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Abstract

We study the feasibility of data based machine learning applied to ultrasound tomography to estimate water-
saturated porous material parameters. In this work, the data to train the neural networks is simulated by
solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, we
consider a high-order discontinuous Galerkin method while deep convolutional neural networks are used to
solve the parameter estimation problem. In the numerical experiment, we estimate the material porosity
and tortuosity while the remaining parameters which are of less interest are successfully marginalized in
the neural networks-based inversion. Computational examples confirms the feasibility and accuracy of this
approach.

1 INTRODUCTION

The porosity of a material is the ratio of the non-solid matter (gas or liquid) to the total volume of media.
Information on the porosity of the media is required in many applications. Porosity defines, for example,
how much water can be stored in soil or bedrock (groundwater and soil structure studies), how strong
human bones are (osteoporosis diagnostics), what the thermal insulating ability of a material is (structural
engineering) or how a material absorbs sound (building acoustics).

Transport of gas or liquid in the porous medium affects the bonding of the pores of the material. Physi-
cally, this property is measured by flow resistivity and tortuosity. The flow resistivity defines how the porous
material resists the flow of gas or liquid through it. Tortuosity describes the complexity of porous “channels”
of the material. The porous material may be good at storing the liquid but release it very slowly (e.g. clay)
or the material may exhibit high porosity and low flow resistivity (e.g. filter materials).

Measuring the porous properties of a medium is a demanding task. Different parameters are often
measured by different application-specific methods, e.g., the porosity of rock is measured by weighing water-
saturated samples and comparing their weight with dried samples. The flow resistivity of the damping
materials can be computed from the pressure drop caused to the gas flowing through the material. In
medical ultrasound studies, the porosity of the bone is determined indirectly by measuring the ultrasound
attenuation as the wave passes through the bone.

For the porous material characterization, information carried by waves provides a potential way to es-
timate the corresponding material parameters. Ultrasound tomography (UST) is one technique that can
be used for material characterization purposes. In this technique, an array of sensors is placed around the
target. Typically, one of the sensors is acting as a source while others are receiving the data. By changing
the sensor that acts as a source, a comprehensive set of wave data can be recorded which can be used to
infer the material properties. For further details on the UST, we refer to [13] and references therein.
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The theory of wave propagation in porous media was rigorously formulated in 1950’s and 1960’s by Biot
[3, 4, 6, 5]. The model was first used to study the porous properties of bedrock in oil exploration. Since
then, the model has been applied and further developed in a number of different fields [32, 35, 21, 31]. The
challenge of Biot’s model is its computational complexity. The model produces several different types of
waveforms, i.e., the fast and slow pressure waves and the shear wave, the computational simulation of which
is a demanding task even for modern supercomputers. Computational challenges further increase when
attempting to solve inverse problems, as the forward model has to be evaluated several times.

In the work we consider a process for the parameter estimation, comprising two sub-tasks:

Forward model: the simulation of the wave fields for given parameter values. Wave prop-
agation in coupled poroviscoelastic-viscoelastic-acoustic media can be solved using the discontinuous
Galerkin (DG) method (see e.g. [18, 11, 34, 14, 12]), which is a well-known numerical approach to
numerically solve differential equations. The DG method has properties that makes it well-suited for
wave simulations, e.g., the method can be effectively parallelized and it can handle complex geometries
and, due to its discontinuous nature, large discontinuities in the material parameters. These are all
properties that are essential features for the method to be used in complex wave problems.

Inverse problem: estimation of the parameters from the measurements of wave fields.
Neural networks provide a framework to solve the inverse problems: we can train a neural network as
a model from wave fields. During last decades, neural networks have been applied in various research
areas such as cancer diagnosis [26, 27], forest inventory [29, 30], and groundwater resources [10, 16].
In our problem, the training of a neural network can be carried out using simulated wave fields as the
data. Compared to traditional inverse, neural networks has an advantage that it allows computationally
efficient inferences. In other words, after the network has been learned, inferences can be carried out
using the network without evaluating the forward model. Furthermore, the neural networks provide a
straightforward approach to marginalize uninteresting parameters in the inference.

