else f pi = max

�
sup
t;s2Ii

R(t)�R(s)�X

t� s
; sup
s2Ii

R(ti)�R(s)�X + w(ti)

ti � s

�

if u � 0 then f x0 = min(rmax; pi); g else f x0 = sup
s2I

�i(s)� �i(u)

s� u
; xA = sup

s2I;s>0

�i(s)�X � bmax

s
;

xB = sup
s2I;s>0

�i(s)�X

s
; if (x0 � min(xB ; rmax; pi)) then x0 = min(xB ; rmax; pi); else if (x0 � xA)

then x0 = xA; g ri = x0; bi = sup
s2I

f�i(s)�X � s � x0g; g

Second Version: maximum number of accepted connections

In this second version we take a di�erent approach. In fact here, for any solution (pi; bi; ri) we compute
the number Ni of homogeneous connections, speci�ed by (pi; bi; ri), acceptable by a link with �xed
capacity C and bu�er with �xed size B . The cost of each solution is represented by the reciproc of
Ni, therefore the minimum is obtained for the maximum number of connection accepted5. In order to
express it in terms of equation 17, this cost function needs to be elaborated. Figure 8 represents the
problem in terms of curves: The upper bound imposed by the resources available on a link with capacity
C and bu�er with size B6 is described by y1 = C � t + B. The curve y2 = Ni � (min(pit; rit + bi))
represents the sum of the tra�c descriptors of the Ni connections. Therefore, given that y1 is an upper
bound to y2 we have:

Ni � (min(pit; rit+ bi)) � C � t+B 8t � 0

and this gives
Ni �

C
pi

Ni �
C
ri

5In reality Ni should be an integer, but given that we use it only for computing the cost of a tra�c descriptor, we
accept that Ni takes any positive real value

6we will see later that in reality we have to take in account the available bu�er size
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Figure 8: Local problem version 2: the optimum is found either at the intersection between y1 = C �t+B

and y2 = Ni(ri � t+ bi) or for Ni =
B
bi
, when no intersection is found

Given that the second condition is more restrictive, we take

Ni �
C

ri
(19)

Moreover, as illustrated in Figure 8, at limit , y1 = C � t+B intersects y = Ni(ri � t+ bi) at the point
7

D =

(
tD = bi

(pi�ri)

yD = Nipibi
(pi�ri)

Therefore we derive that
Nipibi

(pi � ri)
� C �

bi

(pi � ri)
+B

That gives

Ni = max

�
B � (pi � ri) + biC

bipi
;
C

ri

�
(20)

and thus, from Equation (20) the cost for the solution (pi; bi; ri) is

C(pi; bi; ri) = min

�
bipi

B � (pi � ri) + biC
;
ri

C

�
(21)

This is equivalent to say that we associate to each accepted connection with tra�c descriptor equal to
(pi; bi; ri) a leaky bucket speci�cation with rate equal to

r̂ =
Cbipi

B � (pi � ri) + biC
(22)

and a bucket size equal to

b̂ = bi �
(pi � r̂)

(pi � ri)
(23)

We observe that this function is increasing in both x = ri and y = bi +X , as illustrated by Figures
9(a) and (b).Thus the optimum is on the border of R2. The problem of Equation (17) becomes

7otherwise the intersection is with y = Ni(pi � t)
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minimise min

�
( ��i(x) �X)pi

B � (pi � x) + C � ( ��i(x) �X)
;
x

C

�
in the region xA � x � min(xB ; rmax; pi)

(24)

When the system evolves we have to take in account the evolution of the physical bu�er of capacity
B. At time ti it contains some tra�c from the past. Hence we do not dispose of the complete capacity
B, but only of part of it, indicated by Bi. Bi is the di�erence between the bu�er size and the backlog
at that time

Bi = B �W (ti)

where W (ti), indicated with Ni�1 the number of connections accepted at the previous interval, is com-
puted with a modi�ed version of Equations (9) as follows

W (ti) = max

"
sup

ti�1�s�ti

fNi�1 � (R
�(ti)�R�(s))� C � (ti � s)g;

Ni�1 � (R
�(ti)�R�(ti�1))C � (ti � ti�1) +W (ti�1)

#
(25)

localOptimum2(X; fR(t)gt2Ii ; bmax; rmax; u; w(ti); q(ti); ti+1; C;B;W (ti)) if bmax <

sup
s2I

f�i(s) � rmax � s � Xg then there is no feasible solution; else f pi =

max

�
sup
t;s2Ii

R(t)�R(s)�X

t� s
; sup
s2Ii

R(ti)�R(s)�X + w(ti)

ti � s

�
if u � 0 then f x0 = min(rmax; pi);

g else f x0 that minimise min
�

( ��i(x)�X)pi
B�(pi�x)+C�( ��i(x)�X)

; x
C

�
; xA = sup

s2I;s>0

�i(s)�X � bmax

s
;

xB = sup
s2I;s>0

�i(s)�X

s
; if (x0 � min(xB ; rmax; pi)) then x0 = min(xB ; rmax; pi); else if (x0 � xA)

then x0 = xA; g ri = x0; bi = sup
s2I

f�i(s)�X � s � x0g; g

We are aware that this second algorithm does not consider any statistical multiplexing. However,
it is only used to compare the sequence of local optima with the sequence resulting as solution to the
global optimisation problem, as de�ned in Section 3.3. The comparison results are given in Section 4.1.

3.2 Simulation results

In this section we describe how we use the local algorithm to simulate a typical real case: transmission of
MPEG2-encoded video using the IntServ Controlled Load service with the RSVP reservation protocol.

The basic architecture of the sender node is described in the introduction and illustrated in Figure 2.
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Figure 10: Tra�c evolution of the sequence used as input in the simulation.

In our simulations, we use a 4000 frame-long sequence that conforms to the ITU-R 601 format
(720 � 576 at 25 fps). The sequence is composed of several video scenes that di�er in terms of spatial
and temporal complexities. It has been encoded in an open-loop variable bit rate (OL-VBR) mode, as
interlaced video, with a structure of 11 images between each pair of I-pictures and 2 B-pictures between
every reference picture. For this purpose, the widely accepted TM5 video encoder [30] has been utilised.
The evolution of the input tra�c is given in Figure 10.

The tra�c generated by the video is transported by a trunk regulated by a RVBR service (p; r; b)
with shaping bu�er X . In this context we do not consider any scheduling issues, which is the subject of
ongoing work. Therefore we assume that the video, with a total size of 550 Mbits, is transmitted in 163
seconds (25 frames per second). The cost function is linear with u. For space reason, we illustrate here
only three scenarios:

Scenario 1: X = 40 Mbits, rmax = 5 Mbps, bmax = 9 Mbps and u = 1

Scenario 2: X = 30 Mbps, rmax = 6 Mbps, bmax = 12 Mbits and u = 1

Scenario 3: X = 20 Mbits, rmax = 8 Mbps, bmax = 10 Mbps and u = 6

The initial conditions are: q(0) = 0 and w(0) = 0. The �le is pre-recorded and, given that we
do not enter in scheduling matters, we know R(t) for all t. At time ti we know R�(t) for t � ti, we
measure w(ti), q(ti) and compute �i(t). We obtain the optimal shaper parameters by applying the
algorithm localOptimum1 at Section 3.1 that we use to generate the Tspec the sender will send at the
next renegotiation time.

Backlog evolution with and without renegotiation

In Figure 11 we plot the backlog for the three scenarios in both cases where we apply the renegotiation
and where we do not renegotiate 8. In order to better distinguish the two approaches, the area of the
curve representing the case without renegotiation is coloured.

We observe that in the beginning the curves representing the two approaches do not di�er much.
This is because the tra�c is very high in the �rst 30 seconds and both tra�c speci�cations conform to
this tra�c.

After that period the tra�c rate decreases. The case without renegotiation has to keep the tra�c
speci�cation negotiated at time t = 0, even if it is no longer adequate for the current demand. The
resources allocated in the network are so large that it is possible to empty the bu�er and thereafter the
bu�er is rarely used.

8Even in this case we compute the optimal tra�c speci�cation as introduced in [8].
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Figure 11: Comparison of the shaping bu�er used with renegotiation (white area) and without renego-
tiation (black area) for the three scenarios
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Figure 12: Comparison of the cost of allocating a renegotiated tra�c speci�cation and a tra�c speci�ca-
tion without renegotiation for di�erent scenarios. The cost of the tra�c speci�cation is given in \millions
of unit of cost" (M-unit of cost) and computed with the linear cost function used for the optimisation.