Deep convolutional neural networks (CNN) are a special type of deep neural networks [25, 2, 24] that
employ convolutions instead of matrix multiplications. For example, convolutional layers in the network can
be used to make the inference translationally invariant, which is a natural choice for images, see e.g. [20, 33].
Furthermore, compared to fully connected networks, convolutional layers also allows significant reduction in
the number of parameters in the network. The ultrasound data, considered in this work, can be expressed as
images and therefore the convolutional layers can have a potential to solve the inference problems without
a large number of unknowns in the network.

The purpose of this paper is to study the feasibility of using a data based machine learning approach in
UST to characterize porous material parameters. In the synthetic model setup, we have a cylindrical water
tank including an elastic shell layer. Ultrasound sensors are placed inside the water tank. In the model,
we place a porous material sample in water and estimate its porosity and tortuosity from the corresponding
ultrasound measurements by a convolutional neural network.

The structure of the rest of the paper is as follows. First, in Section 2, we formulate the poroviscoelastic
and viscoelastic models. In Section 3, we describe the discontinuous Galerkin method. In Section 4, we
provide details of the neural networks technique used in this work and present a numerical experiment.
Finally, conclusions are given in Section 5.

2 GOVERNING EQUATIONS

In this paper, we consider wave propagation in isotropic coupled poroviscoelastic-viscoelastic-acoustic media.
In the following sections, we follow [8, 28, 34, 12] and formulate the poroviscoelastic and viscoelastic wave
models.
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2.1 Biot’s poroelastic wave equation

We use the theory of wave propagation in poroelastic media developed by Biot in [3, 4, 6, 5]. We express
Biot equations in terms of solid displacement us and the relative displacement of fluid w = φ(uf−us), where
φ is the porosity and uf is the fluid displacement. In the following, ρs and ρf denote the solid and fluid
densities, respectively. We have

ρa
∂2us

∂t2
+ ρf

∂2w

∂t2
= ∇ ·T, (1)

ρf
∂2us

∂t2
+m

∂2w

∂t2
+
η

k

∂w

∂t
= ∇ ·Tf , (2)

where ρa is the average density
ρa = (1− φ)ρs + φρf

and the stress T = (1−φ)Ts +φTf , where Ts is the solid stress and Tf the fluid stress tensor. Furthermore,
in Eq. (2)

m = ρfτ/φ, (3)

where τ is the tortuosity. In Eq. (2) η is the fluid viscosity and k is the permeability. For a detailed
discussion we refer to [8].

The third term in (2) is a valid model at low frequencies, when the flow regime is laminar (Poiseuille flow).
At high frequencies, inertial forces may dominate the flow regime. In this case the attenuation model may be
described in terms of viscous relaxation mechanics as discussed at the end of this Section. A characteristic
frequency fc can be used to mark the boundary between the two flow regimes

fc =
ηφ

2πτρfk
. (4)

In [3] Biot proposed generalized Hooke’s laws to describe the stress-strain coupling between the solid and
the fluid. Let E denote the solid strain tensor

E =
1

2
(∇us + (∇us)

T).

One can express the solid and fluid stress tensors as

T = 2µfrE +

(
κfr + α2M − 2

3
µfr

)
tr(E)I− αMζI (5)

Tf = M(α tr(E)− ζ)I (6)

where µfr is the frame shear modulus, κfr is the frame bulk modulus, tr(·) is the trace, I is the identity
matrix, and ζ = −∇·w is the variation of the fluid content. In Eqs. (5) and (6), α denotes the Biot effective
stress constant given by

α = 1− κfr
κs
,

where κs is the solid modulus. Finally, the modulus M can be written as

M =
κs

α− φ(1− κs/κf)
. (7)

Poroviscoelasticity in the high-frequency regime

In the high-frequency case, the term
η

k

∂w

∂t
in Eq. (2) is replaced by a convolution b ∗ ∂

2w

∂t2
= b ∗ ∂vf

∂t
, where

vf denotes the relative fluid velocity and

b =
η

k
Ψ(t)H(t). (8)
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In Eq. 8, Ψ(t) is a relaxation function of the form