The curve for the case where we used the RVBR service shows that the bu�er is much better utilised,
because the tra�c speci�cation decreases in the next intervals.

Therefore in the approach, where we apply the renegotiation with the RVBR service, the resources in
the network are much better used. In fact, when the bu�er is almost always �lled the output is conforms
to the tra�c speci�cation and this means that all the resources in the network are optimally used.

In the �rst scenario the usage of the bu�er with renegotiation is 58%, while without renegotiation it
is 13%. In the second scenario the percentages are 59% and 11%; in the last one they are 60% and 11%.
In any case we have to remember that the optimisation is done for the worst case, and this explains
why, when we do not renegotiate, the bu�er never �lls completely.

Cost evolution with and without renegotiation

In the graphs in Figure 12 we compare the two approaches in terms of the cost of the tra�c speci�cation
to the network.

The cost of the tra�c speci�cation is given in terms of the linear cost function used by the RVBR
service in order to compute the optimal tra�c parameters. In the previous section we showed, for the case
where we renegotiate the tra�c speci�cation, a better utilisation of the shaping bu�er, which coincides
with a better utilisation of the shaping bu�er and consequently of all the resources allocated into the
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Figure 13: Comparison of the evolution of the rate r with renegotiation and without renegotiation for
di�erent scenarios
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Figure 14: Comparison of the evolution of the bucket b with renegotiation and without renegotiation for
di�erent scenarios

network. The additional result we derive from these other �gures is that there is also a substantial
advantage from the cost point of view in reallocating, because the cost of the tra�c speci�cations is in
general smaller.

Tra�c speci�cation parameters evolution with and without renegotiation

Figures 13 and 14 illustrate the fact that with renegotiation we can optimise the resources requested
to the network and therefore at the end the total r and b allocated in this case are in general smaller.
We also notice that inside an interval the RVBR service might allocate a Tspec that is larger than the
one used when not renegotiating. This occurs when the tra�c is very bursty and the bu�er is full from
the previous interval. For scenario 1 this situation occurs also at the forth interval (90� 120 seconds),
as illustrated in Figure 13. This happens because the bu�er is full and the bucket is not su�cient to
absorb the burstiness of the input tra�c. It does not take place in scenario 2 and 3, because there is
more bucket available and therefore the application can request a larger bucket b.

3.3 Global Optimisation Problem

In Section 3.2 we illustrate how to build a complete solution with the local algorithm as a sequence of
local optima. This solution is not necessarily the optimal sequence. In fact a sequence of local optimal
solutions is very likely to cost more than an optimal sequence.
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Assume that at a certain interval we �nd a solution that optimises the network resources but at the
cost of a very large bu�er occupancy. At a later interval, because of the lack of bu�er space, there might
not be feasible solutions (see Equation (14)), or the optimal solution might have a very high cost. It is
clear that an algorithm for �nding the optimal sequence is too expensive in terms of time and memory
occupation and we argue that such an algorithm can be useful only for evaluating other schemes. In
order to have a theoretical optimum to compare with the solution of the local scheme, we studied an
algorithm based on a Viterbi-like algorithm [31, 32]. A similar study is presented in [25] for renegotiable
CBR service.

We keep valid all previous assumptions and the RVBR service is still renegotiated at every interval
Ii = (ti; ti+1], i 2 N. The �xed set S = fsl; l = 1; 2; : : :K3g contains the possible RVBR service
parameter sets we can select at each interval. A RVBR service parameter set sl is described as

sl =

2
4 ph

rk
bj

3
5 h; k; j 2 [1;K]

We note that the peak ph can reasonably assume values that are di�erent from the e�ective bandwidth
at Equation (12), because a larger peak in the interval Ii can lead to a minor utilization of the bu�er
and this could permit the reduction of the cost at the next intervals. The linear cost function introduced
for the local problem in Section 3.1, c(ph; rk; bj) = u � rk + bj , is based on the fact that there is only one
solution for the peak, thus it is not usable. It is evident that it is not possible to �nd any function to
give a global cost comparison. Therefore we adopt a \call admission control" approach. We compare the
two algorithms in terms of the number of connections that would be accepted on a link with capacity
C and physical bu�er of size B. Given a parameters selection sl we indicate with N l

i the number of
homogeneous connections with parameters sl accepted at interval Ii in localOptimum2 as de�ned in
Section 3.1.