Ψ(t) = 1 +

Lp∑
l=1

(
τ lε
τ lσ
− 1

)
e−t/τ

l
σ , (9)

where τε and τσ are relaxation times, and H(t) is a Heaviside function. Following [12], we introduce memory
variables e`, ` = 1, . . . , Lp, leading to an additional differential equations:

∂e`

∂t
=

(
τ `ε
τ `σ
− 1

)
∂vf

∂t
− e`

τ `σ
(10)

and

b ∗ ∂vf

∂t
=
η

k
vf +

η

k

Lp∑
`=1

e`. (11)

In the following, we assume Lp = 1. Relaxation times can be expressed in terms of a quality factor Q0 and
a reference frequency f0 as

τε =

√
Q2

0 + 1 + 1

2πf0Q0
and τσ =

√
Q2

0 + 1− 1

2πf0Q0
. (12)

2.2 Viscoelastic wave equation

The following discussion on the elastic wave equation with viscoelastic effects follows Carcione’s book [8], in
which a detailed discussion can be found. Expressed as a second order system, the elastic wave equation can
be written in the following form

ρe
∂2ue

∂t2
= ∇ · S + s, (13)

where ρe is the density, ue the elastic displacement, S is a stress tensor, and s is a volume source. In the
two-dimensional viscoelastic (isotropic) case considered here, components of the solid stress tensor S may
be written as [8]

σ11 = (λe + 2µe)ε11 + λeε22 + (λe + µe)

Le∑
`=1

ν
(`)
1 + 2µe

Le∑
`=1

ν
(`)
11 , (14)

σ22 = (λe + 2µe)ε22 + λeε11 + (λe + µe)

Le∑
`=1

ν
(`)
1 − 2µe

Le∑
`=1

ν
(`)
11 , (15)

σ12 = 2µeε12 + 2µe

Le∑
`=1

ν
(`)
12 , (16)

where µe and λe are the unrelaxed Lamé coefficients, ε11, ε22, and ε12 are the strain components, and Le is
the number of relaxation terms. The memory variables satisfy

∂ν
(`)
1

∂t
= − ν

(`)
1

τ
(1)
σ`

+ φ1`(0)(ε11 + ε22), (17)

∂ν
(`)
11

∂t
= − ν

(`)
11

τ
(2)
σ`

+
φ2`(0)(ε11 − ε22)

2
, ` = 1, . . . , Le, (18)

∂ν
(`)
12

∂t
= − ν

(`)
12

τ
(2)
σ`

+ φ2`(0)ε12, (19)
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where

φk`(t) =
1

τ
(k)
σ`

(
1−

τ
(k)
ε`

τ
(k)
σ`

)(
n∑
`=1

τ
(k)
ε`

τ
(k)
σ`

)−1

exp
(
−t/τ (k)σl

)
, k = 1, 2 (20)

In Eq. (20) τ
(k)
ε` and τ

(k)
σ` are relaxation times corresponding to dilatational (k = 1) and shear (k = 2)

attenuation mechanisms.
Acoustic wave equation can be obtained from the system by setting the Lamé coefficient µe to zero.

3 DISCONTINUOUS GALERKIN METHOD

In the following, we briefly outline the discontinuous Galerkin (DG) method. Our formulation follows [15],
where a detailed account of the DG method can be found. We first suppose that the computational domain
Ω ⊂ R2 is triangulated using K elements

Ω =

K⋃
k=1

Dk.

The boundary of element Dk is denoted by ∂Dk. We assume that the elements are aligned with material
discontinuities. The derivation of the strong form for each element of the computational grid has the following
steps:

I. Both of the physical models, poroviscoelastic and viscoelastic wave equations, discussed in Sections 2.1
and 2.2 are first written in the form of a first-order hyperbolic system [12]. This leads one to solve for
three strain components ε11, ε22, and ε12 and four velocity components, us, vs, uf , and vf , variation of
the fluid content ζ, and (in the high-frequency regime) two memory variables with the poroviscoelastic
model. Similarly, for the viscoelastic case, we have three strain components, two elastic (solid) velocities
and, depending on the number of relaxation terms, 3× Le memory variables.