In the Viterbi-like algorithm a node of the trellis represent a state encountered by the system. Here
we need to distinguish two states whenever they are reached with di�erent cost or usage of network
resources. The trellis diagram is also spread over time thus a node is represented by a 5-tuple n =
(i; w(ti); q(ti); Ntot;W (ti)). i indicates that this state is reached at time ti; w(ti) and q

j(ti) are computed
with Equations (9) and (7) respectively; W (ti) is computed with Equation (25) and Ntot indicates the
sum of the number of accepted connections as computed in Equation (20) for each state traversed to
reach n

Ntot =
Xi

j=0
Nj

A transition from a node n = (i; wn(ti); qn(ti); (Ntot)n;Wn(ti)) to nodem = (i+1; wm(ti+1); qm(ti+1); (Ntot)m;Wm(ti+1))
happens whenever there exists an element sl = fph; rk ; bjg in S such that m derives from n by serving
the tra�c over the interval Ii with a RVBR service described by sl

wm(ti+1) = max

 
sup

ti�s�ti+1

[R(ti+1)�R(s)� �i(ti+1 � s)];

R(ti+1)�R(ti)� �0i (ti+1 � ti) + wn(ti)

!

with
�i(u) = minfph � u; rk � u+ bjg
and
�0i (u) = minfph � (u); rk � u+ bj � qn(ti)g

and

qm(ti+1) = max

 
sup

ti<s�ti+1

fR�(t)�R�(s)� rk � (ti+1 � s)g;

R�(ti+1)�R�(ti)� rk � (ti+1 � ti) + qn(ti)

!

and

Wm(ti+1) = max

 
sup

ti�s�ti+1

fNi � (R
�(ti+1)�R�(s))� C � (ti+1 � s)g;

Ni � (R
�(ti+1)�R�(ti))� C � (ti+1 +Wn(ti)
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Figure 15: An example of the trellis: some path is not added to the trellis and some other is eliminated.

In this case we have an edge from n to m and the associated number of accepted connections is

N l
i = max

 
B̂i � (ph � rk) + bjC

bjph
;
C

rk

!

Note that we do not keep track of the used tra�c parameter s sets, because we use this algorithm only
for comparison purpose. That way the format of the node do not need to include the tra�c parameter
selection information.

We call path the sequence of edges from the initial node n0 = (0; 0; 0; 0; 0) to a node n. The goal is
to �nd the path able to accept the largest number of connections over the time among all paths from
n0 to a �nal node, i.e. a node that represents a status of the system when the input tra�c stops.

We de�ne a node n = (i; w(ti); q(ti); Ntot;W (ti)) to be feasible if the constraints are respected for all
t � ti

0 � w(t) � X

0 � q(t) � bj

An edge from a feasible node n to node m is feasible if m is feasible.
We also de�ne a node n = (i; wn(ti); qn(ti); (Ntot)n;Wn(ti)) to be non optimal when there exists a

node m = (i; wm(ti); qm(ti); (Ntot)m;Wm(ti)) such that

wn(ti) � wm(ti)
qn(ti) � qm(ti)
(Ntot)n � (Ntot)m
Wn(ti) �Wm(ti)

All the paths to a non optimal node n are non optimal.
We limit the exponential growing of the trellis �rst by creating only feasible edges and nodes and

then by pruning the paths and the nodes that are not optimal. Consequently at each interval some path
is not added to the trellis (because it is not feasible) and some other is eliminated (because it is not
optimal), as represented in Figure 15. At the end we select one of the paths that reaches one of the
nodes with the greatest number of accepted connections Ntot.

This can be resumed in the following algorithm where I denotes the index of the last renegotiation

globalOptimum(X; fR(t)g; fslg; C;B) n0 = (0; 0; 0; 0; 0) for (i = 1; i � I ; i + +) then f for (l=1; l
� K3; l + +) then f createallthefeasibleedgescorrespondingtosl from nodes at i to nodes at i + 1;
prune all non optimal nodes and edges; g g select one path ending in a node with the greatest Ntot;

time tI .
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Figure 16: Scenario1: comparison of the number of connection accepted by the local scheme (solid curve)
and the global Viterbi-based (dashed curve) scheme for di�erent renegotiation period.