II. The hyperbolic system discussed in step I is next multiplied with test function and integrated over
the volume of the corresponding element Dk. The integration by parts generates an integral over the
element boundary ∂Dk, which is replaced by the numerical flux. Finally, the system is integrated by
parts again.

III. In this paper, we use an upwind numerical flux. The corresponding flux is obtained by solving the
exact Riemann problem at the element interfaces [34, 12].

The final strong form is obtained by summing over all elements K.
For the hyperbolic system, initial and boundary conditions are needed. In the numerical experiments

shown in this paper, initial conditions are always assumed to be zero and we apply the free condition as
a boundary condition. For further discussions of boundary conditions, we refer to [8, 34] and references
therein.

4 NUMERICAL EXPERIMENT

In this section, we present the results obtained from testing the data driven approach to estimate porous
material parameters in ultrasound tomography.

4.1 Model setup

Let us first introduce the model problem. Figure 1 shows the problem geometry. The propagation medium
contains three subdomains: a cylindrical shaped poroelastic inclusion (black), a fluid (light gray), and a solid
shell (dark gray). The computational domain is an circle with radius of 10 cm with a 1 cm thick shell layer.
A circular shaped poroelastic inclusion with a radius of 4 cm is vertically shifted to 2 cm from the center of
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the circular domain. As already mentioned, the free condition is used along the external boundary. Shifting
the target from the center avoids symmetrically positioned sensors (with respect to x-axis) to receive equal
signal and therefore have more information from the target.

Figure 1: Figure shows the problem geometry. In the graph, the circles denote the receivers and the cross
denotes the source.

A total of 26 uniformly distributed ultrasound sensors are located at a distance of 8 cm from the center of
the circle. The source is introduced on the strain components ε11 and ε22 by the first derivative of a Gaussian
function with frequency f0 = 40 kHz, a time delay t0 = 1.2/f0. The sensor that is used as a source does not
collect data in our simulations. Receivers collect solid velocity components us and vs. In the following, the
simulation time is 0.4 ms.

Time integration is carried out using an explicit low-storage Runge-Kutta scheme [9]. For each simulation,
the length of the time step ∆t is computed from

∆t =

(
h`min

2c`max(N `)2

)
min

, ` = 1, . . . ,K (21)

where c`max is the maximum wave speed, N ` is the order of the polynomial basis, h`min is the smallest
distance between two vertices in the element `, and K is the number of elements. Note that recorded data
is downsampled to a sampling frequency of 800 kHz on each receiver.

The inclusion is fully saturated with water. The fluid parameters are given by: the density is ρf = 1020
kg/m3, the fluid bulk modulus is κf = 2.295 GPa, and the viscosity is η = 1.0e-3 Pa·s. All other material
parameters of the inclusion are assumed to be unknown. In this paper, we assume a relatively wide range
of possible parameter combinations, see Table 1. Furthermore, the unknown parameters are assumed to
be uncorrelated. The physical parameter space gives ∼1.5 kHz as an upper bound for Biot’s characteristic
frequency fc (see Eq. (4)) and hence we operate in Biot’s high-frequency regime (fc < f0) in all possible
parameter combinations.

For the fluid subdomain (water), we set: the density ρe = 1020 kg/m3, the first Lamé parameter λe =
2.295 GPa, and the second Lamé parameter µe = 0. The elastic shell layer has the following parameters:
ρe = 2000 kg/m3, λe = 12.940 GPa, and µe = 5.78 GPa. The relaxation times for the viscoelastic attenuation
in the shell layer are given in Table 2.
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Table 1: Table lists the minimum and maximum values used for uniform distributions for each unknown
physical parameter.

variable name symbol minimum maximum
solid density ρs (kg/m3) 1000.0 5000.0

solid bulk modulus κs (GPa) 15.0 70.0
frame bulk modulus κfr (GPa) 5.0 20.0
frame shear modulus µfr (GPa) 3.0 14.0

tortuosity τ 1.0 4.0
porosity φ 0.01 0.99

permeability k (m2) 1.0e-10 1.0e-7
quality factor Q0 20.0 150.0

Table 2: Table lists the relaxation times (two mechanisms) used with the shell layer. Relaxation times are
computed using the nonlinear optimization method discussed in detail in [7].

τ
(1)
ε` τ

(1)
σ` τ

(2)
ε` τ

(2)
σ`

` = 1 1.239e-4 1.176e-4 1.249e-4 1.165e-4
` = 2 5.319e-6 5.042e-6 5.370e-6 4.999e-6

The derived wave speeds for each subdomain are given in Table 3. For the poroelastic inclusion, both the
minimum and maximum wave speeds are reported. It should be noted that the reported values for the wave
speeds in the inclusion correspond to the values generated by sampling the material parameters and hence
they may not correspond to the global maximum and minimum values. A detailed approach for calculating
wave speeds is given in [12].

Table 3: Derived wave speeds for each subdomain. For the inclusion, both the minimum/maximum values
are given. For the inclusion, values are based on sampling the material parameters.

subdomain cIp (m/s) cIIp (m/s) cs (m/s)

inclusion 1900/20189 196/1983 833/11578
fluid 1500 - -
shell 3500 - 1700

It should be noted that, depending on the application, only some of the material parameters are unknowns
of interest. In this work, we focus on estimating the porosity and tortuosity of the inclusion while the solid
density and bulk modulus, frame bulk and shear modulus, permeability, and quality factor are marginalized
in the neural networks-based inversion algorithm, discussed in detail below.

4.2 Convolutional neural networks architecture and loss function

For the convolutional neural networks algorithm used in this work, the recorded wave data is as expressed as
images X ∈ Rd, d = Nt ×Nr, where Nt denotes the number of time steps and Nr the number of receivers.
The input dimension is d = 320 × 25, as the data X can be seen as a 2D-image, comprising 25 pixels,
corresponding to the receiver positions, times 320 pixels corresponding to the time evolution of the signal.

As the data on each column of the image, we use the following

X(:, `) =
x`r(u

`
s − u`s,noi) + y`r(v

`
s − v`s,noi)√

(x`r)
2 + (y`r)

2
, ` = 1, . . . , Nr, (22)

where (x`r, y
`
r) are the coordinates of the `th receiver and (u`s, v

`
s) are the horizontal and vertical velocity

components on the `th receiver. In Eq. (22) subscript noi denotes the data that is simulated without the
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porous inclusion. Two example images are shown in Figure 2. Images show the data for the cases, when the
slowest (left) and fastest (right) shear wave speeds are present.

Figure 2: Example images used for training the neural networks algorithm. Note that neural networks
algorithm uses the original pixel values of the image X (see Eq. (22)). Time is shown on the vertical-axis
and receiver index on the horizontal-axis. Images correspond to samples where the cs is minimum (left) and
cs is maximum (right) (see Table 3).

A convolutional neural network Θ = Θ(X;w) is a nested composition of functions, from a d-dimensional
input space X ∈ Rd to Θ ∈ R, which is the output space of the inferred variable. We train a network for
both tortuosity and porosity separately. This approach was found to yield superior results, compared to
training a network which tries to predict both of the parameters simultaneously. In this work, the network
architecture can be expressed as

Θ(X;w) = σ4(w4 · σ3(w3 · σ2(w2 ∗ σ1(w1 ∗X + b1) + b2) + b3) + b4), (23)

where wk’s are the parameters of the convolution kernel (filter weights) for the convolutional layers, or the
weight matrix for the fully connected layers of the network at level k, and bk are bias terms. The functions σk
comprises the non-linear ReLU (Rectified Linear Unit), σ = max(0, X) and with the layer normalization[1]
and signal dimension reducing pooling layers. The precise model architecture is shown in Table 4.