4 Discussion

In this section we apply the previous algorithms to discuss a number of issues related to the RVBR
service. Our main goal is to evaluate the e�ciency of the local algorithm as de�ned in Section 3.1 by
comparing it with the globalOptimum algorithm proposed in Section 3.3. For that purpose, we use, for
the local algorithm, the version localOptimum2. The simulation scenario is the same as in the previous
section.

4.1 Comparison of the Local and Global Algorithms

Here we simulate the localOptimum2 algorithm as de�ned in Section 3.1 against the globalOptimum
algorithm proposed in Section 3.3 to give a measure of the optimality of the former in terms of cost.
We ignore the renegotiation cost, because this cost is the same in both the local and the global case.
The algorithm proposed for the global problem, the Viterbi-like algorithm, works with a discrete set of
values whereas the algorithm proposed in Section 3.1 for the local problem can result in any value. For
reason of comparison, we forced the local algorithm (localOptimum2) to work with the same discrete set
of values. The two resulting complete sequences are comparable because the two algorithms select the
optimum as the set sl 2 S that permits the acceptance of the largest number of connections on a link
of capacity C with associated bu�er size B.

In Figures 16-18 we illustrate the behaviour of the two schemes in terms of the number of connection
accepted for the optimal solution. Again for reason of space we only show the following scenarios:

Scenario 1: X = 12 Mbits, B = 40 Mbits, C = 20 Mbps

Scenario 2: X = 5 Mbps, B = 20 Mbits, C = 10 Mbps

Scenario 3: X = 0:6 Mbits, B = 10 Mbits, C = 60 Mbps

In the local scheme, an incorrect renegotiation a�ects the future. This is even more valid in the
example illustrated here, because the input tra�c is signi�cantly bursty for large periods. Despite this,
our algorithm does not deviate signi�cantly from the theoretically optimal one. We can see that even
for high numbers of renegotiations (i.e. short renegotiation periods: sub-�gures (a) and (b)) it presents
a behaviour not too far from the optimum, while for larger renegotiation periods the two solutions are
frequently the same. It is important to notice that there is no relation between the behaviour experienced
during two di�erent renegotiation periods. This is evident when we analyse the renegotiation at 10 and
15 seconds, and it is due to the fact that the solution is optimal inside the interval.

In terms of bu�er usage we observe even a better result for the local algorithm. The average occu-
pation percentage we obtain when using the local algorithm is always very close to that of the optimal
algorithm for all the renegotiation periods we analysed.
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Figure 17: Scenario2: comparison of the number of connection accepted by the local scheme (solid curve)
and the global Viterbi-based (dashed curve) scheme for di�erent renegotiation period.
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Figure 18: Scenario3: comparison of the number of connection accepted by the local scheme (solid curve)
and the global Viterbi-based (dashed curve) scheme for di�erent renegotiation period.
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Figure 19: Number of connections accepted by a link of capacity C = 500 Mbits and physical bu�er
size B = 60 Mbits for the RVBR service (solid curve) and the RCBR one (dashed curve) at di�erent
renegotiation period.

4.2 Renegotiable VBR Service versus Renegotiable CBR Service

In this section we simulate the local scheme based on renegotiable VBR service against a renegotiable
CBR service. In the CBR case we can renegotiate only the peak rate, i.e. a constant rate, for each
interval. We simulate the two services for di�erent renegotiation periods and we show the bene�ts of
the VBR approach in terms of connection accepted as described in Equation (20). Again, we ignore
the renegotiation cost, because it is equal for both services. Looking at Figure 19, we observe that the
reduction of the number of connection accepted for the RCBR service is signi�cant. This can be easily
explained by the di�culty of shaping bursty tra�c with a simple rate speci�cation [27]. Obviously this
fact is more evident when we do not renegotiate frequently. Therefore, the larger di�erence is present
in the larger renegotiation period cases. For the same reason, in Figure 20 and 21 we see that the the
bu�er in the CBR case is really under-used. Thus, as expected, there are obvious bene�ts in using the
RVBR service instead of the RCBR one.