The training of the neural networks is based on a data set comprising physical parameters {Θ`} and
corresponding images {X`}, ` = 1, . . . , Nnn (the generation of such a data set is described below). In
particular, we are looking at porosity and tortuosity, so Θ` is either φ` or τ`. The purpose is to find weights
w and biases b that minimize the discrepancy between the physical parameters {Θ`} and the corresponding
predicted values given by the neural networks {Θ(X`;w, b)}. Hence, one is minimizing the quadratic loss
function f(w, b; {X`}) over the simulation dataset

f(w, b; {X`}) =
1

Nnn

Nnn∑
`=1

(Θ(X`;w, b)−Θ`)
2 (24)

to obtain the network parameters, weights and biases, of the network. The optimization was carried out
with the Adam optimizer[19]. The batch size for the stochastic optimization is chosen to be 50 samples.
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Table 4: The convolutional neural network architecture used in this work. The convolutional layers uses
periodic padding in the receiver position-direction. The total number of unknowns in the network is 3.38M.

Layer k Type and non-linearity input size output size
Input 320× 25 320× 25× 1

1 Convolution layer (5× 3 filter) 320× 25× 1 316× 25× 20
+ Layer normalization + ReLU

+ Max-pooling (2× 2) 316× 25× 20 158× 13× 20
1 Convolution layer (5× 3 filter) 158× 13× 20 154× 13× 25

+ Layer normalization + ReLU
+ Max-pooling (2× 2) 154× 13× 25 77× 7× 25

3 Fully connected 13475
+ Layer normalization + ReLU 250

4 Fully connected layer 250 1
Output 1

Finally, we to note that purpose aim was not to find the most optimal network architecture. For example,
there can be other architectures that can provide similar performance with smaller number of the unknowns.
Similar perfomance can also be achieved with fully connected networks with ∼3 layers, but at the expense
of significantly larger number of unknowns.

4.3 Training, validation and test data

We have generated a training data set comprising 15,000 samples using computational grids that have ∼3
elements per wavelength. The physical parameters for each sample are drawn from the uniform distribution
(bounds given in Table 1). The order of the basis functions is selected separately for each element of the
grid. The order N` of the basis function in element ` is defined by

N` =

⌈
2πah`max

λw`
+ b

⌉
(25)

where λw` = c`min/f0 is the wavelength, c`min is the minimum wave speed, and d·e is the ceiling function.
The parameters a and b control the local accuracy on each element. Following [23, 22], we set (a, b) =
(1.0294, 0.7857).

Figure 3 shows two examples of computational grids and the corresponding basis order selection on each
triangle. Example grids consist of 466 elements and 256 vertices (hmin = 0.81 cm and hmax = 1.95 cm)
(sample 1) and 1156 elements and 601 vertices (hmin = 0.32 cm and hmax = 1.75 cm) (sample 2).

Figure 4 shows two snapshots of the scattered solid velocity field (
√

(us − us,noi)2 + (vs − vs,noi)2) for two
time instants. At the first time instant, the transmitted fast pressure wave and also the first reflected wave
front is clearly visible. At the second time, all wave components have reflected back from the left surface
of the phantom. Furthermore, more complicated wave scattering patterns can be seen inside the porous
inclusion. These wave fields demonstrate how the received signals are obtained as combinations of multiple
wave fronts.

To include observation noise in the training, each image in the simulation set is copied 5 times and each
of the copies is corrupted with Gaussian noise of the form

Xnoised
`′ = X` +AεA +B|X`|εB (26)

where εA and εB are independent zero-mean identically distributed Gaussian random variables. The second
term represents additive white noise and the last term represents noise relative the signal strength. To
represent a wide range of different noise levels, for each sample image, the coefficients A and B are randomly
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Figure 3: Figure shows two example grids used in the computations. The colorbar shows the order of the
basis functions.

Figure 4: Wave interaction with the poroelastic material at two times. The title shows the time. In the
graphs, solid black lines show the inclusion/water and water/shell interfaces while the dotted black line
shows the exterior boundary.

chosen such that the standard deviations of the white noise component is between 0.03-5% (varying loga-
rithmically), and the standard deviations of the relative component is between 0-5%. The total number of
samples in the training set is Nnn = 5× 15000 = 75000.