4.3 Discussion on the Impact of the Renegotiation Interval Size

One factor we varied, in order to analyse di�erent results, is the renegotiation period. The renegotiation
period can range from instantaneous renegotiation (1 second in our case) to no renegotiation. The
analysis of some intermediate points permits the study of the evolution in terms of this factor. We use
in this analysis the local problem algorithm, with the MPEG2 input tra�c used in the previous sections.
Figure 22 illustrates an example of the di�erent costs we obtained with di�erent renegotiation periods.

As expected, in general it happens that the larger the renegotiation period is, the higher the cost of
the tra�c speci�cation. With a local approach this is not always true. In fact the local optimum of a
larger period is less expansive than the sum of the cost for a smaller renegotiation period on the same
interval. In fact the optimum is local inside the interval. This e�ect is better illustrated in Figure 22(b).
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Figure 20: Bu�er utilisation for a quite small renegotiation period of 10 seconds: the RVBR service
approach (on the right) is clearly better than the CBR approach (on the left).
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Figure 21: Bu�er utilisation for more large renegotiation periods: the RCBR service (on left) is unable
to use the bu�er. The peak selected is to high and in those cases the bu�er results always empty.
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Figure 22: Evolution of the cost versus renegotiation period.

Here the curve representing the cost of reallocating every 10 seconds is often above most of the other
curves.

The curves presented until now do not includes any cost for the renegotiation in terms of signalling,
etc. When we consider, as part of the problem, having a renegotiation cost, we �nd a tradeo� between
the advantage of the renegotiation and its cost. This issue cannot be universally solved because it
depends on the input tra�c.

Here we discuss certain aspects of this problem. If we assume a �xed renegotiation cost  and indicate
with p̂j , r̂j and b̂j the average values for the peak, the rate and the bucket renegotiating j times, we can
represent the optimal renegotiation period with

Tn =

�
T

n

�

where T represents the lifetime of the input tra�c and

n = fm 2 N : [m � ( + u � r̂m + b̂m)] is minimumg

However, given that ri and bi are computed on the basis of the tra�c expected in the next interval it
is evident that n depends not only on , but also on the input tra�c pro�le. Moreover, the problem
of de�ning the optimum �xed renegotiation period requires the knowledge of the complete reallocation
sequence for each m. This is in contrast with the local approach we propose.

By applying the Viterbi-like algorithm presented in Section 3.3 with an instant renegotiation period
and with additional cost for renegotiating (as it is done, for example, in [25]), it is possible to derive
an optimal frequency of the renegotiation. In this case the renegotiation scheme and the method for
de�ning when to renegotiate are combined and based on the complete knowledge of the input tra�c.

If the tra�c is known in advance, one approach could be to change the renegotiation period based
on the tra�c pro�le. For instance, if the prediction for the next interval of 30 seconds gives a very
bursty pro�le, we could consider to renegotiate the resources more often inside that interval. One factor
that can be used to this purpose is the variance of the expected tra�c: in general if it is large, we can
also foresee a non optimal usage of the resources. This approach, contrary to the one based on the
Viterbi-like algorithm is still based on a local approach. However, in both cases, the result is a variable
renegotiation period.

4.4 \Reset" versus \No Reset" Approach

As described previously, we choose to use the \no reset" approach instead of the simpler \reset" one. In
this section we study the losses occurring in the \reset" approach. We want to show that this approach
is not valid for tra�c with strict loss constraint.
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Figure 23: Percentage of losses in the reset approach

It is trivial that, in terms of costs, the \reset" approach is better because it always restarts from a
zero initial condition and considers the lost tra�c as sent.

First we point out that the network must use the \no reset" approach because it must ensure to any
input tra�c, exactly the same service when tra�c speci�cation is always renegotiated with the same
�i = � and when the tra�c speci�cation is equal to � and is not renegotiated. This is not possible if
the network resets the buckets level at every renegotiation time.

In principle, at the source both approaches are valid. When we reset the buckets we must accept to
experience some loss due to the fact that the network does not apply any reset. This means that the
upper bound to those losses is given by the maximum size of the bucket (bmax) times the number of
times we apply the renegotiation. Therefore an upper bound for the percentage of losses is given by

min
i

bmax � i

R(ti)
(26)

It is already clear that this upper bound can be not acceptable for many types of tra�c. In practice this
limit is easily reached, unless bmax is very small. Only in this case, where we have that bmax

R(ti)
is close to

zero for any value of i, the impact of the reset does not a�ect the system behaviour. Evidently we can
assume that this condition should not occur, because it corresponds to a bad network planning.