Furthermore, two additional data sets were generated: a validation data set and a test set, that both
comprise 3000 samples. In machine learning, the validation data set is traditionally used to evaluate per-

10



formance during the training process and the test set is used for the final evaluation of the network. These
data sets are generated similarly as the training set, except computational grids were required to have ∼4
elements per wavelength to avoid inverse crime [17]. Furthermore, for the test set, the non-uniform basis
order parameters are (a, b) = (1.2768, 1.4384) [23] (Eq. (25)) and the noise is added in a more systematic
manner (instead of choosing A and B are randomly) to study the performance with different noise levels
(see Results section).

4.4 Results

Figure 5 shows the loss of the training and validation data. The loss is shown for the two unknown parameters
of interest, e.g., porosity and tortuosity. In both cases, we observe that the network has practically reached
its generalization capability at least after 2000 full training cycles. The accuracy of the network is affected
by the marginalization over all other parameters. In principle, the effect of the other parameters could
compensate the changes that using, for example, a different porosity would cause, leaving the waveform of
the measurement intact.

Porosity Tortuosity

500 1000 1500 2000 2500 3000

Epoch

10
-6

10
-5

10
-4

10
-3

10
-2

training

validation

500 1000 1500 2000 2500 3000

Epoch

10
-4

10
-3

10
-2

10
-1

training

validation

Figure 5: Training and validation loss for porosity (left) and tortuosity (right) as function of number of
epochs (full training cycles in stochastic optimization).

We have applied the trained network to predict porosity and tortuosity from images of the test that are
corrupted with the white noise component with low noise level (Fig. 6), moderate noise level (Fig. 7) and
high noise level (Fig. 8). The figures also include error histograms. Fig. 9 shows the maximum absolute
error and the root-mean-square error (the square root of Eq. (24)) as a function of the noise level in white
noise component. The predictions are slightly positively biased with smaller noise levels, but positive bias
is diminished with higher noise levels. Such a behaviour might be due to the discretization error in forward
models (the simulation of training and testing data were carried out using different levels of discretizations)
which may dominate with lower observation noise levels but becomes negligible with higer noise levels. On
the contrary, with high levels of noise, the predictions are negatively biased especially for larger values of
porosity and tortuosity.

We have also studied the effect of the relative noise (the third term in Eq. (26)) to the results. Fig.
10 shows the maximum absolute error and the root-mean-square error (the square root of Eq. (24)) as a
function of the noise level in the relative component. As we can see, the predictions are almost uneffected
by the relative error even with significantly high noise levels (∼5-10%).

5 CONCLUSIONS

In this paper, we proposed the use of convolutional neural networks (CNN) for estimation of porous material
parameters from synthetic ultrasound tomography data. In the studied model, ultrasound data was generated
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Figure 6: Predicted porosities (left) and tortuosities (middle) for the test data with white noise of 0.8%
(relative to the maximum absolute value of the signal in the training set). Bottom row (left and middle)
shows histograms of the prediction error (difference between the predicted and true values). The right column
shows two examples of the sample images in this noise level.

in a water tank into which the poroelastic material sample was placed. A total of 26 ultrasound sensors
were positioned in the water. One of the sensors generated the source pulse while others were used in the
receiving mode.

The recorded velocity data were represented as images which were further used as an input to the CNN.
We estimated the porosity and tortuosity of the porous material sample while all other material parameters
were marginalized in the solution of the inverse problems.

The reported results support the feasibility of using a data based approach for the characterization of
porous material from ultrasound tomography data. Based on the results, it seems that the interesting
material parameters can be estimated with acceptable accuracy with wide variety of noise levels, while
the uninteresting parameters are successfully marginalized. The success in the marginalization significantly
increases the potential of the neural networks for material characterization.

In the experiment, the parameter space for the porous inclusion was assumed to be large. The selected
parameter space models a different type of materials and hence the same network can be used to recover
the interesting parameters in many different kinds scenarios. For example, the porosity of the inclusion was
allowed to span the interwall from 1% to 99%. The error histograms for the both porosity and tortuosity show
excellent accuracy in terms of RMSE and bias. Results also predict that the marginalization of uninteresting
parameters can be successfully done by CNN.

The results of this paper support the feasibility of CNN for the characterization of porous materials based
on ultrasound tomography data. Future studies should include the extension to three spatial dimensions
together with actual measurements.
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