To evaluate how close we get to this upper bound we simulate the two approaches in the same
scenario described in Section 3.2, where we use IntServ services with RSVP reservation protocol.

We use again the same MPEG2 4000 frame-long sequence as input. We measure the percentage
of losses, that obviously depends on bmax. For the renegotiation at every 30 seconds, we experience a
percentage of losses from 5%, for bmax very small, up to 60%. Obviously, for a �xed bmax, the percentage
of losses grows with the decrease of the renegotiation period. For very small renegotiation periods can
be enormous.

In Figures 23 and 24 we illustrate the losses for an average bmax (compared to the input tra�c,
bmax = 6 Mbits) for di�erent renegotiation periods. We observe that for most of these cases the
percentage of losses is not acceptable. It is di�erent in the case of renegotiation at 100 seconds because
here the renegotiation is quite infrequent.

5 Conclusion

The output of a time-varying shaper is given by

R� = R � �W
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Figure 24: Percentage of losses in the reset approach

where �W is the closure of W [12, 13]. For the class of time varying leaky-bucket shapers we have found
an explicit representation of the output in terms of the input function (input-output characterisation).
This is obtained by iterating the input-output characterisation we derive for the class of leaky-bucket
shapers with non-zero initial conditions.

Then we use this result to study two aspects of the RVBR service, leaving aside the problem of tra�c
prediction:

� The �rst problem (local optimisation) is to �nd the optimal parameters (rates and bucket sizes) in
one interval Ii, for two particular cost functions, given that we know the expected tra�c in that
interval. The solution are Algorithms 1 (Section 3.1) and 2 (Section 3.1).

� The second problem (global optimisation) is to �nd the optimal parameters (rates and bucket sizes)
over a complete sequence of intervals interval Ii, for one particular cost function, given that we
know the expected tra�c over the whole sequence. We propose a solution based on a Viterbi-like
algorithm (Algorithm 3 in Section 3.3).

Furthermore we illustrate how the RVBR service can be applied to RSVP Path message generation.
This is based on the algorithm proposed for the local optimisation problem. A numerical example of
this is given in Section 3.2, where we also compare the performance of transmitting a MPEG2 video
trace both with and without renegotiation. The results of our simulation (see Figures 11 - 14) suggest
that renegotiation allows to better use of network resources and that in protocols as RSVP, where there
is no additional cost for signaling (or so we mainly assume), it is better to renegotiate. Future work on
RVBR service includes both the possible integration in a real application and study on the renegotiation
period, as well as the integration of the network delay and the application to Guaranteed Service [20].

We have also illustrated that, if some inconsistency exists between network and user sides about
the use of the \reset" or \no-reset" approach, then this may result in inacceptable losses (or service
degradation) due to policing. We give an upper bound to the percentage of losses and we notice that in
general this upper bound is not acceptable, especially for small renegotiation periods. We also found,
in the cases we analysed, that this limit can be easily approached. Some simulation results are given in
Figure 23 in Section 4.4.

Apart from obvious consideration in terms of time and memory and/or computational cost we show
that it is e�ective to use the local algorithm. In fact, in the examples we considered, the sequence of
optima produced by the local algorithm is very close to the optimal sequence produced by the global
algorithm. In particular, when the renegotiation period is not very small (i.e. � 30 seconds), in most of
the cases the sequence of local optima is equal to the optimal sequence, as illustrated in Figures 16-18.

In the cases we analysed, we have found that the RVBR service is more e�cient than the RCBR
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service in terms of the number of connections that can be accepted on a link with �xed capacity and
bu�er size. This is illustrated in Figures 19-21 and discussed in details in Section 4.2.

We discuss also the impact of the renegotiation period on the renegotiation cost, as one factor that
can a�ect the renegotiation.

The results we obtained shows that the RVBR service can be easily and e�ciently adopted by video
applications requiring strict guaranteed service. In further work our results for the class of time varying
leaky-bucket shapers will be used to model network resources renegotiation in other scenarios, as, for
instance, in the video smoothing case [33].
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